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† Departamento de Xeometŕıa e Topolox́ıa, Facultade de Matemáticas,
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Abstract. Let Jσ be the Dunkl harmonic oscillator on R (σ > −1/2). For 0 < u < 1
and ξ > 0, it is proved that, if σ > u − 1/2, then the operator U = Jσ + ξ|x|−2u, with
appropriate domain, is essentially self-adjoint in L2(R, |x|2σdx), the Schwartz space S is

a core of U
1/2

, and U has a discrete spectrum, which is estimated in terms of the spectrum
of Jσ. A generalization Jσ,τ of Jσ is also considered by taking different parameters σ and τ
on even and odd functions. Then extensions of the above result are proved for Jσ,τ , where
the perturbation has an additional term involving, either the factor x−1 on odd functions,
or the factor x on even functions. Versions of these results on R+ are derived.
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1 Introduction

The Dunkl operators on Rn were introduced by Dunkl [6, 7, 8], and gave rise to what is now
called the Dunkl theory [20]. They play an important role in physics and stochastic processes
(see, e.g., [10, 19, 22]). In particular, the Dunkl harmonic oscillators on Rn were studied in
[9, 14, 15, 18]. We will consider only this operator on R, where it is uniquely determined by
one parameter. In this case, a conjugation of the Dunkl operator was previously introduced by
Yang [23] (see also [16]).

Let us fix some notation that is used in the whole paper. Let S = S(R) be the Schwartz
space on R, with its Fréchet topology. It decomposes as direct sum of subspaces of even and
odd functions, S = Sev ⊕ Sodd. The even/odd component of a function in S is denoted with
the subindex ev/odd. Since Sodd = xSev, where x is the standard coordinate of R, x−1φ ∈ Sev
is defined for φ ∈ Sodd. Let L2

σ = L2(R, |x|2σdx) (σ ∈ R), whose scalar product and norm
are denoted by 〈 , 〉σ and ‖ ‖σ. The above decomposition of S extends to an orthogonal
decomposition, L2

σ = L2
σ,ev ⊕ L2

σ,odd, because the function |x|2σ is even. S is a dense subspace

of L2
σ if σ > −1/2, and Sodd is a dense subspace of L2

τ,odd if τ > −3/2. Unless otherwise
stated, we assume σ > −1/2 and τ > −3/2. The domain of a (densely defined) operator P in
a Hilbert space is denoted by D(P ). If P is closable, its closure is denoted by P . The domain
of a (densely defined) sesquilinear form p in a Hilbert space is denoted by D(p). The quadratic
form of p is also denoted by p. If p is closable, its closure is denoted by p̄. For an operator
in L2

σ preserving the above decomposition, its restrictions to L2
σ,ev/odd will be indicated with

the subindex ev/odd. The operator of multiplication by a continuous function h in L2
σ is also
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denoted by h. The harmonic oscillator is the operator H = − d2

dx2
+ s2x2 (s > 0) in L2

0 with
D(H) = S.

The Dunkl operator on R is the operator T in L2
σ, with D(T ) = S, determined by T = d

dx

on Sev and T = d
dx + 2σx−1 on Sodd, and the Dunkl harmonic oscillator on R is the operator

J = −T 2 + s2x2 in L2
σ with D(J) = S. Thus J preserves the above decomposition of S, being

Jev = H − 2σx−1 d
dx and Jodd = H − 2σ d

dxx
−1. The subindex σ is added to J if needed. This J

is essentially self-adjoint, and the spectrum of J is well known [18]; in particular, J > 0. In fact,
even for τ > −3/2, the operator Jτ,odd is defined in L2

τ,odd with D(Jσ,odd) = Sodd because it is

a conjugation of Jτ+1,ev by a unitary operator (Section 2). Some operators of the form J + ξx−2

(ξ ∈ R) are conjugates of J by powers |x|a (a ∈ R), and therefore their study can be reduced to
the case of J [3]. Our first theorem analyzes a different perturbation of J .

Theorem 1.1. Let 0 < u < 1 and ξ > 0. If σ > u − 1/2, then there is a positive self-adjoint
operator U in L2

σ satisfying the following:

(i) S is a core of U1/2, and, for all φ, ψ ∈ S,

〈U1/2φ,U1/2ψ〉σ = 〈Jφ, ψ〉σ + ξ〈|x|−uφ, |x|−uψ〉σ. (1.1)

(ii) U has a discrete spectrum. Let λ0 ≤ λ1 ≤ · · · be its eigenvalues, repeated according to
their multiplicity. There is some D = D(σ, u) > 0, and, for each ε > 0, there is some
C = C(ε, σ, u) > 0 so that, for all k ∈ N,

(2k + 1 + 2σ)s+ ξDsu(k + 1)−u ≤ λk ≤ (2k + 1 + 2σ)(s+ ξεsu) + ξCsu. (1.2)

Remark 1.2. In Theorem 1.1, observe the following:

(i) The second term of the right hand side of (1.1) makes sense because |x|−uS ⊂ L2
σ since

σ > u− 1/2.

(ii) U = U , where U := J + ξ|x|−2u with D(U) =
⋂∞
m=0D(Um) (see [11, Chapter VI, § 2.5]).

The more explicit notation Uσ will be also used if necessary.

(iii) The restrictions Uev/odd are self-adjoint in L2
σ,ev/odd and satisfy (1.1) with φ, ψ ∈ Sev/odd

and (1.2) with k even/odd. In fact, by the comments before the statement, Uτ,odd is
defined and satisfies these properties if τ > u− 3/2.

To prove Theorem 1.1, we consider the positive definite symmetric sesquilinear form u defined
by the right hand side of (1.1). Perturbation theory [11] is used to show that u is closable and ū
induces a self-adjoint operator U , and to relate the spectra of U and J . Most of the work
is devoted to check the conditions to apply this theory so that (1.2) follows; indeed, (1.2) is
stronger than a general eigenvalue estimate given by that theory (Remark 3.21).

The following generalizations of Theorem 1.1 follow with a simple adaptation of the proof.
If ξ < 0, we only have to reverse the inequalities of (1.2). In (1.1), we may use a finite sum∑

i ξi〈|x|−uiφ, |x|−uiψ〉σ, where 0 < ui < 1, σ > ui − 1/2 and ξi > 0; then (1.2) would be
modified by using maxi ui and mini ξi in the left hand side, and maxi ξi in the right hand
side. In turn, this can be extended by taking Rp-valued functions (p ∈ Z+), and a finite sum∑

i〈|x|−uiΞiφ, |x|−uiψ〉σ in (1.1), where each Ξi is a positive definite self-adjoint endomorphism
of Rp; then the minimum and maximum eigenvalues of all Ξi would be used in (1.2).

As an open problem, we may ask for a version of Theorem 1.1 using Dunkl operators on Rn,
but we are interested in the following different type of extension. For σ > −1/2 and τ > −3/2,
let L2

σ,τ = L2
σ,ev ⊕ L2

τ,odd, whose scalar product and norm are denoted by 〈 , 〉σ,τ and ‖ ‖σ,τ .

Matrix expressions of operators refer to this decomposition. Let Jσ,τ = Jσ,ev ⊕ Jτ,odd in L2
σ,τ ,

with D(Jσ,τ ) = S. The hypotheses of the generalization of Theorem 1.1 are rather involved to
cover enough cases of certain application that will be indicated. The following sets are used:
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• J1 is the set of points (σ, τ) ∈ R2 such that:

1
2 ≤ τ < σ =⇒ σ − 1 < τ < σ

2 + 1
4 ,

1
2 , σ ≤ τ =⇒ τ < σ

2 + 1
4 , σ + 1,

τ < 1
2 , σ =⇒ σ

3 , σ − 1 < τ < σ
2 + 1

4 ,

σ ≤ τ < 1
2 =⇒ −σ < τ < σ

2 + 1
4 , σ + 1.

• J2 is the set of points (σ, τ) ∈ R2 such that:

1
2 ≤ τ < σ − 1

2 =⇒ σ − 1 < τ < σ
2 + 1

4 ,
1
2 , σ −

1
2 ≤ τ =⇒ τ < σ

2 + 1
4 , σ,

0 < τ < 1
2 , σ −

1
2 =⇒

−
σ
3 , σ − 1 < τ < σ

2 + 1
4 , or

σ − 1 < τ < σ
2 −

1
4 ,

0 < τ < 1
2 , σ −

1
2 ≤ τ =⇒

1− σ < τ < σ
2 + 1

4 , σ, or

τ < σ
2 −

1
4 , σ,

0 = τ < σ − 1
2 =⇒ 1

2 < σ < 1,

σ − 1
2 ≤ τ = 0 =⇒ 1

2 < σ,

τ < 0, σ − 1
2 =⇒ 1

4 −
σ
2 ,

σ−1
3 , σ − 1 < τ,

σ − 1
2 ≤ τ < 0 =⇒ 1

4 −
σ
2 ,−σ < τ < σ.

• K1 is the set of points (σ, τ, θ) ∈ R3 such that:

θ ≤ σ − 1, θ < τ + 1 =⇒ θ > σ
2 −

3
4 ,

σ+τ
4 ,

τ + 1 ≤ θ ≤ σ − 1 =⇒ θ > σ
2 −

3
4 ,

σ−τ
2 − 1,

σ − 1 < θ < τ + 1 =⇒ θ > σ
2 −

3
4 ,

τ−σ
2 + 1, σ+τ4 ,

σ − 1 < θ, τ + 1 ≤ θ =⇒ θ > σ
2 −

3
4 ,

σ−τ
2 − 1, σ + τ > 0.

• K′1 is the set of points (σ, τ, θ) ∈ R3 such that:

θ < σ, θ ≤ τ =⇒ θ > τ
2 −

1
4 ,

σ+τ
4 ,

σ ≤ θ ≤ τ =⇒ θ > τ
2 −

1
4 ,

τ−σ
2 ,

τ < θ < σ =⇒ θ > τ
2 −

1
4 ,

σ−τ
2 , σ+τ4 ,

σ ≤ θ, τ < θ =⇒ θ > τ
2 −

1
4 ,

τ−σ
2 , σ + τ > 0.

• K2 is the set of points (σ, τ, θ) ∈ R3 such that:

θ ≤ σ − 1, θ < τ + 1
2 =⇒ θ > σ

2 −
3
4 ,

σ+τ
4 ,

τ + 1
2 ≤ θ ≤ σ − 1 =⇒ θ > σ

2 −
3
4 ,

σ−τ−1
2 ,

σ − 1 < θ < σ − 1
2 , τ + 1

2 =⇒

θ >
σ
2 −

3
4 ,

τ−σ
2 + 1, σ+τ4 , or

θ > σ
2 −

1
4 ,

σ+τ
4 ,

σ − 1 < θ < σ − 1
2 , τ + 1

2 ≤ θ =⇒

θ >
σ
2 −

3
4 ,

σ−τ−1
2 , σ + τ > 1, or

θ > σ
2 −

1
4 ,

σ−τ−1
2 ,

σ − 1
2 = θ < τ + 1

2 =⇒ σ > 1
2 ,

τ+2
3 ,
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τ + 1
2 ≤ θ = σ − 1

2 =⇒ σ > 1
2 ,−τ,

σ − 1
2 < θ < τ + 1

2 =⇒ θ > σ
2 −

1
4 ,

τ−σ+1
2 , σ+τ4 ,

σ − 1
2 < θ, τ + 1

2 ≤ θ =⇒ θ > σ
2 −

1
4 ,

σ−τ−1
2 , σ + τ > 0.

• K′2 be the set of points (σ, τ, θ) ∈ R3 such that:

θ ≤ σ − 1
2 , θ < τ =⇒ θ > τ

2 −
1
4 ,

σ+τ
4 ,

σ − 1
2 ≤ θ ≤ τ =⇒ θ > τ

2 −
1
4 ,

τ−σ+1
2 ,

τ < θ < σ − 1
2 , τ + 1

2 =⇒

θ >
τ
2 −

1
4 ,

σ−τ
2 , σ+τ4 , or

θ > τ
2 + 1

4 ,
σ+τ
4 ,

σ − 1
2 ≤ θ, τ < θ < τ + 1

2 =⇒

θ >
τ
2 −

1
4 ,

τ−σ+1
2 , σ + τ > 1, or

θ > τ
2 + 1

4 ,
τ−σ+1

2 ,

τ + 1
2 = θ < σ − 1

2 =⇒ τ > −1
2 ,

σ−2
3 ,

σ − 1
2 ≤ θ = τ + 1

2 =⇒ τ > −1
2 ,−σ,

τ + 1
2 < θ < σ − 1

2 =⇒ θ > τ
2 + 1

4 ,
σ−τ−1

2 , σ+τ4 ,

σ − 1
2 ≤ θ, τ + 1

2 < θ =⇒ θ > τ
2 + 1

4 ,
τ−σ+1

2 , σ + τ > 0.

Theorem 1.3. Let 0 < u < 1, ξ > 0, η ∈ R, σ > u− 1/2, τ > u− 3/2 and θ > −1/2, and let
v = σ + τ − 2θ. Suppose that the following conditions hold:

(a) If σ = θ 6= τ and τ − σ 6∈ −N, then σ − 1 < τ < σ + 1, 2σ + 1
2 .

(b) If σ 6= θ = τ and σ − τ 6∈ −N, then (σ, τ) ∈ J1 ∪ J2.

(c) If σ 6= θ = τ + 1 and σ − τ − 1 6∈ −N, then τ < 3σ
2 −

9
4 , σ −

5
3 .

(d) If σ 6= θ 6= τ and σ − θ, τ − θ 6∈ −N, then (σ, τ, θ) ∈ (K1 ∪ K2) ∩ (K′1 ∪ K′2).

