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Abstract. Deformations of complex structures by finite Beltrami differentials are consi-
dered on general Riemann surfaces. Exact formulas to any fixed order are derived for
the corresponding deformations of the period matrix, Green’s functions, and correlation
functions in conformal field theories with vanishing total central charge. The stress tensor
is shown to give a simple representation of these deformations valid to all orders. Such
deformation formulas naturally enter into the evaluation of superstring amplitudes at two-
loop order with Ramond punctures, and at higher loop order, in the supergravity formulation
of the RNS superstring.
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1 Introduction

It is a fundamental property of the moduli space of Riemann surfaces that its tangent space
is given by the space of Beltrami differentials, modulo the range of the ∂̄ operator on vector
fields. In general, without some additional structure, such as a connection, a tangent vector to
a manifold determines only an infinitesimal deformation on the manifold. However, in the case
of moduli space, we can actually associate to each Beltrami differential a finite deformation
of the underlying complex structure. It is the purpose of this note to work out in detail the
properties of this finite deformation, including explicit formulas to all orders in the Beltrami
differential for the resulting period matrix and Green functions. Similarly, it is well-known that
infinitesimally, the deformations of the correlation functions of a conformal field theory can
be obtained by a single insertion of the stress tensor. We show that a simple exponentiated
generalization of this formula remains valid to all orders in a finite deformation, assuming the
vanishing of the total central charge.

The problem of higher order deformations of complex structures arises in superstring per-
turbation theory. There the period matrix of a super Riemann surface can receive corrections
of higher order as the gravitino field is turned on. For the scattering of Neveu–Schwarz states
in genus 2, deformations by a Beltrami differential are needed only to first order [6, 7, 9] (see
also [10] for a review). This is no longer the case for genus 3 or higher, or even for genus 2, when
the scattering of Ramond states is considered [2, 18]. The results of the present note will play,
in particular, an essential role in the construction of string amplitudes with Ramond states at
two-loop level. We shall report on these issues elsewhere.

?This paper is a contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of
Luc Vinet. The full collection is available at http://www.emis.de/journals/SIGMA/ESSA2014.html
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2 Finite deformations by Beltrami differentials

Let Σ be a compact Riemann surface, and let z denote a local holomorphic coordinate on the
surface. Let µ = µ(z) dz̄ ⊗ ∂z be a Beltrami differential. We shall always assume that the
reduced part µred of µ satisfies |µred| < 1, and that µ has even grading in a finitely-generated
Grassmann algebra. This last situation is the one of interest in superstring perturbation theory,
where furthermore µ is actually a nilpotent element of finite order of a Grassmann algebra, the
order being related to the number of odd moduli in the problem.

We define a new, deformed, complex structure on Σ by the requirement that its local holo-
morphic coordinate w satisfy the equation

(∂z̄ + µ(z)∂z)w = 0.

The well-known theorem of Beltrami asserts that a local holomorphic coordinate w always exists,
and that the partial derivative ∂zw may be taken to be non-vanishing. We shall often distinguish
the two complex structures by indicating their respective local complex coordinate, either z for
the original complex structure or w for the deformed complex structure. For a given complex
structure, we decompose the cotangent bundle to Σ into the canonical bundle K and its complex
conjugate K̄, whose sections are referred to as forms of type (1, 0) and (0, 1) respectively. When
several complex structures, say z and w, are simultaneously at play we shall use the notations Kz

and Kw for their respective cotangent bundles.

2.1 Deformation of holomorphic 1-forms

Consider now a holomorphic (1,0)-form ω with respect to the deformed complex structure w, so
that ω is a holomorphic section of Kw, and takes the form ω = ω(w)dw. The basic observation is
that, expressed in terms of z coordinates, a holomorphic (1, 0)-form with respect to the complex
structure w must be of the form

ω = ϕdz − (µϕ)dz̄, (2.1)

with the coefficient function ϕ satisfying the relation

∂z̄ϕ = −∂z(µϕ). (2.2)

Indeed, since we have the equations

dw = (∂zw) dz + (∂z̄w) dz̄ = (∂zw)(dz − µ(z)dz̄),

∂w̄ = (∂w̄z)∂z + (∂w̄z̄)∂z̄ = (∂w̄z̄)(∂z̄ + µ(z)∂z), (2.3)

it follows that ω can be expressed in the form (2.1) by taking ϕ = (∂zw)ω(w). Furthermore,
the holomorphicity of a (1, 0)-form is equivalent to the fact that it is closed, which can be
implemented using either set of coordinates, z or w. Using the coordinate z, we find that
dω = 0 is equivalent (2.2), giving the desired equality.

