Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 11 (2015), 049, 24 pages      arXiv:1409.8177      https://doi.org/10.3842/SIGMA.2015.049
Contribution to the Special Issue on New Directions in Lie Theory

A Combinatorial Formula for Certain Elements of Upper Cluster Algebras

Kyungyong Lee ab, Li Li c and Matthew R. Mills a
a) Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
b) Korea Institute for Advanced Study, Seoul, Republic of Korea 130-722
c) Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA

Received September 30, 2014, in final form June 22, 2015; Published online June 26, 2015

Abstract
We develop an elementary formula for certain non-trivial elements of upper cluster algebras. These elements have positive coefficients. We show that when the cluster algebra is acyclic these elements form a basis. Using this formula, we show that each non-acyclic skew-symmetric cluster algebra of rank 3 is properly contained in its upper cluster algebra.

Key words: cluster algebra; upper cluster algebra; Dyck path.

pdf (572 kb)   tex (118 kb)

References

  1. Bayleran D.E., Finnigan D.J., Haj Ali A., Lee K., Locricchio C.M., Mills M.R., Stiefel D.P.P., Tran T.M., Urbaniuk R., A new combinatorial formula for cluster monomials of equioriented type $A$ quivers, Preprint, 2014, available at http://math.wayne.edu/~klee/Cluster_A_public.pdf.
  2. Beineke A., Brüstle T., Hille L., Cluster-cylic quivers with three vertices and the Markov equation (with an appendix by Otto Kerner), Algebr. Represent. Theory 14 (2011), 97-112, math.RA/0612213.
  3. Benito A., Muller G., Rajchgot J., Smith K., Singularities of locally acyclic cluster algebras, arXiv:1404.4399.
  4. Berenstein A., Fomin S., Zelevinsky A., Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52, math.RT/0305434.
  5. Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, math.RT/0104151.
  6. Grabowski J., Graded cluster algebras, arXiv:1309.6170.
  7. Gross M., Hacking P., Keel S., Birational geometry of cluster algebras, Algebr. Geom. 2 (2015), 137-175, arXiv:1309.2573.
  8. Gross M., Hacking P., Keel S., Kontsevich M., Canonical bases for cluster algebras, arXiv:1411.1394.
  9. Lee K., Li L., Zelevinsky A., Greedy elements in rank 2 cluster algebras, Selecta Math. (N.S.) 20 (2014), 57-82, arXiv:1208.2391.
  10. Lee K., Schiffler R., Positivity of cluster algebras, Ann. of Math. 182 (2015), 73-125, arXiv:1306.2415.
  11. Matherne J.P., Muller G., Computing upper cluster algebras, Int. Math. Res. Not. 2015 (2015), 3121-3149, arXiv:1307.0579.
  12. Muller G., ${\mathcal A}={\mathcal U}$ for locally acyclic cluster algebras, SIGMA 10 (2014), 094, 8 pages, arXiv:1308.1141.
  13. Plamondon P.G., Generic bases for cluster algebras from the cluster category, Int. Math. Res. Not. 2013 (2013), 2368-2420, arXiv:1308.1141.
  14. Plamondon P.G., Private communication, 2014.
  15. Seven A.I., Maximal green sequences of skew-symmetrizable $3\times3$ matrices, Linear Algebra Appl. 440 (2014), 125-130, arXiv:1207.6265.
  16. Speyer D., An infinitely generated upper cluster algebra, arXiv:1305.6867.

Previous article  Next article   Contents of Volume 11 (2015)