Then there is a positive self-adjoint operator V in L2
σ,τ satisfying the following:

(i) S is a core of V1/2, and, for all φ, ψ ∈ S,

〈V1/2φ,V1/2ψ〉σ,τ = 〈Jσ,τφ, ψ〉σ,τ + ξ〈|x|−uφ, |x|−uψ〉σ,τ
+ η

(
〈x−1φodd, ψev〉θ + 〈φev, x−1ψodd〉θ

)
. (1.3)

(ii) Let ςk = σ if k is even, and ςk = τ if k is odd. V has a discrete spectrum. Its eigenvalues
form two groups, λ0 ≤ λ2 ≤ · · · and λ1 ≤ λ3 ≤ · · · , repeated according to their multiplicity,
such that there is some D = D(σ, τ, u) > 0, and, for each ε > 0, there are some C =
C(ε, σ, τ, u) > 0 and E = E(ε, σ, τ, θ) > 0 so that, for all k ∈ N,

(2k + 1 + 2ςk)s+ ξD(k + 1)−u ≤ λk
≤ (2k + 1 + 2ςk)

(
s+ ε

(
ξsu + 2|η|s(v+1)/2

))
+ ξCsu + 2|η|Es(v+1)/2. (1.4)

Remark 1.4. Note the following in Theorem 1.3:

(i) In (b), the condition (σ, τ) ∈ J1 holds if

−σ, σ3 , σ − 1 < τ < σ
2 + 1

4 , σ + 1,

which requires −1/6 < σ < 5/4. In (d), the condition (σ, τ, θ) ∈ K1 ∩ K′1 holds if

θ > σ
2 −

3
4 ,

σ−τ
2 , τ−σ2 + 1, σ+τ4 , τ2 −

1
4 , σ + τ > 0.
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(ii) Like in Remark 1.2(ii), we have V = V , where

V =

(
Uσ,ev η|x|2(θ−σ)x−1

η|x|2(θ−τ)x−1 Uτ,odd

)
,

with D(V ) =
⋂∞
m=0D(Vm).

(iii) Taking θ′ = θ − 1 > −3/2, since

〈xφ, ψ〉θ′ = 〈φ, x−1ψ〉θ

for all φ ∈ Sev and ψ ∈ Sodd, we can write (1.3) as

〈V1/2φ,V1/2ψ〉σ,τ = 〈Jσ,τφ, ψ〉σ,τ + ξ〈|x|−uφ, |x|−uψ〉σ,τ
+ η (〈φodd, xψev〉θ′ + 〈xφev, ψodd〉θ′) ,

and, correspondingly,

V =

(
Uσ,ev η|x|2(θ′−σ)x

η|x|2(θ′−τ)x Uτ,odd

)
.

(iv) A slight improvement of (d) could be achieved according to Remark 5.7, but it is omitted
because it is useless in our application (Section 7).

Versions of these results on R+ are also derived (Corollaries 6.1, 6.2 and 6.3). In [4], these
corollaries are used to study a version of the Witten’s perturbation ∆s of the Laplacian on
strata with the general adapted metrics of [5, 12, 13]. This gives rise to an analytic proof of
Morse inequalities in strata involving intersection homology of arbitrary perversity, which was
our original motivation. The simplest case of adapted metrics, corresponding to the lower middle
perversity, was treated in [2] using an operator induced by J on R+. The perturbations of J
studied here show up in the local models of ∆s when general adapted metrics are considered.
Some details of this application are given in Section 7.

2 Preliminaries

The Dunkl annihilation and creation operators are B = sx+T and B′ = sx−T (s > 0). Like J ,
the operators B and B′ are considered in L2

σ with domain S. They are perturbations of the
usual annihilation and creation operators. The operators T , B, B′ and J are continuous on S.
The following properties hold [3, 18]:

• B′ is adjoint of B, and J is essentially self-adjoint.

• The spectrum of J consists of the eigenvalues1 (2k+ 1 + 2σ)s (k ∈ N), of multiplicity one.

• The corresponding normalized eigenfunctions φk are inductively defined by

φ0 = s(2σ+1)/4Γ(σ + 1/2)−1/2e−sx
2/2, (2.1)

φk =

{
(2ks)−1/2B′φk−1 if k is even,

(2(k + 2σ)s)−1/2B′φk−1 if k is odd,
k ≥ 1. (2.2)

1It is assumed that 0 ∈ N.
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• The eigenfunctions φk also satisfy

Bφ0 = 0, (2.3)

Bφk =

{
(2ks)1/2φk−1 if k is even,

(2(k + 2σ)s)1/2φk−1 if k is odd,
k ≥ 1. (2.4)

•
⋂∞
m=0D(J

m
) = S.

By (2.1) and (2.2), we get φk = pke
−sx2/2, where pk is the sequence of polynomials inductively

given by p0 = s(2σ+1)/4Γ(σ + 1/2)−1/2 and

pk =

{
(2ks)−1/2(2sxpk−1 − Tpk−1) if k is even,

(2(k + 2σ)s)−1/2(2sxpk−1 − Tpk−1) if k is odd,
k ≥ 1.

Up to normalization, pk is the sequence of generalized Hermite polynomials [21, p. 380, Prob-
lem 25], and φk is the sequence of generalized Hermite functions. Each pk is of degree k, even/odd
if k is even/odd, and with positive leading coefficient. They satisfy the recursion formula [3,
equation (13)]

pk =

{
k−1/2

(
(2s)1/2xpk−1 − (k − 1 + 2σ)1/2pk−2

)
if k is even,

(k + 2σ)−1/2
(
(2s)1/2xpk−1 − (k − 1)1/2pk−2

)
if k is odd.

(2.5)

When k = 2m+ 1 (m ∈ N), we have [3, equation (14)]

x−1pk =

m∑
i=0

(−1)m−i

√
m!Γ(i+ 1

2 + σ)s

i!Γ(m+ 3
2 + σ)

p2i. (2.6)

Let j be the positive definite symmetric sesquilinear form in L2
σ, with D(j) = S, given by

j(φ, ψ) = 〈Jφ, ψ〉σ. Like in the case of J , the subindex σ will be added to the notation T , B, B′

and φk and j if necessary. Observe that

Bσ =

{
Bτ on Sev,
Bτ + 2(σ − τ)x−1 on Sodd,

(2.7)

B′σ =

{
B′τ on Sev,
B′τ + 2(τ − σ)x−1 on Sodd.

(2.8)

The operator x : Sev → Sodd is a homeomorphism [3], which extends to a unitary operator

x : L2
σ,ev → L2

σ−1,odd. We get xJσ,evx
−1 = Jσ−1,odd because x[ d

2

dx2
, x−1] = −2 d

dxx
−1. Thus, even

for any τ > −3/2, the operator Jτ,odd is densely defined in L2
τ,odd, with D(Jτ,odd) = Sodd, and has

the same spectral properties as Jτ+1,ev; in particular, the eigenvalues of Jτ,odd are (4k+ 1 + 2τ)s
(k ∈ 2N + 1), and φτ,k = xφτ+1,k−1.

To prove the results of the paper, alternative arguments could be given by using the expression
of the generalized Hermite polynomials in terms of the Laguerre ones (see, e.g., [19, p. 525] or
[20, p. 23]).

3 The sesquilinear form t

Let 0 < u < 1 such that σ > u − 1/2. Then |x|−uS ⊂ L2
σ, and therefore a positive definite

symmetric sesquilinear form t in L2
σ, with D(t) = S, is defined by

t(φ, ψ) = 〈|x|−uφ, |x|−uψ〉σ = 〈φ, ψ〉σ−u.
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The notation tσ may be also used. The goal of this section is to study t and apply it to prove
Theorem 1.1. Precisely, an estimation of the values t(φk, φ`) is needed.

Lemma 3.1. For all φ ∈ Sodd and ψ ∈ Sev,

t(B′φ, ψ)− t(φ,Bψ) = t(φ,B′ψ)− t(Bφ,ψ) = −2ut
(
x−1φ, ψ

)
.

Proof. By (2.7) and (2.8), for all φ ∈ Sodd and ψ ∈ Sev,

t(B′σφ, ψ)− t(φ,Bσψ) = 〈B′σ−uφ, ψ〉σ−u − 2u〈x−1φ, ψ〉σ−u − 〈φ,Bσ−uψ〉σ−u
= −2ut(x−1φ, ψ),

t(φ,B′σψ)− t(Bσφ, ψ) = 〈φ,B′σ−uψ〉σ−u − 〈Bσ−uφ, ψ〉σ−u − 2u〈x−1φ, ψ〉σ−u
= −2ut(x−1φ, ψ). �

In the whole of this section, k, `, m, n, i, j, p and q will be natural numbers. Let ck,` =
t(φk, φ`) and dk,` = ck,`/c0,0. Thus dk,` = d`,k, and dk,` = 0 when k + ` is odd. Since∫ ∞

−∞
e−sx

2 |x|2κdx = s−(2κ+1)/2Γ(κ+ 1/2) (3.1)

for κ > −1/2, we get

c0,0 = Γ(σ − u+ 1/2)Γ(σ + 1/2)−1su. (3.2)

Lemma 3.2. If k = 2m > 0, then

dk,0 =
u√
m

m−1∑
j=0

(−1)m−j

√
(m− 1)!Γ(j + 1

2 + σ)

j!Γ(m+ 1
2 + σ)

d2j,0.

Proof. By (2.2), (2.3), (2.6) and Lemma 3.1,

ck,0 =
1√
2sk

t(B′φk−1, φ0)

=
1√
2sk

t(φk−1, Bφ0)−
2u√
2sk

t(x−1φk−1, φ0) = − 2u√
2sk

t(x−1φk−1, φ0)

=
u√
m

m−1∑
j=0

(−1)m−j

√
(m− 1)!Γ(j + 1

2 + σ)

j!Γ(m+ 1
2 + σ)

c2j,0. �

Lemma 3.3. If k = 2m > 0 and ` = 2n > 0, then

dk,` =

√
m

n
dk−1,`−1 +

u√
n

n−1∑
j=0

(−1)n−j

√
(n− 1)!Γ(j + 1

2 + σ)

j!Γ(n+ 1
2 + σ)

dk,2j .

Proof. By (2.2), (2.4), (2.6) and Lemma 3.1,

ck,` =
1√
2s`

t(φk, B
′φ`−1) =

1√
2`s

t(Bφk, φ`−1)−
2u√
2`s

t(φk, x
−1φ`−1)

=

√
m

n
ck−1,`−1 +

u√
n

n−1∑
j=0

(−1)n−j

√
(n− 1)!Γ(j + 1

2 + σ)

j!Γ(n+ 1
2 + σ)

ck,2j . �
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Lemma 3.4. If k = 2m+ 1 and ` = 2n+ 1, then

dk,` =

√
n+ 1

2 + σ

m+ 1
2 + σ

dk−1,`−1 −
u√

m+ 1
2 + σ

n∑
j=0

(−1)n−j

√
n!Γ(j + 1

2 + σ)

j!Γ(n+ 3
2 + σ)

dk−1,2j .

Proof. By (2.2), (2.4), (2.6) and Lemma 3.1,

ck,` =
1√

2(k + 2σ)s
t(B′φk−1, φ`)

=
1√

2(k + 2σ)s
t(φk−1, Bφ`)−

2u√
2(k + 2σ)s

t(φk−1, x
−1φ`)

=

√
n+ 1

2 + σ

m+ 1
2 + σ

ck−1,`−1 −
u√

m+ 1
2 + σ

n∑
j=0

(−1)n−j

√
n!Γ(j + 1

2 + σ)

j!Γ(n+ 3
2 + σ)

ck−1,2j . �

The following definitions are given for k ≥ ` with k + ` even. Let

Πk,` =

√
m!Γ(n+ 1

2 + σ)

n!Γ(m+ 1
2 + σ)

(3.3)

if k = 2m ≥ ` = 2n, and

Πk,` =

√
m!Γ(n+ 3

2 + σ)

n!Γ(m+ 3
2 + σ)

(3.4)

if k = 2m+ 1 ≥ ` = 2n+ 1. Let Σk,` be inductively defined as follows2:

Σk,0 =
m∏
i=1

(
1− 1− u

i

)
(3.5)

if k = 2m;

Σk,` = Σk−1,`−1 + u
n−1∑
j=0

(n− 1)!Γ(j + 1
2 + σ)

j!Γ(n+ 1
2 + σ)

Σk,2j (3.6)

if k = 2m ≥ ` = 2n > 0; and

Σk,` = Σk−1,`−1 − u
n∑
j=0

n!Γ(j + 1
2 + σ)

j!Γ(n+ 3
2 + σ)

Σk−1,2j (3.7)

=

(
1− u

n+ 1
2 + σ

)
Σk−1,`−1 −

nu

n+ 1
2 + σ

n−1∑
j=0

(n− 1)!Γ(j + 1
2 + σ)

j!Γ(n+ 1
2 + σ)

Σk−1,2j (3.8)

if k = 2m+ 1 ≥ ` = 2n+ 1. Thus Σ0,0 = 1, Σ2,0 = u, Σ4,0 = 1
2u(1 + u), and

Σk,1 =

(
1− u

1
2 + σ

)
Σk−1,0 (3.9)

2We use the convention that a product of an empty set of factors is 1. Such empty products are possible
in (3.5) (when m = 0), in Lemma 3.10 and its proof, and in the proofs of Lemma 3.11 and Proposition 3.18.
Consistently, the sum of an empty set of terms is 0. Such empty sums are possible in Lemma 4.4 and its proof,
and in the proof of Proposition 4.7.
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if k is odd. From (3.5) and using induction on m, it easily follows that

Σk,0 =
u

m

m−1∑
j=0

Σ2j,0 (3.10)

for k = 2m > 0. Combining (3.6) with (3.7), and (3.8) with (3.6), we get

Σk,` = Σk−2,`−2 − u
n−1∑
j=0

(n− 1)!Γ(j + 1
2 + σ)

j!Γ(n− 1
2 + σ)

(Σk−2,2j − Σk,2j) (3.11)

if k = 2m ≥ ` = 2n > 0; and

Σk,` =

(
1− u

n+ 1
2 + σ

)
Σk−2,`−2

+

(
1− u+ n

n+ 1
2 + σ

)
u

n−1∑
j=0

(n− 1)!Γ(j + 1
2 + σ)

j!Γ(n− 1
2 + σ)

Σk−1,2j (3.12)

if k = 2m+ 1 ≥ ` = 2n+ 1 > 1.