The general solution of equation (2.2) is given by the following integral equation1

ϕ(z) = ψ(z) +
1

2π

∫
Σ
d2z′∂z∂z′ lnE(z, z′)(µϕ)(z′), (2.4)

where ψ = ψ(z)dz is an arbitrary holomorphic (1, 0)-form and E(z, z′) is the prime form, both
with respect to the complex structure z. Successively iterating (2.4) gives an expression for ϕ to
an arbitrary order in µ. This iteration process terminates after a finite number of iterations to
give the exact solution when µ is a nilpotent element valued in a finitely-generated Grassmann
algebra, which is the case in superstring perturbation theory.

1Throughout, we shall use the conventions of [4], such as the normalization d2z = idz ∧ dz̄.
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2.2 Deformation of the period matrix

We can evaluate now the deformation of the period matrix of the Riemann surface Σ to arbitrarily
high order in µ. For this, we fix a canonical homology basis AI , BI , 1 ≤ I ≤ h, #(AI∩BJ) = δIJ ,
#(AI ∩ AJ) = 0, #(BI ∩ BJ) = 0, where h is the genus of Σ. Let ψI(z)dz be the basis of
holomorphic 1-forms with respect to the complex structure z which is dual to the cycles AI , and
let ΩIJ be the matrix of their BJ periods∮

AJ

ψI(z)dz = δIJ ,

∮
BJ

ψI(z)dz = ΩIJ .

Corresponding to the basis ψI is a basis ωI of holomorphic (1, 0)-forms with respect to the w
structure, with ωI = ϕI(z)dz − (µϕI)(z)dz̄ and ϕI(z) given by (2.4)

ϕI(z) = ψI(z) +
1

2π

∫
Σ
d2z′∂z∂z′ lnE(z, z′)(µϕI)(z

′). (2.5)

Their periods around a closed cycle C are given by∮
C
ωI(w)dw =

∮
C

(
ϕI(z)dz − (µϕI)(z) dz̄

)
. (2.6)

To express these periods in terms of the complex structure z and the Beltrami differential µ, we
substitute in this formula the right hand side of (2.5) for ϕI . But due to the fact that the integral
of ∂z∂z′ lnE(z, z′) is only conditionally convergent, the interchange of the order of integrations
in z and z′ is found to require a correction term, and is given by the following formula proved
in [5]

1

2π

∮
C
dz

(∫
Σ
d2z′∂z∂z′ lnE(z, z′)(µϕI)(z

′)

)
=

1

2π

∫
Σ
d2z′

(∮
C
dz∂z∂z′ lnE(z, z′)

)
(µϕI)(z

′) +

∮
C

(µϕI)(z)dz̄. (2.7)

Combining (2.6) and (2.7), we see that the integral over the (0, 1)-form (µϕI)dz̄ cancels out,
and we are left with∮

C
ωI(w)dw =

∮
C
ψI(z)dz +

1

2π

∫
Σ
d2z′

(∮
C
∂z∂z′ lnE(z, z′)dz

)
(µϕI)(z

′).

Now the monodromy of the prime form E(z, w) is trivial around AI -cycles, and around BI -cycles
is given by

E(z +BJ , z
′) = E(z, z′) exp

(
−πiΩJJ + 2πi

∫ z′

z
ωJ

)
.

Letting C = AJ or C = BJ in the preceding formula, we find∮
AJ

ωI(w)dw = δIJ ,

∮
BJ

ωI(w)dw = ΩIJ + i

∫
Σ
d2z ωJ(z)µ(z)ϕI(z),

where ϕI(z
′) may be obtained by successive iterations of (2.4).

Thus, the forms ωI precisely provide the basis of holomorphic one-forms with respect to the
deformed complex structure w which is dual to the cycles AI . Their BJ -periods provide the
period matrix ΩIJ(µ) of the complex structure w in terms of the period matrix ΩIJ = ΩIJ(0) of
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the original complex structure z. Repeated iteration of the formula (2.5) for ϕI produces ΩIJ(µ)
to an arbitrary fixed order in a power expansion of µ. For example, to order O(µ3), we obtain

ΩIJ(µ) = ΩIJ + i

∫
Σ
d2z ωJ(z)µ(z)ωI(z)

+
i

2π

∫
Σ
d2z

∫
Σ
d2z′ ωJ(z)µ(z)∂z∂z′ lnE(z, z′)µ(z′)ωI(z

′) +O
(
µ3
)
.

For fixed z, the integral over z′ is conditionally convergent, but may naturally be defined
uniquely by requiring that the integral over z′ of the singularity (z − z′)−2 over a small circular
disc centered at z must vanish by angular integration.

3 Deformations of tensors and covariant derivatives

Next, we shall consider deformations of tensors of more general weight. It will be convenient
to denote by Tm,n(Σz) the space of sections of K⊗mz ⊗ K̄⊗nz , namely the space of tensors of
type ϕ(z)(dz)m ⊗ (dz̄)n, where Kz is the canonical bundle for complex structure z. Here, the
subindex z continues to indicate the complex structure. Spinors may be included as well by
taking half-integer m and n, and providing the additional data of a spin structure.