Proposition 3.5. dk,` = (−1)m+nΠk,`Σk,` if k = 2m ≥ ` = 2n, or if k = 2m+ 1 ≥ ` = 2n+ 1.

Proof. We proceed by induction on k and l. The statement is obvious for k = ` = 0 because
d0,0 = Π0,0 = Σ0,0 = 1.

Let k = 2m > 0, and assume that the result is true for all d2j,0 with j < m. Then, by
Lemma 3.2, (3.3) and (3.10),

dk,0 =
u√
m

m−1∑
j=0

(−1)m−j

√
(m− 1)!Γ(j + 1

2 + σ)

j!Γ(m+ 1
2 + σ)

(−1)jΠ2j,0Σ2j,0

= (−1)m
u√
m

m−1∑
j=0

√
(m− 1)!Γ(j + 1

2 + σ)

j!Γ(m+ 1
2 + σ)

√
j!Γ(12 + σ)

Γ(j + 1
2 + σ)

Σ2j,0

= (−1)mΠk,0
u

m

m−1∑
j=0

Σ2j,0 = (−1)mΠk,0Σk,0.

Now, take k = 2m ≥ ` = 2n > 0 so that the equality of the statement holds for dk−1,`−1 and
all dk,2j with j < n. Then, by Lemma 3.3,

dk,` =

√
m

n
(−1)m+nΠk−1,`−1Σk−1,`−1

+
u√
n

n−1∑
j=0

(−1)n−j

√
(n− 1)!Γ(j + 1

2 + σ)

j!Γ(n+ 1
2 + σ)

(−1)m+jΠk,2jΣk,2j .

Here, by (3.3) and (3.4),
√
m/nΠk−1,`−1 = Πk,`, and

1√
n

√
(n− 1)!Γ(j + 1

2 + σ)

j!Γ(n+ 1
2 + σ)

Πk,2j =
1√
n

√
m!Γ(n+ 1

2 + σ)

(n− 1)!Γ(m+ 1
2 + σ)

(n− 1)!Γ(j + 1
2 + σ)

j!Γ(n+ 1
2 + σ)

= Πk,`
(n− 1)!Γ(j + 1

2 + σ)

j!Γ(n+ 1
2 + σ)

.

Thus, by (3.6), dk,` = (−1)m+nΠk,`Σk,`.
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Finally, take k = 2m + 1 ≥ ` = 2n + 1 such that the equality of the statement holds for all
dk−1,2j with j ≤ n. Then, by Lemma 3.4,

dk,` =

√
n+ 1

2 + σ

m+ 1
2 + σ

(−1)m+nΠk−1,`−1Σk−1,`−1

− u√
m+ 1

2 + σ

n∑
j=0

(−1)n−j

√
n!Γ(j + 1

2 + σ)

j!Γ(n+ 3
2 + σ)

(−1)m+jΠk−1,2jΣk−1,2j .

Here, by (3.3) and (3.4),√
n+ 1

2 + σ

m+ 1
2 + σ

Πk−1,`−1 = Πk,`,

and

1√
m+ 1

2 + σ

√
n!Γ(j + 1

2 + σ)

j!Γ(n+ 3
2 + σ)

Πk−1,2j

=
1√

m+ 1
2 + σ

√
m!Γ(n+ 3

2 + σ)

n!Γ(m+ 1
2 + σ)

n!Γ(j + 1
2 + σ)

j!Γ(n+ 3
2 + σ)

= Πk,`
n!Γ(j + 1

2 + σ)

j!Γ(n+ 3
2 + σ)

.

Thus, by (3.7), dk,` = (−1)m+nΠk,`Σk,`. �

Lemma 3.6. Σk,` > 0 for all k and `.

Proof. We proceed by induction on `. For ` ∈ {0, 1}, this is true by (3.5) and (3.9) because
σ > u−1/2. If ` > 1 and the results holds for Σk′,`′ with `′ < `, then Σk,` > 0 by (3.6) and (3.12)
since σ > u− 1/2. �

Lemma 3.7. If k = 2m > ` = 2n or k = 2m+ 1 > ` = 2n+ 1, then

Σk,` ≤
(

1− 1− u
m

)
Σk−2,`.

Proof. We proceed by induction on `. This is true for ` ∈ {0, 1} by (3.5) and (3.9).
Now, suppose that the result is satisfied by Σk′,`′ with `′ < `. If k = 2m > ` = 2n > 0, then,

by (3.6) and Lemma 3.6,

Σk,` ≤
(

1− 1− u
m− 1

)
Σk−3,`−1 + u

n−1∑
j=0

(n− 1)!Γ(j + 1
2 + σ)

j!Γ(n+ 1
2 + σ)

(
1− 1− u

m

)
Σk−2,2j

≤
(

1− 1− u
m

)
Σk−2,`.

If k = 2m+ 1 > ` = 2n+ 1 > 1, then, by (3.12) and Lemma 3.6, and since σ > u− 1/2,

Σk,` =

(
1− u

n+ 1
2 + σ

)(
1− 1− u

m− 1

)
Σk−3,`−2

+

(
1− u+ n

n+ 1
2 + σ

)
u
n−1∑
j=0

(n− 1)!Γ(j + 1
2 + σ)

j!Γ(n− 1
2 + σ)

(
1− 1− u

m

)
Σk−1,2j

<

(
1− 1− u

m

)
Σk−2,`. �
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Corollary 3.8. If k = 2m ≥ ` = 2n > 0, then

Σk−1,`−1 < Σk,` ≤
(

1− u(1− u)

m

)
Σk−2,`−2.

Proof. The first inequality is a direct consequence of (3.6), and Lemmas 3.6 and 3.7. On the
other hand, by (3.11), and Lemmas 3.6 and 3.7,

Σk,` ≤ Σk−2,`−2 −
u(1− u)

m

n−1∑
j=0

(n− 1)!Γ(j + 1
2 + σ)

j!Γ(n− 1
2 + σ)

Σk−2,2j

=

(
1− u(1− u)

m

)
Σk−2,`−2 −

u(1− u)

m

n−2∑
j=0

(n− 1)!Γ(j + 1
2 + σ)

j!Γ(n− 1
2 + σ)

Σk−2,2j

≤
(

1− u(1− u)

m

)
Σk−2,`−2. �

Corollary 3.9. If k = 2m+ 1 ≥ ` = 2n+ 1, then(
1− u

n+ 1
2 + σ

)
Σk−2,`−2 < Σk,` <

(
1− u

n+ 1
2 + σ

)
Σk−1,`−1.

Proof. This follows from (3.8), (3.12) and Lemma 3.6 because σ > u− 1/2. �

Lemma 3.10. For 0 < t < 1, there is some C0 = C0(t) ≥ 1 such that, for all p,

C−10 (p+ 1)−t ≤
p∏
i=1

(
1− t

i

)
≤ C0(p+ 1)−t.

Proof. For each t > 0, by the Weierstrass definition of the gamma function,

Γ(t) =
e−γt

t

∞∏
i=1

(
1 +

t

i

)−1
et/i,

where γ = lim
j→∞

( j∑
i=1

1
i − ln j

)
(the Euler–Mascheroni constant), there is some K0 ≥ 1 such that,

for all p ∈ Z+,

K−10

p∏
i=1

e−t/i ≤
p∏
i=1

(
1 +

t

i

)−1
≤ K0

p∏
i=1

e−t/i. (3.13)

Now, assume that 0 < t < 1, and observe that

p∏
i=1

(
1− t

i

)
=

p∏
i=1

(
1 +

t

i− t

)−1
.

By the second inequality of (3.13), for p ≥ 1,

p∏
i=1

(
1 +

t

i− t

)−1
≤

p∏
i=1

(
1 +

t

i

)−1
≤ K0

p∏
i=1

e−t/i = K0 exp

(
−t

p∑
i=1

1

i

)

≤ K0 exp

(
−t
(

1 +

∫ p

1

dx

x

))
= K0e

−tp−t ≤ K0e
−t2t(p+ 1)−t.
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On the other hand, by the first inequality of (3.13), for p ≥ 2,

p∏
i=1

(
1 +

t

i− t

)−1
≥ (1− t)

p−1∏
i=1

(
1 +

t

i

)−1
≥ (1− t)K−10

p−1∏
i=1

e−t/i

= (1− t)K−10 exp

(
−t

p−1∑
i=1

1

i

)
≥ (1− t)K−10 exp

(
−t
(

1 +

∫ p−1

1

dx

x

))
= (1− t)K−10 e−t(p− 1)−t ≥ (1− t)K−10 e−t3t(p+ 1)−t. �

Lemma 3.11. There is some C ′ = C ′(u) > 0 such that

Σk,` ≤ C ′(m+ 1)−u(1−u)(m− n+ 1)−(1−u)
2

for k = 2m ≥ ` = 2n or k = 2m+ 1 ≥ ` = 2n+ 1.

Proof. Suppose first that k = 2m ≥ ` = 2n. By Lemma 3.7 and (3.10), we get

Σk,` ≤
m∏

i=m−n+1

(
1− u(1− u)

i

)m−n∏
i=1

(
1− 1− u

i

)

=

m∏
i=m−n+1

(
1 +

u(1− u)

i− u(1− u)

)−1 m−n∏
i=1

(
1 +

1− u
i− 1 + u

)−1

≤
m∏

i=m−n+1

(
1 +

u(1− u)

i

)−1 m−n∏
i=1

(
1 +

1− u
i

)−1

=

m−n∏
i=1

(
1 +

u(1− u)

i

) m∏
i=1

(
1 +

u(1− u)

i

)−1 m−n∏
i=1

(
1 +

1− u
i

)−1
.

Then the result follows in this case from Lemma 3.10.
When k = 2m+ 1 ≥ ` = 2n+ 1, the result follows from the above case and Corollary 3.9. �

Lemma 3.12. For each t > 0, there is some C1 = C1(t) ≥ 1 such that, for all p,

C−11 (p+ 1)1−t ≤ Γ(p+ 1)

Γ(p+ t)
≤ C1(p+ 1)1−t.

Proof. We can assume that p ≥ 1. Write t = q + r, where q = btc. If q = 0, then 0 < r < 1
and the result follows from the Gautschi’s inequality, stating that

x1−r ≤ Γ(x+ 1)

Γ(x+ r)
≤ (x+ 1)1−r (3.14)

for 0 < r < 1 and x > 0, because x1−r ≥ 2r−1(x+ 1)1−r for x ≥ 1.
If q ≥ 1 and r = 0, then

Γ(p+ 1)

Γ(p+ t)
=

p!

(p+ q − 1)!
≤ 1

(p+ 1)q−1
= (p+ 1)1−t,

Γ(p+ 1)

Γ(p+ t)
=

p!

(p+ q − 1)!
≥ 1

(p+ q − 1)q−1
≥ 1

(qp)q−1
≥ t1−t(p+ 1)1−t.

If q ≥ 1 and r > 0, then, by (3.14),

Γ(p+ 1)

Γ(p+ t)
≤ Γ(p+ 1)

(p+ 1)q−1(p+ r)Γ(p+ r)
≤ (p+ 1)−q−r

p+ r
≤ 2(p+ 1)1−t

1 + r
,
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Γ(p+ 1)

Γ(p+ t)
≥ Γ(p+ 1)

(p+ t− 1)qΓ(p+ r)
≥ p1−r

(p+ t− 1)q

≥ (p+ 1)1−r

21−r(p+ t− 1)q
≥ min{1, 2/t}2r−1(p+ 1)1−t. �

Corollary 3.13. There is some C ′′ = C ′′(σ) > 0 such that

Πk,` ≤


C ′′
(
n+ 1

m+ 1

)σ/2−1/4
if k = 2m ≥ ` = 2n,

C ′′
(
n+ 1

m+ 1

)σ/2+1/4

if k = 2m+ 1 ≥ ` = 2n+ 1.

Proof. This follows from (3.3), (3.4) and Lemma 3.12. �

For the sake of simplicity, let us use the following notation. For real valued functions f and g
of (m,n), for (m,n) in some subset of N × N, write f 4 g if there is some C > 0 such that
f(m,n) ≤ Cg(m,n) for all (m,n). The same notation is used for functions depending also on
other variables, s, σ, u, . . . , taking C independent of m, n and s, but possibly depending on the
rest of variables.

Lemma 3.14. For α, β, γ ∈ R, if α + β, α + γ, α + β + γ < 0, then there is some ω > 0 such
that, for all naturals m ≥ n,

(m+ 1)α(n+ 1)β(m− n+ 1)γ 4 (m+ 1)−ω(n+ 1)−ω.

Proof. We consider the following cases:
1. If α < 0, β < 0 and γ < 0, then

(m+ 1)α(n+ 1)β(m− n+ 1)γ ≤ (m+ 1)α(n+ 1)β.

2. If β ≥ 0 and γ < 0, then

(m+ 1)α(n+ 1)β(m− n+ 1)γ ≤ (m+ 1)α+β ≤ (m+ 1)(α+β)/2(n+ 1)(α+β)/2.

3. If α ≥ 0, γ < 0 and m+ 1 ≤ 2(n+ 1), then β < 0 and

(m+ 1)α(n+ 1)β(m− n+ 1)γ ≤ 2−β(m+ 1)α+β ≤ 2−β(m+ 1)(α+β)/2(n+ 1)(α+β)/2.