3.1 Deformation of tensors

Now consider a tensor ϕ(z)(dz)n belonging to T (n,0)(Σz) for given n. Then the correspondence
ω dw ↔ ϕdz used in the previous section for the special case n = 1 generalizes to the following
correspondences for tensors of type ϕ(z)(dz)n

ιw←z : ϕ(z)→ ϕ̃(w) = ϕ(z)(∂wz)
n,

ιz←w : ϕ(w)→ ϕ̃(z) = ϕ(w)(∂zw)n.

Intrinsically, the map ιz←w is proportional to the projection from the space Tn,0(Σw) onto the
space Tn,0(Σz), defined by the direct sum decomposition

Tn,0(Σw) =
n⊕
k=0

Tn−k,k(Σz)

and keeping only the top component Tn,0(Σz). This decomposition may be carried out explicitly,
with the help of (2.3)

ϕ(w)(dw)n =

n∑
k=0

n!

k!(n− k)!
(−µ)kϕ(w)(∂zw)n(dz)n−k ⊗ (dz̄)k.

The map ιz←w corresponds to retaining only the term k = 0. Similarly, the inverse map ιw←z is
defined by the analogous projection from Tn,0(Σz) onto Tn,0(Σw). We note that the maps ιz←w
and ιw←z restricted to the spaces Tn,0(Σw) onto Tn,0(Σz) are not inverses of each other. A simple
calculation gives their composition as follows

ιz←wιw←z = (∂zw)n(∂wz)
n =

1

(1− µµ̄)n
. (3.1)

Thus, the maps are not properly projections but are proportional to projections.
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3.2 Deformation of covariant derivatives

In the treatment of deformations of one-forms in the previous section, it sufficed to use the de
Rham exterior derivative. However, for tensors of higher rank we shall need covariant derivatives.
So we introduce now deformations of metrics associated to deformations of complex structures.
Let Σz be a Riemann surface with local holomorphic coordinates z, and let µ be a Beltrami
differential which deforms the complex structure z to w, for the Riemann surface Σw. Let
the metrics corresponding to Σz and Σw be denoted respectively by ds2 = 2gz̄zdzdz̄ and ds̃2 =
2g̃w̄wdwdw̄. The covariant derivatives∇z on a form ϕ = ϕ(z)(dz)n in Tn,0(Σz) and ∇̃w on a form
ϕ̃ = ϕ̃(w)(dw)n in Tn,0(Σw) are defined as usual by relations which do not require a connection

∇zϕ = gzz̄∂z̄ϕ, ∇̃wϕ̃ = g̃ww̄∂w̄ϕ̃.

We now define the deformation ∇̃z of the covariant derivative ∇z by the Beltrami differential µ
to be the following operator acting on a form ϕ(z)(dz)n in Tn,0(Σz)

∇̃zϕ = ι−1
w←z(∇̃w(ιw←zϕ)).

The following surprisingly simple and exact formula for ∇̃z holds to all orders in µ. With the
help of the Weyl factor e2σ = |∂zw|2gzz̄ g̃ww̄ between the metrics, one finds

∇̃zϕ =
e−2σgzz̄

(1− µµ̄)2

(
∂z̄ϕ+ µ∂zϕ+ nϕ∂zµ− nϕ(∂z̄ + µ∂z) ln(1− µµ̄)

)
, (3.2)

where µ, µ̄, and ϕ are functions of z. To the best of the authors’ knowledge, this formula is new.
It is a generalization to all orders in µ, namely for a finite deformation of complex structures,
of the well-known formulas of Friedan [11] for the case of infinitesimal µ. Finite deformations
of Abelian differentials on Riemann surfaces have also been considered in the mathematical
literature, in particular in [14, 19].

To establish (3.2), we start from the defining formula for ∇̃z

∇̃zϕ = (∂wz)
−(n−1)g̃ww̄ ∂w̄

(
ϕ(z)(∂wz)

n
)
.

Expressing ∂w̄ in terms of derivatives with respect to z and z̄ using the second line in (2.3), and
eliminating the metric g̃ww̄ using the definition of the Weyl factor, we find

∇̃zϕ =
e−2σgzz̄

(1− µµ̄)2

(
(∂z̄ + µ(z)∂z)ϕ(z) + nϕ(z)(∂z̄ + µ(z)∂z) ln(∂wz)

)
.

Since all functions are now with respect to z, we shall no longer exhibit this dependence below.
Using (3.1) to eliminate ln(∂wz) in terms of ln(∂zw) and ln(1− µµ̄), we find

∇̃zϕ =
e−2σ gzz̄

(1− µµ̄)2

(
(∂z̄ + µ∂z)ϕ− nϕ(∂z̄ + µ∂z)

{
ln(∂zw) + ln(1− µµ̄)

})
.

It is straightforward to establish the following relation

∂zµ+ (∂z̄ + µ∂z) ln(∂zw) = 0

with the help of which the term in ln(∂zw) may be eliminated to give (3.2). The derivation
of (3.2) is complete. The formula (3.2) can be yet recast in a perhaps more suggestive form

∇̃zϕ =
e−2σ

(1− µµ̄)2−n ∇̂
zϕ̂,

where we have set ϕ̂ = (1− µµ̄)−nϕ and

∇̂zϕ̂ = gzz̄
(
∂z̄ϕ̂+ µ∂zϕ̂+ n(∂zµ)ϕ̂

)
. (3.3)

The covariant derivative ∇̂zϕ̂ now precisely coincides with the covariant derivative to first order
in µ, though (3.3) is now valid for finite deformations µ.
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4 Finite deformations via the stress tensor

Using the theory and practice of finite deformations of complex structures developed in the
preceding sections, we shall now apply these finite deformations to the standard worldsheet
actions for superstring theory, namely for the scalar matter field xν and the spinor matter
field ψν in flat space-time, and for the ghost fields b, c, β, γ. (Actions for non-linear σ-models
for string theory in curved space-time may be treated in an analogous manner.) We will recover
the same actions that one would obtain by including a finite deformation of the worldsheet
metric, as expected. We will then show that these finite deformations are fully accounted for by
the inclusion of the usual stress tensors for these fields, provided the overall total central charge
vanishes.

4.1 Finite deformations of worldsheet actions

The simplest case is the action for the scalar fields xν . Denoting their deformations to fields in
T (0,0)(Σw) by x̃ν , the scalar action is given by

Ĩx =
1

4π

∫
Σ
d2w ∂wx̃

ν∂w̄x̃
ν ,

where ν is the 10-dimensional space-time index, contracted with the help of the flat Minkowski
space-time metric by summation over repeated indices ν. Using the first equation in (2.3) to
recast the measure in terms of z, the second equation of (2.3) to recast the derivatives in terms
of derivatives with respect to z, and denoting the corresponding scalar field in T (0,0)(Σz) by xν ,
we obtain the following action

Ĩx =
1

4π

∫
d2z

1− µµ̄
(
(1 + µµ̄)∂zx

ν∂z̄x
ν + µ̄∂z̄x

ν∂z̄x
ν + µ∂zx

ν∂zx
ν
)
.

Clearly, this action is not new; one arrives at the same expression for Ĩx by considering the
action for the scalar field xν

Ix =
1

8π

∫
Σ
d2ξ
√
ggmn∂mx

ν∂nx
ν

in the presence of a general worldsheet metric gmn with m,n = 1, 2, for arbitrary coordi-
nates ξ1, ξ2 on Σ. To recover Ĩx, it then suffices to choose the following parametrization

ds2 = gmndξ
mdξn = 2e2σ(z)|dz − µ(z)dz̄|2. (4.1)

The dependence on σ(z) again drops out in view of the Weyl invariance of the action Ix.

The action for the spin 1/2 field ψ̃ν belonging to T ( 1
2
,0)(Σw) is given by

Ĩψ = − 1

4π

∫
Σ
d2w ψ̃ν∂w̄ψ̃

ν .

In terms of the field ψν ∈ T ( 1
2
,0)(Σz), it is given by

Ĩψ = − 1

4π

∫
Σ

d2z

1− µµ̄
(
ψν∂z̄ψ

ν + µψν∂zψ
ν
)
.

The contribution arising from terms of the form ψνψν actually vanishes in view of the Grassmann
nature of the field ψν . The resulting action in turn may be obtained alternatively by starting
from an action for ψν for a general metric parametrized by (4.1).
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Finally, we consider the theory of pairs of fields b(z), c(z) belonging to Tn,0(Σz) and
T 1−n,0(Σz) respectively. Denote by b̃(w) and c̃(w) respectively their deformations to fields
in Tn,0(Σw) and T 1−n,0(Σw). The action is given by

Ĩbc =
1

2π

∫
d2w b̃∂w̄ c̃.

In terms of the fields b(z), c(z), the deformed action is given by

Ĩbc =
1

2π

∫
Σ

d2z

1− µµ̄
(
b∂z̄c+ µb∂zc− (n− 1)bc∂zµ+ (n− 1)bc(∂z̄ + µ∂z) ln(1− µµ̄)

)
.

The action for the superghosts β, γ is obtained by replacing b by β and c by γ and setting n = 3
2 .

For the case of n = 1
2 the b and c fields have the same weight. The case of the ψ field treated

earlier then corresponds to identifying b and c which is possible only at n = 1
2 .

Putting together the cases of n = 0, n = 1
2 , n = 2, and n = 3

2 , we will obtain the expression
to all orders in the deformation µ for the worldsheet action for the RNS string, at vanishing
worldsheet gravitino field. It is well-known how to include the latter contribution.