4. If α ≥ 0, γ < 0 and m+1 > 2(n+1), then β < 0 and m−n+1 > (m+1)/2, and therefore

(m+ 1)α(n+ 1)β(m− n+ 1)γ ≤ 2−γ(m+ 1)α+γ(n+ 1)β.

5. If β < 0 and γ ≥ 0, then

(m+ 1)α(n+ 1)β(m− n+ 1)γ ≤ (m+ 1)α+γ(n+ 1)β.

6. If β ≥ 0 and γ ≥ 0, then

(m+ 1)α(n+ 1)β(m− n+ 1)γ ≤ (m+ 1)α+β+γ ≤ (m+ 1)(α+β+γ)/2(n+ 1)(α+β+γ)/2. �

Proposition 3.15. There is some ω = ω(σ, u) > 0 such that

|dk,`| 4 (m+ 1)−ω(n+ 1)−ω

for k = 2m and ` = 2n, or for k = 2m+ 1 and ` = 2n+ 1.
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Proof. We can assume k ≥ ` because dk,` = d`,k.
If k = 2m+1 ≥ ` = 2n+1, then, according to Proposition 3.5, Lemma 3.11 and Corollary 3.13,

|dk,`| 4 (m+ 1)−σ/2−1/4−u(1−u)(n+ 1)σ/2+1/4(m− n+ 1)−(1−u)
2
.

Thus the result follows by Lemma 3.14 since

−σ/2− 1/4− u(1− u)− (1− u)2 = −σ/2 + u− 5/4 < u/2− 1 < 0.

If k = 2m ≥ ` = 2n, then, according to Proposition 3.5, Lemma 3.11 and Corollary 3.13,

|dk,`| 4 (m+ 1)−σ/2+1/4−u(1−u)(n+ 1)σ/2−1/4(m− n+ 1)−(1−u)
2
.

Thus the result follows by Lemma 3.14 since

−σ/2 + 1/4− u(1− u)− (1− u)2 = −σ/2 + u− 3/4 < u/2− 1/2 < 0. �

Corollary 3.16. There is some ω = ω(σ, u) > 0 such that, for k = 2m and ` = 2n, or for
k = 2m+ 1 and ` = 2n+ 1,

|ck,`| 4 su(m+ 1)−ω(n+ 1)−ω.

Proof. This follows from Proposition 3.15 and (3.2). �

Proposition 3.17. For any ε > 0, there is some C = C(ε, σ, u) > 0 such that, for all φ ∈ S,

t(φ) ≤ εsu−1j(φ) + Csu‖φ‖2σ.

Proof. For each k, let νk = 2k + 1 + σ. By Proposition 3.15, there are K0 = K0(σ, u) > 0 and
ω = ω(σ, u) > 0 such that

|ck,`| ≤ K0s
uν−ωk ν−ω` (3.15)

for all k and `. Since S = S(σ, u) :=
∑

k ν
−1−2ω
k <∞, given ε > 0, there is some k0 = k0(ε, σ, u)

so that

S0 = S0(ε, σ, u) :=
∑
k≥k0

ν−1−2ωk <
ε2

4K2
0S
.

Let S1 = S1(ε, σ, u) =
∑

k≤k0 ν
−ω
k . For φ =

∑
k tkφk ∈ S, by (3.15) and the Schwartz inequality,

we have

t(φ) =
∑
k,`

tkt`ck,` ≤
∑
k,`

|tk||t`||ck,`|

≤ K0s
u−1/2

∑
k≤k0

|tk|
νωk

∑
`

|t`|(ν`s)1/2

ν
1/2+ω
`

+K0s
u−1

∑
k≥k0

|tk|(νks)1/2

ν
1/2+ω
k

∑
`

|t`|(ν`s)1/2

ν
1/2+ω
`

≤ K0S1S
1/2su−1/2‖φ‖σj(φ)1/2 +K0S

1/2
0 S1/2su−1j(φ)

≤ K0S1S
1/2su−1/2‖φ‖σj(φ)1/2 +

εsu−1

2
j(φ) ≤ 2K2

0S
2
1Ss

u

ε
‖φ‖2σ + εsu−1j(φ). �

Proposition 3.18. There is some D = D(σ, u) > 0 such that, for all k,

t(φk) ≥ Dsu(k + 1)−u.
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Proof. By Proposition 3.5 and (3.2), and since Πk,k = 1, it is enough to prove that there is
some D0 = D0(σ, u) > 0 so that Σk,k ≤ D0(k+ 1)−u. Moreover we can assume that k = 2m+ 1
by Corollary 3.8.

We have p0 := b1/2+σc ≥ 0 because 1/2+σ > u. According to Corollary 3.9 and Lemma 3.10,
there is some C0 = C0(u) ≥ 1 such that

Σk,k ≥
m∏
i=0

(
1− u

i+ 1
2 + σ

)
≥

(
1− u

1
2 + σ

)
m+p0∏
p=1+p0

(
1− u

p

)

=

(
1− u

1
2 + σ

)
m+p0∏
p=1

(
1− u

p

) p0∏
p=1

(
1− u

p

)−1

≥

(
1− u

1
2 + σ

)
C−20 (m+ p0 + 1)−u(p0 + 1)u ≥

(
1− u

1
2 + σ

)
C−20 (k + 1)−u. �

Remark 3.19. If 0 < u < 1/2, then lim
m

t(φ2m+1) = 0. To check it, we use that there is some

K > 0 so that |x|2σφ2k(x) ≤ Kk−1/6 for all x ∈ R and all odd k ∈ N [1, Theorem 1.1(ii)]. For

any ε > 0, take some x0 > 0 and k0 ∈ N such that x−2u0 < ε/2 and Kk
−1/6
0 x1−2u0 < ε(1− 2u)/4.

Then, for all odd natural k ≥ k0,

t(φk) = 2

∫ x0

0
φ2k(x)x2(σ−u)dx+ 2

∫ ∞
x0

φ2k(x)x2(σ−u)dx

≤ 2Kk−1/6
∫ x0

0
x−2udx+ 2x−2u0

∫ ∞
x0

φ2k(x)x2σdx ≤ 2Kk−1/6
x1−2u0

1− 2u
+ x−2u0 < ε,

because 1− 2u > 0 and ‖φk‖σ = 1. In the case where σ ≥ 0, this argument is also valid when k
is even. We do not know if infk t(φk) > 0 when 1/2 ≤ u < 1.

Proof of Theorem 1.1. The positive definite sesquilinear form j of Section 2 is closable by
[11, Chapter VI, Theorems 2.1 and 2.7]. Then, taking ε > 0 so that ξεsu−1 < 1, it follows from
[11, Chapter VI, Theorem 1.33] and Proposition 3.17 that the positive definite sesquilinear form
u := j + ξt is also closable, and D(ū) = D(j). By [11, Chapter VI, Theorems 2.1, 2.6 and 2.7],
there is a unique positive definite self-adjoint operator U such that D(U) is a core of D(ū),
which consists of the elements φ ∈ D(ū) so that, for some χ ∈ L2

σ, we have ū(φ, ψ) = 〈χ, ψ〉σ
for all ψ in some core of ū (in this case, U(φ) = χ). By [11, Chapter VI, Theorem 2.23], we
have D(U1/2) = D(ū), S is a core of U1/2 (since it is a core of u), and (1.1) is satisfied. By
Proposition 3.18,

u(φk) ≥ (2k + 1 + 2σ)s+ ξDsu(k + 1)−u

for all k. Therefore U has a discrete spectrum satisfying the first inequality of (1.2) by the form
version of the min-max principle [17, Theorem XIII.2]. The second inequality of (1.2) holds
because

ū(φ) ≤
(
1 + ξεsu−1

)̄
j(φ) + ξCsu‖φ‖2σ

for all φ ∈ D(ū) by Proposition 3.17 and [11, Chapter VI, Theorem 1.18], since S is a core of ū
and j̄. �

Remark 3.20. In the above proof, note that ū = j̄ + ξt̄ and D(̄j) = D(J
1/2

). Thus (1.1) can be

extended to φ, ψ ∈ D(U1/2) using 〈J1/2
φ, J

1/2
ψ〉σ instead of 〈Jφ, ψ〉σ.
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Remark 3.21. Extend the definition of the above forms and operators to the case of ξ ∈ C.
Then |̄t(φ)| ≤ εsu−1 <̄j(φ) + Csu‖φ‖2σ for all φ ∈ D(̄j), like in the proof of Theorem 1.1. Thus
the family ū = ū(ξ) becomes holomorphic of type (a) by Remark 3.20 and [11, Chapter VII,
Theorem 4.8], and therefore U = U(ξ) is a self-adjoint holomorphic family of type (B). So
the functions λk = λk(ξ) (ξ ∈ R) are continuous and piecewise holomorphic [11, Chapter VII,
Remark 4.22, Theorem 3.9, and § 3.4], with λk(0) = (2k + 1 + 2σ)s. Moreover [11, Chapter VI,
Theorem 4.21] gives an exponential estimate of |λk(ξ)−λk(0)| in terms of ξ. But (1.2) is a better
estimate.

4 Scalar products of mixed generalized Hermite functions

Let σ, τ, θ > −1/2, and write v = σ + τ − 2θ. This section is devoted to describe the scalar
products

ĉk,` = ĉσ,τ,θ,k,` = 〈φσ,k, φτ,`〉θ,

which will be needed to prove Theorem 1.3. Note that ĉk,` = 0 if k + ` is odd, and

ĉσ,τ,θ,k,` = ĉτ,σ,θ,`,k (4.1)

for all k and `. Of course, ĉk,` = δk,` if σ = τ = θ.
According to Section 2, if k and ` are odd, then ĉσ,τ,θ,k,` is also defined when σ, τ, θ > −3/2,

and we have

ĉσ,τ,θ,k,` = 〈xφσ+1,k−1, xφτ+1,`−1〉θ = ĉσ+1,τ+1,θ+1,k−1,`−1. (4.2)

4.1 Case where σ = θ 6= τ and τ − σ 6∈ −N

In this case, we have v = τ − σ. By (2.1) and (3.1),

ĉ0,0 = sv/2Γ(σ + 1/2)1/2Γ(τ + 1/2)−1/2. (4.3)

Lemma 4.1. If k > 0 is even, then ĉk,0 = 0.

Proof. By (2.2), (2.3) and (2.7),

ĉk,0 =
1√
2ks
〈B′σφσ,k−1, φτ,0〉σ =

1√
2ks
〈φσ,k−1, Bτφτ,0〉σ = 0. �

Lemma 4.2. If ` = 2n > 0, then

ĉ0,` =
v√
n

n−1∑
j=0

(−1)n−j

√
(n− 1)!Γ(j + 1

2 + τ)

j!Γ(n+ 1
2 + τ)

ĉ0,2j .

Proof. By (2.2), (2.3), (2.6) and (2.8),

ĉ0,` =
1√
2`s
〈φσ,0, B′τφτ,`−1〉σ =

1√
2`s
〈φσ,0, (B′σ − 2vx−1)φτ,`−1〉σ

=
1√
2`s
〈Bσφσ,0, φτ,`−1〉σ −

2v√
2`

n−1∑
j=0

(−1)n−1−j

√
(n− 1)!Γ(j + 1

2 + τ)

j!Γ(n+ 1
2 + τ)

ĉ0,2j

=
v√
n

n−1∑
j=0

(−1)n−j

√
(n− 1)!Γ(j + 1

2 + τ)

j!Γ(n+ 1
2 + τ)

ĉ0,2j . �
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Lemma 4.3. If k = 2m > 0 and ` = 2n > 0, then ĉk,` =
√
n/mĉk−1,`−1.

Proof. By (2.2), (2.4) and (2.7),

ĉk,` =
1√
2ks
〈B′σφσ,k−1, φτ,`〉σ =

1√
2ks
〈φσ,k−1, Bτφτ,`〉σ =

√
n

m
ĉk−1,`−1. �

Lemma 4.4. If k = 2m+ 1 and ` = 2n+ 1, then

ĉk,` =
n+ 1

2 + σ√
(m+ 1

2 + σ)(n+ 1
2 + τ)

ĉk−1,`−1

− v√
m+ 1

2 + σ

n−1∑
j=0

(−1)n−j

√
n!Γ(j + 1

2 + τ)

j!Γ(n+ 3
2 + τ)

ĉk−1,2j .

Proof. By (2.2), (2.4), (2.6) and (2.7),

ĉk,` =
1√

2(k + σ)s
〈B′σφσ,k−1, φτ,`〉σ =

1√
2(k + 2σ)s

〈φσ,k−1,
(
Bτ − 2vx−1

)
φτ,`〉σ

=

√
n+ 1

2 + τ

m+ 1
2 + σ

ĉk−1,`−1 −
v√

m+ 1
2 + σ

n∑
j=0

(−1)n−j

√
n!Γ(j + 1

2 + τ)

j!Γ(n+ 3
2 + τ)

ĉk−1,2j

=
n+ 1

2 + σ√
(m+ 1

2 + σ)(n+ 1
2 + τ)

ĉk−1,`−1

− v√
m+ 1

2 + σ

n−1∑
j=0

(−1)n−j

√
n!Γ(j + 1

2 + τ)

j!Γ(n+ 3
2 + τ)

ĉk−1,2j . �

Corollary 4.5. If k > `, then ĉk,` = 0.

Proof. This follows by induction on ` using Lemmas 4.1, 4.3 and 4.4. �

Remark 4.6. By Corollary 4.5, in Lemma 4.4, it is enough to consider the sum with j running
from m to n− 1.

Proposition 4.7. If k = 2m ≤ ` = 2n, then

ĉk,` = (−1)m+nsv/2

√
n!Γ(m+ 1

2 + σ)

m!Γ(n+ 1
2 + τ)

Γ(n−m+ v)

(n−m)!Γ(v)
,

and, if k = 2m+ 1 ≤ ` = 2n+ 1, then

ĉk,` = (−1)m+nsv/2

√
n!Γ(m+ 3

2 + σ)

m!Γ(n+ 3
2 + τ)

Γ(n−m+ v)

(n−m)!Γ(v)
.

Proof. This is proved by induction on k. In turn, the case k = 0,

ĉ0,` = (−1)nsv/2

√
Γ(12 + σ)

n!Γ(n+ 1
2 + τ)

Γ(n+ v)

Γ(v)
, (4.4)
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is proved by induction on `. If k = ` = 0, (4.4) is (4.3). Given ` = 2n > 0, assume that the
result holds for k = 0 and all `′ = 2n′ < `. Then, by Lemma 4.2,

ĉ0,` =
v√
n

n−1∑
j=0

(−1)n−j

√
(n− 1)!Γ(j + 1

2 + τ)

j!Γ(n+ 1
2 + τ)

(−1)jsv/2

√
Γ(12 + σ)

j!Γ(j + 1
2 + τ)

Γ(j + v)

Γ(v)

= (−1)nsv/2

√
(n− 1)!Γ(12 + σ)

nΓ(n+ 1
2 + τ)

v

Γ(v)

n−1∑
j=0

Γ(j + v)

j!
,

obtaining (4.4) because

Γ(p+ 1 + t)

p!
= t

p∑
i=0

Γ(i+ t)

i!
(4.5)

for all p ∈ N and t ∈ R \ (−N), as can be easily checked by induction on p.

Given k > 0, assume that the result holds for all k′ < k. If k is even, the statement follows
directly from Lemma 4.3. If k is odd, by Lemma 4.4, Remark 4.6 and (4.5),

ĉk,` =
n+ 1

2 + σ√
(m+ 1

2 + σ)(n+ 1
2 + τ)

(−1)m+nsv/2

√
n!Γ(m+ 1

2 + σ)

m!Γ(n+ 1
2 + τ)

Γ(n−m+ v)

(n−m)!Γ(v)

− v√
m+ 1

2 + σ

n−1∑
j=m

(−1)n−j

√
n!Γ(j + 1

2 + τ)

j!Γ(n+ 3
2 + τ)

× (−1)m+jsv/2

√
j!Γ(m+ 1

2 + σ)

m!Γ(j + 1
2 + τ)

Γ(j −m+ v)

(j −m)!Γ(v)

= (−1)m+nsv/2

√
n!Γ(m+ 1

2 + σ)

(m+ 1
2 + σ)m!Γ(n+ 3

2 + τ)

1

Γ(v)

×

(
Γ(n−m+ v)(n+ 1

2 + σ)

(n−m)!
− v

n−m−1∑
i=0

Γ(i+ v)

i!

)

= (−1)m+nsv/2

√
n!Γ(m+ 3

2 + σ)

m!Γ(n+ 3
2 + τ)

Γ(n−m+ v)

(n−m)!Γ(v)
. �

Remark 4.8. By (4.2), if k and ` are odd, then Corollary 4.5 and Proposition 4.7 also hold
when σ, τ > −3/2.

4.2 Case where σ 6= θ 6= τ and σ − θ, τ − θ 6∈ −N

By (2.1) and (3.1),

ĉ0,0 = sv/2Γ(σ + 1/2)−1/2Γ(τ + 1/2)−1/2Γ(θ + 1/2)1/2. (4.6)

Lemma 4.9. If k = 2m > 0, then

ĉk,0 =
σ − θ√
m

m−1∑
i=0

(−1)m−i

√
(m− 1)!Γ(i+ 1

2 + σ)

i!Γ(m+ 1
2 + σ)

ĉ2i,0.
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Proof. By (2.2) and (2.8),

ĉk,0 =
1√
2ks
〈B′σφσ,k−1, φτ,0〉θ =

1

2
√
ms
〈B′θφσ,k−1, φτ,0〉θ +

θ − σ√
ms
〈x−1φσ,k−1, φτ,0〉θ.

Here, by (2.3), (2.6) and (2.7),

〈B′θφσ,k−1, φτ,0〉θ = 〈φσ,k−1, Bθφτ,0〉θ = 〈φσ,k−1, Bτφτ,0〉θ = 0,

〈x−1φσ,k−1, φτ,0〉θ = −
m−1∑
i=0

(−1)m−i

√
(m− 1)!Γ(i+ 1

2 + σ)s

i!Γ(m+ 1
2 + σ)

ĉ2i,0. �

Lemma 4.10. If k = 2m > 0 and ` = 2n > 0, then

ĉk,` =

√
n

m
ĉk−1,`−1 +

σ − θ
m

m−1∑
i=0

(−1)m−i

√
m!Γ(i+ 1

2 + σ)

i!Γ(m+ 1
2 + σ)

ĉ2i,`.

Proof. Like in the proof of Lemma 4.9,

ĉk,` =
1

2
√
ms
〈B′θφσ,k−1, φτ,`〉θ +

θ − σ√
ms
〈x−1φσ,k−1, φτ,`〉θ,

Now, by (2.4), (2.6) and (2.7),

〈B′θφσ,k−1, φτ,`〉θ = 〈φσ,k−1, B1/2φτ,`〉θ = 〈φσ,k−1, Bτφτ,`〉θ = 2
√
nsĉk−1,`−1,

〈x−1φσ,k−1, φτ,`〉θ = −
m−1∑
i=0

(−1)m−i

√
(m− 1)!Γ(i+ 1

2 + σ)s

i!Γ(m+ 1
2 + σ)

ĉ2i,`. �

Lemma 4.11. If k = 2m+ 1 and ` = 2n+ 1, then

ĉk,` =
m+ 1

2 + θ√
(m+ 1

2 + σ)(n+ 1
2 + τ)

ĉk−1,`−1

− σ − θ√
n+ 1

2 + τ

m−1∑
i=0

(−1)m−i

√
m!Γ(i+ 1

2 + σ)

i!Γ(m+ 3
2 + σ)

ĉ2i,`−1.

Proof. By (2.2),

ĉk,` =
1

2
√

(n+ 1
2 + τ)s

〈φσ,k, B′τφτ,`−1〉θ,

where, by (2.8),

〈φσ,k, B′τφτ,`−1〉θ = 〈φσ,k, B′θφτ,`−1〉θ = 〈Bθφσ,k, φτ,`−1〉θ
= 〈Bσφσ,k, φτ,`−1〉θ + 2(θ − σ)〈x−1φσ,k, φτ,`−1〉θ.

Hence, by (2.4) and (2.6),

ĉk,` =

√
m+ 1

2 + σ

n+ 1
2 + τ

ĉk−1,`−1 −
σ − θ√
n+ 1

2 + τ

m∑
i=0

(−1)m−i

√
m!Γ(i+ 1

2 + σ)

i!Γ(m+ 3
2 + σ)

ĉ2i,`−1

=
m+ 1

2 + θ√
(n+ 1

2 + τ)(m+ 1
2 + σ)

ĉk−1,`−1

− σ − θ√
n+ 1

2 + τ

m−1∑
i=0

(−1)m−i

√
m!Γ(i+ 1

2 + σ)

i!Γ(m+ 3
2 + σ)

ĉ2i,`−1. �
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Proposition 4.12. If k = 2m and ` = 2n, then

ĉk,` = (−1)m+nsv/2

√
m!n!Γ(12 + θ)

Γ(m+ 1
2 + σ)Γ(n+ 1

2 + τ)

×
min{m,n}∑

p=0

Γ(m− p+ σ − θ)Γ(n− p+ τ − θ)
(m− p)!(n− p)!Γ(σ − θ)Γ(τ − θ)

,

and, if k = 2m+ 1 and ` = 2n+ 1, then

ĉk,` = (−1)m+nsv/2

√
m!n!Γ(12 + θ)

Γ(m+ 3
2 + σ)Γ(n+ 3

2 + τ)

×
min{m,n}∑

p=0

(1 + p)Γ(m− p+ σ − θ)Γ(n− p+ τ − θ)
(m− p)!(n− p)!Γ(σ − θ)Γ(τ − θ)

.

Proof. The result is proved by induction on k and `. First, consider the case ` = 0. When
k = ` = 0, the result is given by (4.6). Now, take any k = 2m > 0, and assume that the result
holds for all ĉk′,0 with k′ = 2m′ < k. Then, by Lemma 4.9 and (4.5),

ĉk,0 =
σ − θ√
m

m−1∑
i=0

(−1)m−i

√
(m− 1)!Γ(i+ 1

2 + σ)

i!Γ(m+ 1
2 + σ)

× (−1)isv/2

√
Γ(12 + θ)

i!Γ(i+ 1
2 + σ)Γ(12 + τ)

Γ(i+ σ − θ)
Γ(σ − θ)

= (−1)msv/2

√
m!

Γ(m+ 1
2 + σ)Γ(12 + τ)

σ − θ
m

m−1∑
i=0

Γ(i+ σ − θ)
i!Γ(σ − θ)

= (−1)msv/2

√
Γ(12 + θ)

m!Γ(m+ 1
2 + σ)Γ(12 + τ)

Γ(m+ σ − θ)
Γ(σ − θ)

.

From the case ` = 0, the result also follows for the case k = 0 by (4.1).
Now, take k = 2m > 0 and ` = 2n > 0, and assume that the result holds for all ĉk′,`′ with

k′ < k and `′ ≤ `. By Lemma 4.10,

ĉk,` =

√
n

m
(−1)m+n−2sv/2

√
(m− 1)!(n− 1)!Γ(12 + θ)

Γ(m+ 1
2 + σ)Γ(n+ 1

2 + τ)

×
min{m−1,n−1}∑

q=0

(1 + q)Γ(m− 1− q + σ − θ)Γ(n− 1− q + τ − θ)
(m− 1− q)!(n− 1− q)!Γ(σ − θ)Γ(τ − θ)

+
σ − θ
m

m−1∑
i=0

(−1)m−i

√
m!Γ(i+ 1

2 + σ)

i!Γ(m+ 1
2 + σ)

(−1)i+nsv/2

√
i!n!Γ(12 + θ)

Γ(i+ 1
2 + σ)Γ(n+ 1

2 + τ)

×
min{i,n}∑
p=0

Γ(i− p+ σ − θ)Γ(n− p+ τ − θ)
(i− p)!(n− p)!Γ(σ − θ)Γ(τ − θ)

= (−1)m+nsv/2
1

m

√
m!n!Γ(12 + θ)

Γ(m+ 1
2 + σ)Γ(n+ 1

2 + τ)

×

min{m−1,n−1}∑
q=0

(1 + q)Γ(m− 1− q + σ − θ)Γ(n− 1− q + τ − θ)
(m− 1− q)!(n− 1− q)!Γ(σ − θ)Γ(τ − θ)
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+ (σ − θ)
m−1∑
i=0

min{i,n}∑
p=0

Γ(i− p+ σ − θ)Γ(n− p+ τ − θ)
(i− p)!(n− p)!Γ(σ − θ)Γ(τ − θ)

 .

Then the desired expression for ĉk,` follows because

min{m−1,n−1}∑
q=0

(1 + q)Γ(m− 1− q + σ − θ)Γ(n− 1− q + τ − θ)
(m− 1− q)!(n− 1− q)!Γ(σ − θ)Γ(τ − θ)

=

min{m,n}∑
p=0

pΓ(m− p+ σ − θ)Γ(n− p+ τ − θ)
(m− p)!(n− p)!Γ(σ − θ)Γ(τ − θ)

,

and, by (4.5),

(σ − θ)
m−1∑
i=0

min{i,n}∑
p=0

Γ(i− p+ σ − θ)Γ(n− p+ τ − θ)
(i− p)!(n− p)!Γ(σ − θ)Γ(τ − θ)

= (σ − θ)
min{m−1,n}∑

p=0

m−1−p∑
j=0

Γ(j + σ − θ)Γ(n− p+ τ − θ)
j!(n− p)!Γ(σ − θ)Γ(τ − θ)

=

min{m,n}∑
p=0

(m− p)Γ(m− p+ σ − θ)Γ(n− p+ τ − θ)
(m− p)!(n− p)!Γ(σ − θ)Γ(τ − θ)

. (4.7)

Finally, take k = 2m+ 1 and ` = 2n+ 1, and assume that the result holds for all ĉk′,`′ with
k′ < k and `′ < `. By Lemma 4.11,

ĉk,` =
(n+ 1)(−1)m+nsv/2√

(m+ 1
2 + σ)(n+ 1

2 + τ)

√
m!n!Γ(12 + θ)

Γ(m+ 1
2 + σ)Γ(n+ 1

2 + τ)

×
min{m,n}∑

p=0

Γ(m− p+ σ − θ)Γ(n− p+ τ − θ)
(m− p)!(n− p)!Γ(σ − θ)Γ(τ − θ)

+
σ − θ√
n+ 1

2 + τ

m−1∑
i=0

(−1)m−i

√
m!Γ(i+ 1

2 + σ)

i!Γ(m+ 3
2 + σ)

× (−1)i+nsv/2

√
i!n!Γ(12 + θ)

Γ(i+ 1
2 + σ)Γ(n+ 1

2 + τ)

min{i,n}∑
p=0

Γ(i− p+ σ − θ)Γ(n− p+ τ − θ)
(i− p)!(n− p)!Γ(σ − θ)Γ(τ − θ)

= (−1)m+nsv/2

√
m!n!Γ(12 + θ)

Γ(m+ 3
2 + σ)Γ(n+ 3

2 + τ)

×

min{m,n}∑
p=0

(m+ 1)Γ(m− p+ σ − θ)Γ(n− p+ τ − θ)
(m− p)!(n− p)!Γ(σ − θ)Γ(τ − θ)

− (σ − θ)
m−1∑
i=0

min{i,n}∑
p=0

Γ(i− p+ σ − θ)Γ(n− p+ τ − θ)
(i− p)!(n− p)!Γ(σ − θ)Γ(τ − θ)

 .