4.2 Chiral splitting

Each classical action, Ĩx, Ĩψ, Ĩbc, and Ĩβγ , depends on both µ and µ̄. It is a basic principle of
two dimensional conformal field theories that, in the deformation of their correlation functions,
all terms involving µµ̄ should appear with a coefficient proportional to their central charges.
Indeed, each quantum partition function depends on both µ and µ̄, but it is well-known from
Belavin and Knizhnik [1] that this mixed dependence is proportional to the central charge of
each field. The quantum partition function of the combined fields xν , ψν , b, c, b̄, c̄, β, γ, β̄, γ̄
has vanishing central charge and, properly normalized, is the absolute value square of a chiral
partition function, which only depends on µ and not on µ̄. A generalization of this result to the
case of the full worldsheet supergravity including the dependence on the Beltrami differential µ
and the worldsheet gravitino field χ was proven in [3].

The above result may be further generalized to the case of superstring amplitudes with N
external string states represented by vertex operator insertions on the worldsheet, and gives rise
to the chiral splitting theorem, proven in [5] for strings propagating in flat Minkowski space-
time or on a flat toroidal compactification thereof. In brief, the theorem states that a string
amplitude in which left and right movers are complex conjugates of one another, with equal fixed
internal loop momenta p and equal fixed spin structure δ, is the absolute value square of a chiral
string amplitude which depends only on µ and χ but not on their complex conjugates. The
physical Type II string amplitudes are then obtained by pairing left and right chiral amplitudes
at the same internal loop momenta p, but different spin structures δL and δR which are to be
summed over independently in accord with the GSO projection. For the heterotic strings, the
prescription is analogous with the right moving chiral amplitude replaced by the chiral half of the
bosonic string compactified on a 16-dimensional torus. In summary, the basic building blocks
in the perturbation theory of all closed oriented string theories are the chiral string amplitudes
which depend on µ but are independent of µ̄.

4.3 Finite deformations via the stress tensor

Thus, in a theory with total central charge 0, as in superstring perturbation theory, we can
just drop all the dependence involving µµ̄. In view of all the formulas derived in the previous
sections for finite deformations of complex structures, we find the remarkable fact that the
covariant derivatives, the actions, and the stress tensors are all given by the same formulas as
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for infinitesimal deformations, but with the property that the formulas are valid to all orders
of expansion in µ. The corresponding effective chiral action for the chiral parts of the fields
(denoted xν+ and ψν+ for the matter RNS fields) of the superstring thus takes the form

I =
1

2π

∫
Σ
d2z

(
1

2
∂z̄x

ν
+∂zx

ν
+ −

1

2
ψν+∂z̄ψ

ν
+ + b∂z̄c+ β∂z̄γ − µT − χS

)
,

where T is the worldsheet stress tensor obtained from the expressions of the actions given above,
and truncated by setting µ̄ = 0. Also, S is the worldsheet supercurrent, whose effects have been
included for completeness, but without derivation. This formula was the starting point for the
construction of two-loop amplitudes with NS vertex operators in [7, 8], where the formula was
needed only to first order in µ, but here it is established to all orders in µ. We also refer to [16,
Section 3.5] for a helpful treatment of deformations of supercomplex structures by fields.

Collecting all terms for the stress tensor, we find the well-known form [12]

T = −1

2
∂zx

ν
+∂zx

ν
+ +

1

2
ψν∂zψ

ν
+ − b∂zc− ∂z(bc)− β∂zγ −

1

2
∂z(βγ).

The expression for the supercurrent is similarly given by [12]

S = −1

2
ψν+∂zx

ν
+ +

1

2
bγ − 1

2
β∂zc− ∂z(βc).

Note that neither T nor S involves any dependence on µ, a key ingredient in the conclusion
that the formulas for deformations by µ customarily viewed as valid only to first order in µ, are
actually valid to all orders in µ. Also note that χ is independent of µ, so that when the above
action is used to higher order in µ, there is no need to deform the complex structure in which χ
was originally defined: all such deformations will effectively be taken care of by the insertion of
the stress tensor term µT .

4.4 Finite deformations of Green functions

The chiral splitting principle brings about an enormous simplification. We shall now test this
explicitly by showing that the Green functions for the scalar field xν+, for the spinor field ψν+,
and for the ghost systems b, c and β, γ are precisely given by the correlators for these fields
in the presence of their respective stress tensor, and this to all orders in µ. For the sake of
clarity we shall treat each system of fields separately. Our main concern is with higher loop
superstring amplitudes for closed oriented superstrings, so we shall discuss the case when Σ is
a closed oriented Riemann surface of genus h ≥ 2. For the case of the sphere h = 0, the complex
structure is unique, while for the torus h = 1 the situation is well-known.