Then we get the stated expression for ĉk,` using (4.7) again. �

Remark 4.13. By (4.2), if k and ` are odd, then Proposition 4.12 also holds when σ, τ > −3/2.
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5 The sesquilinear form t′

Consider the notation of Section 4. Since x−1Sodd = Sev, a sesquilinear form t′ in L2
σ,τ , with

D(t′) = S, is defined by

t′(φ, ψ) = 〈φev, x−1ψodd〉θ = 〈xφev, ψodd〉θ−1.

Note that t′ is neither symmetric nor bounded from the left. The goal of this section is to
study t′, and use it to prove Theorem 1.3.

Let c′k,` = t′(φσ,k, φτ,`). Clearly, c′k,` = 0 if k is odd or ` is even.

5.1 Case where σ = θ = τ

In this case, we have v = 0.

Proposition 5.1. For k = 2m and ` = 2n + 1, if k > ` (m > n), then c′k,` = 0, and, if k < `
(m ≤ n), then

c′k,` = (−1)n−ms1/2

√
n!Γ(m+ 1

2 + σ)

m!Γ(n+ 3
2 + σ)

.

Proof. This follows from (2.6) since ĉk,` = δk,` in this case. �

Proposition 5.2. There is some ω = ω(σ, τ) > 0 so that, for k = 2m and ` = 2n+ 1,

|c′k,`| 4 s1/2(m+ 1)−ω(n+ 1)−ω.

Proof. We can assume that m ≤ n according to Proposition 5.1. Moreover

|c′k,`| 4 s1/2(m+ 1)σ/2−1/4(n+ 1)−σ/2−1/4

for allm ≤ n by Proposition 5.1 and Lemma 3.12. Therefore the result follows using Lemma 3.14,
reversing the roles of m and n, because −σ/2− 1/4 < −u/2 < 0. �

5.2 Case where σ = θ 6= τ and τ − σ 6∈ −N

Recall that v = τ − σ in this case. Moreover c′k,` = 0 if k > ` by (2.6) and Corollary 4.5.

Proposition 5.3. For k = 2m < ` = 2n+ 1 (m ≤ n),

c′k,` = (−1)m+ns(1+v)/2

√
n!Γ(m+ 1

2 + σ)

m!Γ(n+ 3
2 + τ)

Γ(n−m+ 1 + v)

(n−m)!Γ(1 + v)
.

Proof. By (2.6), Corollary 4.5, Proposition 4.7 and (4.5),

c′k,` = s1/2
n∑

j=m

(−1)n−j

√
n!Γ(j + 1

2 + τ)

j!Γ(n+ 3
2 + τ)

(−1)m+jsv/2

√
j!Γ(m+ 1

2 + σ)

m!Γ(j + 1
2 + τ)

Γ(j −m+ v)

(j −m)!Γ(v)

= (−1)m+ns(1+v)/2

√
n!Γ(m+ 1

2 + σ)

m!Γ(n+ 3
2 + τ)

1

Γ(v)

n−m∑
i=0

Γ(i+ v)

i!

= (−1)m+ns(1+v)/2

√
n!Γ(m+ 1

2 + σ)

m!Γ(n+ 3
2 + τ)

Γ(n−m+ 1 + v)

(n−m)!Γ(1 + v)
. �
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Proposition 5.4. If σ − 1 < τ < σ + 1, 2σ + 1
2 , then there is some ω = ω(σ, τ) > 0 so that, for

k = 2m < ` = 2n+ 1,

|c′k,`| 4 s(1+v)/2(m+ 1)−ω(n+ 1)−ω.

Proof. By Proposition 5.3 and Lemma 3.12,

|c′k,`| 4 s(1+v)/2(m+ 1)σ/2−1/4(n+ 1)−τ/2−1/4(n−m+ 1)v.

Then the result follows by Lemma 3.14, interchanging the roles of m and n, using the condition
of Theorem 1.3(a). �

5.3 Case where σ 6= θ = τ and σ − θ 6∈ −N

Recall that v = σ − τ in this case.

Proposition 5.5. For k = 2m and ` = 2n+ 1,

c′k,` = (−1)m+ns(1+v)/2

√
m!n!

Γ(m+ 1
2 + σ)Γ(n+ 3

2 + τ)

n∑
j=0

Γ(j + 1
2 + τ)Γ(m− j + v)

j!(m− j)!Γ(v)
.

Proof. By (2.6), Corollary 4.5, Proposition 4.7 and (4.1),

c′k,` = s1/2
n∑
j=0

(−1)n−j

√
n!Γ(j + 1

2 + τ)

j!Γ(n+ 3
2 + τ)

(−1)j+msv/2

√
m!Γ(j + 1

2 + τ)

j!Γ(m+ 1
2 + σ)

Γ(m− j + v)

(m− j)!Γ(v)

= (−1)m+ns(1+v)/2

√
m!n!

Γ(m+ 1
2 + σ)Γ(n+ 3

2 + τ)

Γ(j + 1
2 + τ)Γ(m− j + v)

j!(m− j)!Γ(v)
. �

Define the following subsets of R4:

• S1 is the set of points (α, β, γ, δ) such that:

γ ≥ 0, δ > −1 =⇒ α+ γ, α+ β + γ + δ + 1 < 0,

γ ≥ 0, δ ≤ −1 =⇒ α+ γ, α+ β + γ < 0,

γ < 0, δ > −1 =⇒ α+ γ, α+ β + δ + 1, α+ β + γ + δ + 1 < 0,

γ < 0, δ ≤ −1 =⇒ α+ β, α+ γ, α+ β + γ < 0.

• S2 be the set of points (α, β, γ, δ) such that:

γ ≥ 0, δ > −1
2 =⇒ α+ γ, α+ β + γ + δ + 1 < 0,

γ ≥ 0, δ ≤ −1
2 =⇒ α+ γ, α+ β + γ + 1

2 < 0,

−1
2 < γ < 0, δ > −1

2 =⇒

{
α+ γ, α+ β + δ + 1, α+ β + γ + δ + 1 < 0, or

α+ γ + 1
2 , α+ β + γ + δ + 1 < 0,

−1
2 < γ < 0, δ ≤ −1

2 =⇒

{
α+ γ, α+ β + 1

2 , α+ β + γ + 1
2 < 0, or

α+ γ + 1
2 , α+ β + γ + 1

2 < 0,

γ = −1
2 , δ > −

1
2 =⇒ α, α+ β + δ + 1

2 < 0,

γ = −1
2 , δ ≤ −

1
2 =⇒ α, α+ β < 0,

γ < −1
2 , δ > −

1
2 =⇒ α+ γ + 1

2 , α+ β + δ + 1
2 , α+ β + γ + δ + 1 < 0,

γ < −1
2 , δ ≤ −

1
2 =⇒ α+ γ + 1

2 , α+ β, α+ β + γ + 1
2 < 0.
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In particular, (α, β, γ, δ) ∈ S1 if

α+ β, α+ γ, α+ β + γ, α+ β + δ + 1, α+ β + γ + δ + 1 < 0.

Lemma 5.6. If (α, β, γ, δ) ∈ S1 ∪ S2, then there is some ω > 0 such that, for all naturals
m ≥ n,

(m+ 1)α(n+ 1)β
n∑
p=0

(m− p+ 1)γ(p+ 1)δ 4 (m+ 1)−ω(n+ 1)−ω.

Proof. For all ε > 0,

n∑
p=0

(p+ 1)δ =

n+1∑
q=1

qδ ≤


∫ n+2

1
xδdx if δ ≥ 0

1 +

∫ n+1

1
xδdx if δ < 0

4


(n+ 1)δ+1 if δ > −1

1 + ln(n+ 1) if δ = −1

1 if δ < −1

4


(n+ 1)δ+1 if δ > −1,

(n+ 1)ε if δ = −1,

1 if δ < −1.

(5.1)

Hence, using that

n∑
p=0

(m− p+ 1)γ(p+ 1)δ 4


(m+ 1)γ

n∑
p=0

(p+ 1)δ if γ ≥ 0,

(m− n+ 1)γ
n∑
p=0

(p+ 1)δ if γ < 0,

we get

(m+ 1)α(n+ 1)β
n∑
p=0

(m− p+ 1)γ(p+ 1)δ

4



(m+ 1)α+γ(n+ 1)β+δ+1 if γ ≥ 0 and δ > −1,

(m+ 1)α+γ(n+ 1)β+ε if γ ≥ 0 and δ = −1,

(m+ 1)α+γ(n+ 1)β if γ ≥ 0 and δ < −1,

(m+ 1)α(n+ 1)β+δ+1(m− n+ 1)γ if γ < 0 and δ > −1,

(m+ 1)α(n+ 1)β+ε(m− n+ 1)γ if γ < 0 and δ = −1,

(m+ 1)α(n+ 1)β(m− n+ 1)γ if γ < 0 and δ < −1,

for all ε > 0. Then the result follows when (α, β, γ, δ) ∈ S1 by Lemma 3.14.
On the other hand, for all ε > 0,

n∑
p=0

(m− p+ 1)γ =
m+1∑

q=m−n+1

qγ ≤


∫ m+2

m−n+1
xγdx if γ ≥ 0

(m− n+ 1)γ +

∫ m+1

m−n+1
xγdx if γ < 0

4


(m+ 1)γ+1 if γ > −1

1 + ln(m+ 1) if γ = −1

(m− n+ 1)γ if γ < −1

4


(m+ 1)γ+1 if γ > −1,

(m+ 1)ε if γ = −1,

(m− n+ 1)γ if γ < −1.

(5.2)
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The following gives a better estimate when γ ≥ 0, and an alternative estimate when −1 < γ < 0:

n∑
p=0

(m− p+ 1)γ ≤

{
(m+ 1)γ(n+ 1) if γ ≥ 0,

(m− n+ 1)γ(n+ 1) if −1 < γ < 0.
(5.3)

Now, using the Cauchy–Schwartz inequality

n∑
p=0

(m− p+ 1)γ(p+ 1)δ ≤

 n∑
p=0

(m− p+ 1)2γ

 1
2
 n∑
p=0

(p+ 1)2δ

 1
2

,

and applying (5.1) with 2δ, and (5.2) and (5.3) with 2γ, we obtain

(m+ 1)α(n+ 1)β
n∑
p=0

(m− p+ 1)γ(p+ 1)δ

4



(m+ 1)α+γ(n+ 1)β+δ+1 if γ ≥ 0, δ > −1
2 ,

(m+ 1)α+γ(n+ 1)β+
1
2
+ε if γ ≥ 0, δ = −1

2 ,

(m+ 1)α+γ(n+ 1)β+
1
2 if γ ≥ 0, δ < −1

2 ,

(m+ 1)α(n+ 1)β+δ+1(m− n+ 1)γ

(m+ 1)α+γ+
1
2 (n+ 1)β+δ+

1
2

}
if −1

2 < γ < 0, δ > −1
2 ,

(m+ 1)α(n+ 1)β+
1
2
+ε(m− n+ 1)γ

(m+ 1)α+γ+
1
2 (n+ 1)β+ε

}
if −1

2 < γ < 0, δ = −1
2 ,

(m+ 1)α(n+ 1)β+
1
2 (m− n+ 1)γ

(m+ 1)α+γ+
1
2 (n+ 1)β

}
if −1

2 < γ < 0, δ < −1
2 ,

(m+ 1)α+ε(n+ 1)β+δ+
1
2 if γ = −1

2 , δ > −
1
2 ,

(m+ 1)α+ε(n+ 1)β+ε if γ = δ = −1
2 ,

(m+ 1)α+ε(n+ 1)β if γ = −1
2 , δ < −

1
2 ,

(m+ 1)α(n+ 1)β+δ+
1
2 (m− n+ 1)γ+

1
2 if γ < −1

2 , δ > −
1
2 ,

(m+ 1)α(n+ 1)β+ε(m− n+ 1)γ+
1
2 if γ < −1

2 , δ = −1
2 ,

(m+ 1)α(n+ 1)β(m− n+ 1)γ+
1
2 if γ < −1

2 , δ ≤ −
1
2 ,

for all ε > 0. So the result also holds when (α, β, γ, δ) ∈ S2 by Lemma 3.14. �

Remark 5.7. Lemma 5.6 could be slightly improved by using also that

n∑
p=0

(m− p+ 1)γ(n+ 1)δ 4


(n+ 1)δ

n∑
p=0

(m− p+ 1)γ if δ ≥ 0,

n∑
p=0

(m− p+ 1)γ if δ < 0,

and estimating
n∑
p=0

(m− p+ 1)γ =
m+1∑

q=m−n+1
qγ like in the proof. But this would have no conse-

quences in our application (Section 7).

Proposition 5.8. If (σ, τ) ∈ J1 ∪ J2, then there is some ω = ω(σ, τ, θ) > 0 so that, for k = 2m
and ` = 2n+ 1,

|c′k,`| 4 s(1+v)/2(m+ 1)−ω(n+ 1)−ω.
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Proof. By Proposition 5.5 and Lemma 3.12,

|c′k,`| 4 s(1+v)/2(m+ 1)1/4−σ/2(n+ 1)−1/4−τ/2
n∑
j=0

(m− j + 1)τ−1/2(j + 1)v−1.

Then the result follows by Lemma 5.6 since (σ, τ) ∈ J1 ∪ J2 means that (α, β, γ, δ) ∈ S1 ∪S2

for α = 1/4− σ/2, β = −1/4− τ/2, γ = τ − 1/2 and δ = v − 1. �

5.4 Case where σ 6= θ = τ + 1 and σ − τ − 1 6∈ −N

Note that v = σ − τ − 2 in this case. Moreover

c′k,` = 〈φσ,k, x−1φτ,`〉τ+1 = 〈xφσ,k, φτ,`〉τ = 〈φτ,`, xφσ,k〉τ (5.4)

for k = 2m and ` = 2n+ 1 (Remark 1.4(iii)).

Proposition 5.9. Let k = 2m and ` = 2n+ 1. If k+ 1 < ` (m < n), then c′k,` = 0. If k+ 1 ≥ `
(m ≥ n), then

c′k,` = (−1)m+ns(v+2)/2

√
m!Γ(n+ 3

2 + τ)

n!Γ(m+ 1
2 + σ)

Γ(m− n+ v + 1)

(m− n)!Γ(v + 1)
.

Proof. By (2.5) and (5.4),

c′k,` =

√
m+ 1

2 + σ

s
ĉτ,σ,τ,k+1,` +

√
m

s
ĉτ,σ,τ,k−1,`. (5.5)

So c′k,` = 0 if k+ 1 < ` by Corollary 4.5. When k+ 1 = ` (m = n), by (5.5) and Proposition 4.7,

c′k,` =

√
m+ 1

2 + σ

s
s(v+2)/2

√
Γ(n+ 3

2 + τ)

Γ(m+ 3
2 + σ)

= s(v+1)/2

√
Γ(n+ 3

2 + τ)

Γ(m+ 1
2 + σ)

.

When k − 1 ≥ ` (m > n), by (5.5) and Proposition 4.7,

c′k,` =

√
m+ 1

2 + σ

s
(−1)m+ns(v+2)/2

√
m!Γ(n+ 3

2 + τ)

n!Γ(m+ 3
2 + σ)

Γ(m− n+ v + 2)

(m− n)!Γ(v + 2)

+

√
m

s
(−1)m+n−1s(v+2)/2

√
(m− 1)!Γ(n+ 3

2 + τ)

n!Γ(m+ 1
2 + σ)

Γ(m− n+ v + 1)

(m− 1− n)!Γ(v + 2)

= (−1)m+ns(v+1)/2

√
m!Γ(n+ 3

2 + τ)

n!Γ(m+ 1
2 + σ)

Γ(m− n+ v + 1)

(m− 1− n)!Γ(v + 2)

(
m− n+ v + 1

m− n
− 1

)

= (−1)m+ns(v+1)/2

√
m!Γ(n+ 3

2 + τ)

n!Γ(m+ 1
2 + σ)

Γ(m− n+ v + 1)

(m− n)!Γ(v + 1)
. �

Proposition 5.10. If τ < 3σ
2 −

9
4 , σ−

5
3 , then there is some ω = ω(τ, σ) > 0 so that, for k = 2m

and ` = 2n+ 1,

|c′k,`| 4 s(v+1)/2(m+ 1)−ω(n+ 1)−ω.

Proof. By Proposition 5.9, we can assume that k+ 1 ≥ ` (m ≥ n), and, in this case, using also
Lemma 3.12, we get

|c′k,`| 4 s(v+1)/2(m+ 1)1/4−σ/2(n+ 1)1/4+τ/2(m− n+ 1)−v.

Then the result follows using Lemma 3.14. �



A Perturbation of the Dunkl Harmonic Oscillator on the Line 27

5.5 Case where σ 6= θ 6= τ and σ − θ, τ − θ 6∈ −N

Proposition 5.11. For k = 2m and ` = 2n+ 1,

c′k,` = (−1)m+ns(1+v)/2

√
m!n!Γ(12 + θ)

Γ(m+ 1
2 + σ)Γ(n+ 3

2 + τ)

×
min{m,n}∑

p=0

Γ(m− p+ σ − θ)Γ(n− p+ 1 + τ − θ)
(m− p)!(n− p)!Γ(σ − θ)Γ(1 + τ − θ)

.

Proof. By (2.6) and Proposition 4.12,

c′k,` = s1/2
n∑

j=m

(−1)n−j

√
n!Γ(j + 1

2 + τ)

j!Γ(n+ 3
2 + τ)

(−1)m+jsv/2

√
m!j!Γ(12 + θ)

Γ(m+ 1
2 + σ)Γ(j + 1

2 + τ)

×
min{m,j}∑
p=0

Γ(m− p+ σ − θ)Γ(j − p+ τ − θ)
(m− p)!(j − p)!Γ(σ − θ)Γ(τ − θ)

= (−1)m+ns(1+v)/2

√
m!n!Γ(12 + θ)

Γ(m+ 1
2 + σ)Γ(n+ 3

2 + τ)

×
n∑

j=m

min{m,j}∑
p=0

Γ(m− p+ σ − θ)Γ(j − p+ τ − θ)
(m− p)!(j − p)!Γ(σ − θ)Γ(τ − θ)

.

But, by (4.5),

n∑
j=m

min{m,j}∑
p=0

Γ(m− p+ σ − θ)Γ(j − p+ τ − θ)
(m− p)!(j − p)!Γ(σ − θ)Γ(τ − θ)

=

min{m,n}∑
p=0

n∑
j=p

Γ(m− p+ σ − θ)Γ(j − p+ τ − θ)
(m− p)!(j − p)!Γ(σ − θ)Γ(τ − θ)

=

min{m,n}∑
p=0

n−p∑
i=0

Γ(m− p+ σ − θ)Γ(i+ τ − θ)
(m− p)!i!Γ(σ − θ)Γ(τ − θ)

=

min{m,n}∑
p=0

Γ(m− p+ σ − θ)Γ(n− p+ 1 + τ − θ)
(m− p)!(n− p)!Γ(σ − θ)Γ(1 + τ − θ)

. �

Lemma 5.12. If (α, β, γ, δ), (β, α, δ, γ) ∈ S1 ∪S2, then there is some ω > 0 such that, for all
m,n ∈ N,

(m+ 1)α(n+ 1)β
min{m,n}∑

p=0

(m− p+ 1)γ(n− p+ 1)δ 4 (m+ 1)−ω(n+ 1)−ω.

Proof. Since (m,α, γ) and (n, β, δ) play symmetric roles, we consider only the case where

m ≥ n. Then the result follows like Lemma 5.6 because
n∑
p=0

(n− p+ 1)δ =
n+1∑
q=1

qδ. �

Remark 5.13. In particular, the conditions of Lemma 5.12 are satisfied if

α+ β, α+ γ, β + δ < 0,

α+ β + γ + 1, α+ β + δ + 1, α+ β + γ + δ + 1 < 0.
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Proposition 5.14. If (σ, τ, θ) ∈ (K1 ∪K2) ∩ (K′1 ∪K′2), then there is some ω = ω(σ, τ, θ) > 0 so
that, for k = 2m and ` = 2n+ 1,

|c′k,`| 4 s(1+v)/2(m+ 1)−ω(n+ 1)−ω.

Proof. By Proposition 5.11 and Lemma 3.12,

|c′k,`| 4 s(1+v)/2(m+ 1)1/4−σ/2(n+ 1)−1/4−τ/2

×
min{m,n}∑

p=0

(m− p+ 1)σ−θ−1(n− p+ 1)τ−θ.

Then the result follows by Lemma 5.12, since (σ, τ, θ) ∈ (K1 ∪ K2) ∩ (K′1 ∪ K′2) means that
(α, β, γ, δ), (β, α, δ, γ) ∈ S1 ∪ S2 for α = 1/4 − σ/2, β = −1/4 − τ/2, γ = σ − θ − 1 and
δ = τ − θ. �

5.6 Proof of Theorem 1.3

Assume the conditions of Theorem 1.3. Let jσ,τ be the positive definite symmetric sesquilinear
form in L2

σ,τ , with domain S, defined by jσ,τ (φ, ψ) = 〈Jσ,τφ, ψ〉σ,τ .

Proposition 5.15. For any ε > 0, there is some E = E(ε, σ, τ, θ) > 0 such that, for all φ ∈ S,

|t′(φ)| ≤ εs(v−1)/2jσ,τ (φ) + Es(1+v)/2‖φ‖2σ,τ .

Proof. This follows from Propositions 5.2, 5.4, 5.8, 5.10 and 5.14 using the arguments of the
proof of Proposition 3.17. �

Proof of Theorem 1.3. This is analogous to the proof of Theorem 1.1. Thus some details
and the bibliographic references are omitted.

Let tσ,τ be the positive definite sesquilinear form in L2
σ,τ , with D(tσ,τ ) = S, defined by tσ

on Sev and tτ on Sodd, and vanishing on Sev × Sodd. The adjoint of |x|2(θ−σ)x−1 : Sodd → Sev,
as a densely defined operator of L2

τ,odd to L2
σ,ev, is given by |x|2(θ−τ)x−1, with the appropriate

domain. Then the symmetric sesquilinear form v = jσ,τ + ξtσ,τ + 2η<t′ in L2
σ,τ , with D(v) = S,

is given by the right hand side of (1.3). Using Propositions 3.17 and 5.15, for any ε > 0, there
are some C = C(ε, σ, τ, u) > 0 and E = E(ε, σ, τ, θ) > 0 such that, for all φ ∈ S,

|(ξtσ,τ + 2η<t′)(φ)|

≤ ε
(
ξsu−1 + 2|η|s(1+v)/2

)
jσ,τ (φ) +

(
ξCsu + 2|η|Es(1+v)/2

)
‖φ‖2σ,τ . (5.6)

Then, taking ε so that ε(ξsu−1 + 2|η|s(v+1)/2) < 1, since jσ,τ is closable and positive definite,
it follows that v is sectorial and closable, and D(v̄) = D(jσ,τ ); in particular, v is bounded from
below because it is also symmetric. Therefore v̄ is induced by a self-adjoint operator V in L2

σ,τ

with D(V1/2) = D(v̄). Thus S is a core of v̄ and V1/2. By Proposition 3.18 and since t′(φ) = 0
for all φ ∈ Sev/odd, there is some D = D(σ, τ, u) > 0 such that

v(φσ,k) ≥ (2k + 1 + 2σ)s+ ξDsu(k + 1)−u if k is even,

v(φτ,k) ≥ (2k + 1 + 2τ)s+ ξDsu(k + 1)−u if k is odd.

Therefore V has a discrete spectrum satisfying the first inequality of (1.4); in particular V and
v̄ are positive definite. The second inequality of (1.4) holds because

v̄(φ) ≤
(
1 + ε

(
ξsu−1 + 2|η|s(1+v)/2

))
jσ,τ (φ) + ξCsu + 2|η|Es(1+v)/2‖φ‖2σ,τ

for all φ ∈ D(v̄) by (5.6) and since S is a core of v̄ and jσ,τ . �
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6 Operators induced on R+

Let Sev/odd,+ = {φ|R+ |φ ∈ Sev/odd}. For c, d > −1/2, let L2
c,+ = L2(R+, x

2cdx) and L2
c,d,+ =

L2
c,+ ⊕ L2

d,+, whose scalar products are denoted by 〈 , 〉c and 〈 , 〉c,d, respectively. For
c1, c2, d1, d2 ∈ R, let

P0 = H − 2c1x
−1 d

dx
+ c2x

−2, Q0 = H − 2d1
d

dx
x−1 + d2x

−2.

Morever let ξ > 0 and η, θ ∈ R.

Corollary 6.1. If a2 + (2c1 − 1)a− c2 = 0, 0 < u < 1 and σ := a+ c1 > u− 1/2, then there is
a positive self-adjoint operator P in L2

c1,+ satisfying the following:

(i) xaSev,+ is a core of P1/2 and, for all φ, ψ ∈ xaSev,+,

〈P1/2φ,P1/2ψ〉c1 = 〈P0φ, ψ〉c1 + ξ〈x−uφ, x−uψ〉c1 .

(ii) P has a discrete spectrum. Let λ0 ≤ λ2 ≤ · · · be its eigenvalues, repeated according to
their multiplicity. There is some D = D(σ, u) > 0, and, for each ε > 0, there is some
C = C(ε, σ, u) > 0 so that (1.2) holds for all k ∈ 2N.

Corollary 6.2. If b2 + (2d1 + 1)b− d2 = 0, 0 < u < 1 and τ := b+ d1 > u− 3/2, then there is
a positive self-adjoint operator Q in L2

d1,+
satisfying the following:

(i) xbSodd,+ is a core of Q1/2 and, for all φ, ψ ∈ xbSodd,+,

〈Q1/2φ,Q1/2ψ〉d1 = 〈Q0φ, ψ〉d1 + d3〈x−uφ, x−uψ〉d1 .

(ii) Q has a discrete spectrum. Let λ1 ≤ λ3 ≤ · · · be its eigenvalues, repeated according to
their multiplicity. There is some D = D(τ, u) > 0, and, for each ε > 0, there is some
C = C(ε, τ, u) > 0 so that (1.2) holds for all k ∈ 2N + 1, with τ instead of σ.

Corollary 6.3. Under the conditions of Corollaries 6.1 and 6.2, if moreover the conditions of
Theorem 1.3 are satisfied with some θ > −1/2, then there is a positive self-adjoint operator W
in L2

c1,d1,+
satisfying the following:

(i) xaSev,+ ⊕ xbSodd,+ is a core of W1/2, and, for φ = (φ1, φ2) and ψ = (ψ1, ψ2) in xaSev,+ ⊕
xbSodd,+,

〈W1/2φ,W1/2ψ〉c1,d1 = 〈(P0 ⊕Q0)φ, ψ〉c1,d1 + ξ〈x−uφ, x−uψ〉c1,d1
+ η

(
〈x−a−b−1φ2, ψ1〉θ + 〈φ1, x−a−b−1ψ2〉θ

)
. (6.1)

(ii) W has a discrete spectrum. Its eigenvalues form two groups, λ0 ≤ λ2 ≤ · · · and λ1 ≤ λ3 ≤
· · · , repeated according to their multiplicity, such that there is some D = D(σ, τ, u) > 0,
and, for each ε > 0, there are some C = C(ε, σ, τ, u) > 0 and E = E(ε, σ, τ) > 0 so
that (1.4) holds for all k ∈ N.