4.5 The b, c system

The b, c system has anti-commuting fields b, c and will be considered here for arbitrary n ≥ 3
2

(we shall discuss the cases of n = 0, 1
2 , 1 separately below). We shall show that the Green

function for the Cauchy–Riemann operator ∇̂zµ is identical to the correlator for the b, c system
in the presence of the stress tensor insertion µT , to all orders in µ. Recall that the covariant
derivative ∇̂zµ, defined earlier in (3.3), acting on a tensor field of weight (n, 0), is given by

∇̂zµ =
1√
g̃

(
∂z̄ + µ∂z + n(∂zµ)

)
. (4.2)

For the case considered here, namely n ≥ 3/2, the kernel of the adjoint of ∇̂zµ vanishes, and the
Green function is simply defined by

∇̃zµGµ(z, z′) = 2πδg̃(z, z
′).



Higher Order Deformations of Complex Structures 9

By conformal invariance, all factors of g̃ cancel on both sides above so that the equations which
define the Green functions for µ and for µ = 0 are given by

(∂z̄ + µ∂z + n(∂zµ))Gµ(z, z′) = 2πδ(z − z′)
∂z̄G0(z, z′) = 2πδ(z − z′). (4.3)

To calculate Gµ in terms of G0 to all orders in µ, we combine the above equations

∂z̄Gµ(z, z′) = ∂z̄G0(z, z′)−
(
µ∂z + n(∂zµ)

)
Gµ(z, z′),

which may be integrated as follows

Gµ(z, z′) = G0(z, z′)− 1

2π

∫
d2v G0(z, v)

(
µ∂v + n(∂vµ)

)
Gµ(v, z′). (4.4)

In general, this integration will allow for an additional contribution which is a holomorphic form
of weight (n, 0) in z, since the ∂z̄ operator on (n, 0)-forms has a non-trivial kernel. This arbi-
trariness may be fixed, for example, by insisting that the free zeros of Gµ in its first argument, z,
be independent of µ, and coincide with the free zeros of G0. Denoting these free zeros by za
with a = 1, · · · ,Υ(n) where Υ(n) = (2n− 1)(h− 1), for the case h ≥ 2 of interest here, we are
led to require

Gµ(za, z
′) = 0, a = 1, . . . ,Υ(n), (4.5)

for all points z′, arbitrary µ including 0, and za independent of µ. This requirement is natural
in superstring perturbation theory. The Green function Gµ may be obtained to arbitrary order
in µ by iterating the integral equation, and we get schematically

Gµ = G0 +G0MG0 +G0MG0MG0 + · · · , (4.6)

where M is the operator −(µ∂v + n(∂vµ))/(2π).

4.5.1 Green function by deformed correlator

We shall now prove that the Green function Gµ is alternatively given in terms of the chiral
deformed correlator for the bc system by

Gµ(z, z′) = 〈b(z)c(z′)〉µ, (4.7)

where the correlator 〈b(z)c(z′)〉µ is defined as follows

〈b(z)c(z′)〉µ =
1

Zbc

〈
b(z)c(z′)

Υ(n)∏
a=1

b(za) exp

{
1

2π

∫
d2v µ(v)Tbc(v))

}〉
0

and the stress tensor is given by

Tbc = −b∂zc− (n− 1)∂z(bc). (4.8)

The normalization factor Zbc is defined by omitting the insertions b(z)c(z′), and is given by

Zbc =

〈
Υ(n)∏
a=1

b(za) exp

{
1

2π

∫
d2v µ(v)Tbc(v))

}〉
0

.
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The expectation value 〈· · · 〉0 is with respect to the action for the bc system for vanishing µ. In
particular, 〈b(z)c(z′)〉0 equals G0(z, z′) and has a pole of unit residue at z = z′

〈b(z)c(z′)〉0 = G0(z, z′) =
1

z − z′
+O

(
(z − z′)0

)
. (4.9)

To prove the proposed equality (4.7), one may proceed either by showing that the above expres-
sion obeys the differential equation for Gµ in (4.3) as well as the normalization conditions (4.5),
or alternatively that its expansion in powers of µ coincides with the one given in (4.6). It is
instructive to give both proofs.

By construction, both Gµ(z, z′) and 〈b(z)c(z′)〉µ are forms of weight (n, 0) in z and weight
(1− n, 0) in z′, both vanish at z = za for all a = 1, . . . ,Υ(n), and both have a simple pole with
unit residue in z at z = z′. Furthermore, the operator product of the fields b and T exhibits
a universal pole governed by the dimension n of b, namely,

b(z)Tbc(v) =
nb(v)

(v − z)2
+ (n− 1)

∂vb(v)

z − v
+O

(
(z − v)0

)
.

Upon integrating Tbc against µ, and applying the Cauchy–Riemann operator ∂z̄, we have

∂z̄

(
b(z)

∫
Σ
d2v µ(v)Tbc(v)

)
= −µ(z)∂zb(z)− n(∂zµ(z))b(z).