These corollaries follow directly from Theorems 1.1 and 1.3 because the given conditions on
a and b characterize the cases where P0 and Q0 correspond to |x|aUσ,ev|x|−a and |x|bUτ,odd|x|−b,
respectively, via the isomorphisms |x|aSev → xaSev,+ and |x|bSodd → xbSodd,+ defined by re-
striction [3, Theorem 1.4 and Section 5]. In fact, Corollaries 6.1 and 6.2 are equivalent because,
if c1 = d1 + 1 and c2 = d2, then Q0 = xP0x

−1 and x : L2
c1,+ → L2

d1,+
is a unitary operator.
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Remarks 1.2(ii) and 3.20 have obvious versions for these corollaries. In particular, P = P ,
Q = Q and W = W , where P = P0 + ξx−2u, Q = Q0 + ξx−2u and

W =

(
P ηx2(θ−σ)+a−b−1

ηx2(θ−τ)+b−a−1 Q

)
=

(
P ηx2(θ−c1)−a−b−1

ηx2(θ−d1)−a−b−1 Q

)
,

with D(P ) =
⋂∞
m=0D(Pm), D(Q) =

⋂∞
m=0D(Qm) and D(W ) =

⋂∞
m=0D(Wm). According to

Remark 1.4(iii), we can write (6.1) as

〈W1/2φ,W1/2ψ〉c1,d1 = 〈(P0 ⊕Q0)φ, ψ〉c1,d1 + ξ〈x−uφ, x−uψ〉c1,d1
+ η
(
〈x−a−b+1φ2, ψ1〉θ′ + 〈φ1, x−a−b+1ψ2〉θ′

)
,

and we have

W =

(
P ηx2(θ

′−c1)−a−b+1

ηx2(θ
′−d1)−a−b+1 Q

)
.

7 Application to the Witten’s perturbation on strata

Let M be a Riemannian n-manifold. Let d, δ and ∆ denote the de Rham derivative and
coderivative, and the Laplacian, with domain the graded space Ω0(M) of compactly supported
differential forms, and let L2Ω(M) be the graded Hilbert space of square integrable differential
forms. Any closed extension d of d in L2Ω(M), defining a complex (d2 = 0), is called an ideal
boundary condition (i.b.c.) of d, which defines a self-adjoint extension ∆ = d∗d+dd∗ of ∆, called
the Laplacian of d. There always exists a minimum/maximum i.b.c., dmin = d and dmax = δ∗,
whose Laplacians are denoted by ∆min /max. We get corresponding cohomologies Hmin /max(M),
and versions of Betti numbers and Euler characteristic, βimin /max and χmin /max. These are quasi-

isometric invariants; in particular, Hmax(M) is the usual L2 cohomology. If M is complete, then
there is a unique i.b.c., but these concepts become interesting in the non-complete case. For
instance, if M is the interior of a compact manifold with non-empty boundary, then dmin /max

is defined by taking relative/absolute boundary conditions. Given s > 0 and f ∈ C∞(M), the
above ideas can be considered as well for the Witten’s perturbations ds = e−sfdesf = d+ sdf∧,
with formal adjoint δs = esfδe−sf = δ − sdfy and Laplacian ∆s. In fact, this theory can be
considered for any elliptic complex.

On the other hand, let us give a rough idea of the concept of stratified space. It is a Hausdorff,
locally compact and second countable space A with a partition into C∞ manifolds (strata)
satisfying certain conditions. An order on the family of strata is defined so that X ≤ Y means
that X ⊂ Y . With this order relation, the maximum length of chains of strata is called the depth
of A. Then we continue describing A by induction on depthA, as well as its the group Aut(A) of
its automorphisms. If depthA = 0, then A is just a C∞ manifold, whose automorphisms are its
diffeomorphisms. Now, assume that depthA > 0, and the descriptions are given for lower depth.
Then it is required that each stratum X has an open neighborhood T (a tube) that is a fiber
bundle whose typical fiber is a cone c(L) = (L×[0,∞))/(L×{0}) and structural group c(Aut(L)),
where L is a compact stratification of lower depth (the link of X), and c(Aut(L)) consists of
the homeomorphisms c(φ) of c(L) induced by the maps φ× id on L× [0,∞) (φ ∈ Aut(L)). The
point ∗ = L× {0} ∈ c(L) is called the vertex. An automorphism of A is a homeomorphism that
restricts to diffeomorphisms between the strata, and whose restrictions to their tubes are fiber
bundle homomorphisms. This completes the description because the depth is locally finite by
the local compactness.

The local trivializations of the tubes can be considered as “stratification charts”, giving
a local description of the form Rm × c(L). Via these charts, a stratum M of A corresponds,



A Perturbation of the Dunkl Harmonic Oscillator on the Line 31

either to Rm×{∗} ≡ Rm, or to Rm×N ×R+ for some stratum N of L. The concept of general
adapted metric on M is defined by induction on the depth. It is any Riemannian metric in the
case of depth zero. For positive depth, a Riemannian metric g on M is called a general adapted
metric if, on each local chart as above, g is quasi-isometric, either to the flat Euclidean metric g0
if M corresponds to Rm, or to g0 + x2ug̃ + (dx)2 if M corresponds to Rm ×N ×R+, where g̃ is
a general adapted metric on N , x is the canonical coordinate of R+, and u > 0 depends on M
and each stratum X < M , whose tube is considered to define the chart. This assignment X 7→ u
is called the type of the metric. We omit the term “general” when we take u = 1 for all strata.

Assuming that A is compact, it is proved in [4] that, for certain class of general adapted
metrics g on a stratum M of A with numbers u ≤ 1, the Laplacian ∆min /max has a discrete
spectrum, its eigenvalues satisfy a weak version of the Weyl’s asymptotic formula, and the
method of Witten is extended to get Morse inequalities involving the numbers βimin /max and

another numbers νimin /max defined by the local data around the “critical points” of a version
of Morse functions on M ; here, the “critical points” live in the metric completion of M . This
is specially important in the case of a stratified pseudo-manifold A with regular stratum M ,
where Hmax(M) is the intersection homology with perversety depending on the type of the
metric [12, 13]. Again, we proceed by induction on the depth to prove these assertions. In the
case of depth zero, these properties hold because we are in the case of closed manifolds. Now,
assume that the depth is positive, and these properties hold for lower depth. Via a globalization
procedure and a version of the Künneth formula, the computations boil down to the case of the
Witten’s perturbation ds for a stratum M = N × (0,∞) of a cone c(L) with an adapted metric
g = x2ug̃ + (dx)2, where we consider the “Morse function” f = ±x2/2.

Let d̃min /max, δ̃min /max and ∆̃min /max denote the operators defined as above for N with g̃.

Take differential forms 0 6= γ ∈ ker ∆̃min /max, of degree r, and 0 6= α, β ∈ D(∆̃min /max), of

degrees r and r−1, with d̃min /maxβ = µα and δ̃min /maxα = µβ for some µ > 0. Since ∆̃min /max

is assumed to have a discrete spectrum, L2Ω(N) has a complete orthonormal system consisting
of forms of these types. Correspondingly, there is a “direct sum splitting” of ds into the following
two types of subcomplexes:

C∞0 (R+) γ
ds,r−−−−→ C∞0 (R+) γ ∧ dx,

C∞0 (R+)β
ds,r−1−−−−→ C∞0 (R+)α+ C∞0 (R+)β ∧ dx ds,r−−−−→ C∞0 (R+)α ∧ dx.

Forgetting the differential form part, they can be considered as two types of simple elliptic
complexes of legths one and two,

C∞0 (R+)
ds,r−−−−→ C∞0 (R+),

C∞0 (R+)
ds,r−1−−−−→ C∞0 (R+)⊕ C∞0 (R+)

ds,r−−−−→ C∞0 (R+).

Let κ = (n−2r−1)u/2. In the complex of length one, ds,r is a densely defined operator of L2
κ,+

to L2
κ,+, we have

ds,r =
d

dx
± sx, δs,r = − d

dx
− κx−1 ± sx,

and the corresponding components of the Laplacian are

∆s,r = H − 2κx−1
d

dx
∓ s(1 + 2κ), ∆s,r+1 = H − 2κ

d

dx
x−1 ∓ s(−1 + 2κ).

Up to the constant terms, these operators are of the form already considered in [3], without the
term with x−2u, and the spectrum of ∆s,min /max,r and ∆s,min /max,r+1 is well known.
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Table 1. Self-adjoint extensions of ∆s,r−1 and ∆s,r+1.

a σ condition b τ condition

0 κ+ u κ > −1
2 0 κ κ > u− 3

2

1− 2(κ+ u) 1− κ− u κ < 3
2 − 2u 1− 2κ −1− κ κ < 1

2 − u

Table 2. Self-adjoint extensions of ∆s,r.

a b σ τ θ condition

0 0 κ κ+ u κ κ > u− 1
2

1− 2κ −1− 2(κ+ u) 1− κ −1− κ− u −κ− u κ < 1
2 − 2u

0 −1− 2(κ+ u) κ −1− κ− u −1
2 − u impossible

1− 2κ 0 1− κ κ+ u 1
2

−1+u
2 < κ < 1−u

2

or κ = −1
2 − u,

1
2

In the complex of length two, ds,r−1 is a densely defined operator of L2
κ+u,+ to L2

κ,+⊕L2
κ+u,+,

ds,r is a densely defined operator of L2
κ,+ ⊕ L2

κ+u,+ to L2
κ,+, we have

d±s,r−1 =

(
µ

d
dρ ± sρ

)
, δ±s,r−1 =

(
µρ−2u − d

dρ − 2(κ+ u)ρ−1 ± sρ
)
,

d±s,r =
(
d
dρ ± sρ −µ

)
, δ±s,r =

(
− d
dρ − 2κρ−1 ± sρ
−µρ−2u

)
,

and the corresponding components of the Laplacian are

∆s,r−1 = H − 2(κ+ u)x−1
d

dx
+ µ2x−2u ∓ s(1 + 2(κ+ u)),

∆s,r+1 = ∆s ≡ H − 2κ
d

dx
x−1 + µ2x−2u ∓ s(−1 + 2κ),

∆s,r ≡
(

A −2µux−1

−2µux−2u−1 B

)
,

where

A = H − 2κx−1
d

dx
+ µ2x−2u ∓ s(1 + 2κ),

B = H − 2(κ+ u)
d

dx
x−1 + µ2x−2u ∓ s(−1 + 2(κ+ u)).

Up to the constant terms, ∆s,r−1 and A are of the form of P , and ∆s,r+1 and B are of the form
of Q, in Section 6. In the case u = 1, these operators were studied in [3]. Thus assume that
u < 1. Then, according to Corollaries 6.1–6.3, we get self-adjoint extensions of ∆s,r−1, ∆s,r+1

and ∆s,r as indicated in Tables 1 and 2, where the conditions are determined by the hypotheses;
indeed most possibilities of the hypothesis are needed. With further analysis [4] and some more
restrictions on u, the maximum and minimum Laplacians can be given by appropriate choices
of these operators, depending on the values of κ. Moreover the eigenvalue estimates of these
corollaries play a key role in this research.

If A is a stratified pseudo-manifold, our restrictions on u allow to get enough metrics to
represent all intersection cohomologies of A with perversity less or equal than the lower middle
perversity, according to [12, 13].
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[21] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23, 4th ed.,
Amer. Math. Soc., Providence, R.I., 1975.

[22] van Diejen J.F., Vinet L. (Editors), Calogero–Moser–Sutherland models, CRM Series in Mathematical
Physics, Springer-Verlag, New York, 2000.

[23] Yang L.M., A note on the quantum rule of the harmonic oscillator, Phys. Rev. 84 (1951), 788–790.

http://arxiv.org/abs/1101.5022
http://arxiv.org/abs/1205.0348
http://dx.doi.org/10.3842/SIGMA.2014.004
http://arxiv.org/abs/1301.4196
http://dx.doi.org/10.1007/BF02567744
http://dx.doi.org/10.1007/BF01161629
http://dx.doi.org/10.2307/2001022
http://dx.doi.org/10.4153/CJM-1991-069-8
http://dx.doi.org/10.1088/0305-4470/35/48/312
http://arxiv.org/abs/math.CA/0207122
http://dx.doi.org/10.1088/1751-8113/46/32/325201
http://arxiv.org/abs/1305.2126
http://dx.doi.org/10.1007/978-3-642-66282-9
http://dx.doi.org/10.1215/S0012-7094-83-05015-9
http://dx.doi.org/10.3842/SIGMA.2009.016
http://arxiv.org/abs/0902.1958
http://dx.doi.org/10.1007/s00209-008-0388-4
http://arxiv.org/abs/0802.0474
http://dx.doi.org/10.1142/S0217751X0000198X
http://arxiv.org/abs/hep-th/9903130
http://arxiv.org/abs/math.CA/9307224
http://dx.doi.org/10.1007/s002200050307
http://arxiv.org/abs/q-alg/9703006
http://dx.doi.org/10.1007/3-540-44945-0_3
http://arxiv.org/abs/math.CA/0210366
http://dx.doi.org/10.1007/978-1-4612-1206-5
http://dx.doi.org/10.1007/978-1-4612-1206-5
http://dx.doi.org/10.1103/PhysRev.84.788

	1 Introduction
	2 Preliminaries
	3 The sesquilinear form t
	4 Scalar products of mixed generalized Hermite functions
	4.1 Case where == and –N
	4.2 Case where == and -,–N

	5 The sesquilinear form t'
	5.1 Case where ==
	5.2 Case where == and –N
	5.3 Case where == and –N
	5.4 Case where ==+1 and –1-N
	5.5 Case where == and -,–N
	5.6 Proof of Theorem 1.3

	6 Operators induced on R+
	7 Application to the Witten's perturbation on strata
	References