As a result, one finds that 〈b(z)c(z′)〉µ obeys the first equation in (4.3). Since it also obeys the
normalization conditions (4.5) this completes the proof of (4.7) to all orders in µ.

Alternatively, one may compare the expansions of Gµ(z, z′) and 〈b(z) c(z′)〉µ in powers of µ
term by term. Concentrating, for example, on the term of first order in µ, we have

〈b(z)c(z′)〉µ = 〈b(z)c(z′)〉0 +
1

2π

∫
d2v µ(v)〈Tbc(v)b(z)c(z′)〉0 +O

(
µ2
)
,

where T was given in (4.8). Using Wick contractions to carry out the correlator, we find∫
d2v µ(v)〈Tbc(v)b(z)c(z′)〉0 = −

∫
Σ
d2v G0(z, v)

(
µ(v)∂v + n∂vµ(v)

)
G0(v, z′). (4.10)

Comparison with (4.4) shows perfect agreement. Terms of higher order may be identified in an
analogous manner.

4.6 The β, γ system

The only difference between the β, γ system and the b, c system discussed above is that β and γ
are commuting fields while b, c were anti-commuting fields. The β, γ system will be considered
here for n ≥ 3

2 . In particular, the Green function for the Cauchy–Riemann operator ∇̃zµ is
identical to the one for the b, c system, and is therefore defined by the differential equation (4.3)
along with the normalization conditions (4.5) for the appropriate value of n, namely n = 3

2 in
the case of the superstring superghost system. The result for the β, γ system is as follows

Gµ(z, z′) = −〈β(z)γ(z′)〉µ, (4.11)

where the correlator 〈β(z)γ(z′)〉µ is defined as follows

〈β(z)γ(z′)〉µ =
1

Zβγ

〈
β(z)γ(z′)

Υ(n)∏
a=1

δ
(
β(za)

)
exp

{
1

2π

∫
d2v µ(v)Tβγ(v))

}〉
0
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and the stress tensor is given by

Tβγ = −β∂zγ − (n− 1)∂z(βγ).

The normalization factor Zβγ is defined by omitting the insertions β(z)γ(z′), and given by

Zβγ =

〈
Υ(n)∏
a=1

δ
(
β(za)

)
exp

{
1

2π

∫
d2v µ(v)Tβγ(v))

}〉
0

.

Note that the sign difference in (4.11) constitutes a crucial difference with the b, c system. In
particular, the correlator at µ = 0 has a single pole at z = z′ with residue −1, as given by (4.9).
For useful treatments of the β, γ correlators, we refer the reader to [13, 15] and [17, Section 10].

4.7 The spinor field ψµ
+

The spinor field ψ (we shall drop the Lorentz superscript ν and the chirality subscript + in this
section), may be viewed as the special case of the b, c system with n = 1

2 and the fields b and
c identified. The Green function is now referred to as the Szegö kernel. The Cauchy–Riemann
operator ∇̃zµ is given by (4.2) with n = 1

2 . For even spin structures, the kernel of ∇̃zµ and the
kernel of its adjoint operator are both null, generically on moduli space. For odd spin structure,
however, both operators have a one-dimensional kernel, again generically on moduli space.

For even spin structure, the Szegö kernel will be denoted by Sµ(z, z′). It is odd under the
interchange of z and z′ and satisfies the differential equation(

∂z̄ + µ∂z +
1

2
(∂zµ)

)
Sµ(z, z′) = 2πδ(z − z′)

∂z̄S0(z, z′) = 2πδ(z − z′)

away from non-generic points on moduli space where the kernel and co-kernel of ∇̃zµ are non-
trivial. The expression for Sµ(z, z′) in terms of S0 and µ to all orders in µ is given by an
immediate adaptation of (4.4) to this case, namely by iterating to an arbitrary order in µ the
integral equation

Sµ(z, z′) = S0(z, z′)− 1

2π

∫
d2v S0(z, v)

(
µ∂v +

1

2
(∂vµ)

)
Sµ(v, z′).

The deformed Szegö kernel is then related to the deformed correlator of the field ψ by

Sµ(z, z′) = −〈ψ(z)ψ(z′)〉µ,

where the correlator 〈ψ(z)ψ(z′)〉µ is defined as follows,

〈ψ(z)ψ(z′)〉µ =
1

Zψ

〈
ψ(z)ψ(z′) exp

{
1

2π

∫
d2v µ(v)Tψ(v))

}〉
0

and the stress tensor is given by

Tψ =
1

2
ψ∂zψ.

The normalization factor Zψ is defined by omitting the insertions ψ(z)ψ(z′), and is given by

Zψ =

〈
exp

{
1

2π

∫
d2v µ(v)Tψ(v))

}〉
0

.

The expectation value 〈· · · 〉0 is with respect to the action for the ψ system for vanishing µ.
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For odd spin structure, generically on moduli space, the Cauchy–Riemann operator ∇̃zµ, as
well as its adjoint, have one zero mode which we shall denote by hµ(z), and which satisfies

∂z̄hµ + µ∂zhµ +
1

2
(∂zµ)hµ = 0. (4.12)

Due to the presence of this zero mode, there is no unique way of defining the Szegö kernel, and it
is generally not odd under the interchange of z, z′. To make the connection with correlators and
chiral splitting, it will be convenient to consider a pair of chiral fermions ψ1, ψ2, and denote their
complex linear combinations as follows, ψ = (ψ1 + iψ2)/

√
2 and ψ̄ = (ψ1 − iψ2)/

√
2. One may

think of ψ and ψ̄ as the fields b and c of the n = 1
2 system without having made the identification

of the field b with the field c. Introducing on Σ an arbitrary point ζ at which we have hµ(ζ) 6= 0,
the Szegö kernel Sµ(z, z′; ζ) may be defined as satisfying the following differential equation(

∂z̄ + µ∂z +
1

2
(∂zµ)

)
Sµ(z, z′; ζ) = 2πδ(z − z′)− 2πδ(z − ζ)

hµ(z′)

hµ(ζ)
. (4.13)

Integration of both sides against hµ(z) vanishes, and this is the rationale for the choice of the
subtraction term on the right hand side. When z′ = ζ, the right hand side vanishes, so that
Sµ(z, z′; ζ)|z′=ζ must be proportional to hµ(z). Therefore, it is natural to set the Szegö kernel
to zero at z′ = ζ. This condition is analogous to (4.5) for the b, c-system, and defines the Szegö
kernel uniquely. We shall denote the unique free zero in z of Sµ(z, z′; ζ) by ζ ′.

We are led to proposing the following identification of the Szegö and correlator

Sµ(z, z′; ζ) = −〈ψ(z)ψ̄(z′)〉µ, (4.14)

where the correlator is given by

〈ψ(z)ψ̄(z′)〉µ =
1

Zψψ̄

〈
ψ(z)ψ̄(z′)ψ(ζ ′)ψ̄(ζ) exp

{
1

2π

∫
d2v µ(v)Tψψ̄(v))

}〉
0

(4.15)

and the stress tensor is given by

Tψψ̄ = −1

2
ψ∂zψ̄ +

1

2
∂zψψ̄.

The normalization factor Zψψ̄ is defined by omitting the insertions ψ(z)ψ̄(z′), and given by

Zψψ̄ =

〈
ψ(ζ ′)ψ̄(ζ) exp

{
1

2π

∫
d2v µ(v)Tψψ̄(v))

}〉
0

.

The proposed relation (4.14) may be proven by applying the operator ∂z̄ + µ∂z + 1
2(∂zµ) to the

correlator (4.15) and using the OPE of Tψψ̄ with ψ. The normalization factor Zψψ̄ guarantees
that the first δ-function on the right side of (4.13) arises with the proper factor of 2π. The
factor of the second term on the right side of (4.13) arises with the help of the following relation

hµ(z′)

hµ(ζ)
=

1

Zψψ̄

〈
ψ(ζ ′)ψ̄(z′) exp

{
1

2π

∫
d2v µ(v)Tψψ̄(v))

}〉
0

,

which is easily proven by showing that the right hand side satisfies (4.12) as a function of z′,
and is equal to 1 at the point z′ = ζ.
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4.8 The scalar field xν
+

The scalar field x (we shall omit the superscript ν and the subscript + in this section) is not
properly a conformal field due to the presence of the constant zero mode, and it is preferable
to work with its derivative ∂zx which is a conformal field of type (1, 0). The corresponding
Green function is the third Abelian differential of the second kind, ω(z, z′) = ∂z∂z′ lnE(z, z′)
for vanishing µ, and generalizes as follows to the case of arbitrary µ

∂z̄ωµ(z, z′) + ∂z
(
µ(z)ωµ(z, z′)

)
= 2π∂z′δ(z − z′).

Note that both sides properly integrate to zero against a constant. The identification with the
chiral correlator of the field x is as follows

ωµ(z, z′) = −〈∂zx(z′)∂zx(z′)〉µ,

which is consistent with the well-known result at µ = 0 given by

〈x(z)x(z′)〉0 = − lnE(z, z′)

and its derivatives in z and z′. The correlator is defined as follows

〈∂zx(z′)∂zx(z′)〉µ =
1

Zx

〈
∂zx(z)∂z(z

′) exp

{
1

2π

∫
d2v µ(v)Tx(v))

}〉
0

.

The stress tensor is given by

Tx = −1

2
∂zx∂zx

and the normalization factor is given by

Zx =

〈
exp

{
1

2π

∫
d2v µ(v)Tx(v))

}〉
0

.

In both correlators, only the chiral part of the field enters. This completes our derivation of the
deformation to all orders in µ of every conformal field theory needed in the critical superstring
in flat Minkowski space-time, and toroidal compactifications thereof.
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