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Abstract. Let J, be the Dunkl harmonic oscillator on R (¢ > —1/2). For 0 < u < 1
and ¢ > 0, it is proved that, if o > u — 1/2, then the operator U = J, + &|z|~2%, with
appropriate domain, is essentially self-adjoint in L?(R, |z|?*?dz), the Schwartz space S is
a core of 31/27 and U has a discrete spectrum, which is estimated in terms of the spectrum
of J,. A generalization J, . of J, is also considered by taking different parameters o and 7
on even and odd functions. Then extensions of the above result are proved for J, ., where
the perturbation has an additional term involving, either the factor z=! on odd functions,
or the factor z on even functions. Versions of these results on R are derived.
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1 Introduction

The Dunkl operators on R™ were introduced by Dunkl [6, 7, 8], and gave rise to what is now
called the Dunkl theory [20]. They play an important role in physics and stochastic processes
(see, e.g., [10, 19, 22]). In particular, the Dunkl harmonic oscillators on R™ were studied in
[9, 14, 15, 18]. We will consider only this operator on R, where it is uniquely determined by
one parameter. In this case, a conjugation of the Dunkl operator was previously introduced by
Yang [23] (see also [16]).

Let us fix some notation that is used in the whole paper. Let S = S(R) be the Schwartz
space on R, with its Fréchet topology. It decomposes as direct sum of subspaces of even and
odd functions, § = Sey @ Soqd- The even/odd component of a function in S is denoted with
the subindex ev/odd. Since Spqq = Sev, Where z is the standard coordinate of R, 27l € Sey
is defined for ¢ € Seqq. Let L2 = L?(R,|x[*?dx) (¢ € R), whose scalar product and norm

are denoted by ( , )s and || |[,. The above decomposition of S extends to an orthogonal
decomposition, L2 = Liev <) Lg odqs because the function |z|2° is even. S is a dense subspace

of L2 if ¢ > —1/2, and S,qq is a dense subspace of Lz,odd if 7 > —3/2. Unless otherwise
stated, we assume o > —1/2 and 7 > —3/2. The domain of a (densely defined) operator P in
a Hilbert space is denoted by D(P). If P is closable, its closure is denoted by P. The domain
of a (densely defined) sesquilinear form p in a Hilbert space is denoted by D(p). The quadratic
form of p is also denoted by p. If p is closable, its closure is denoted by p. For an operator
in L2 preserving the above decomposition, its restrictions to L?f} ev/odd will be indicated with
the subindex ev/odd. The operator of multiplication by a continuous function h in L2 is also
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denoted by h. The harmonic oscillator is the operator H = —% + s22? (s > 0) in L with
D(H)=S.

The Dunkl operator on R is the operator 7 in L2, with D(T) = S, determined by T = %
on Sey and T = % + 2027 ! on S,qq, and the Dunkl harmonic oscillator on R is the operator
J = —T? 4 s?2% in L2 with D(J) = S. Thus J preserves the above decomposition of S, being
Jov = H — 20x*1% and Jogq = H — 20%1’*1. The subindex ¢ is added to J if needed. This J
is essentially self-adjoint, and the spectrum of .J is well known [18]; in particular, J > 0. In fact,
even for 7 > —3/2, the operator J; oqq is defined in Liodd with D(Jy0dd) = Sodd because it is
a conjugation of J;41 ey by a unitary operator (Section 2). Some operators of the form .J + &z 2
(£ € R) are conjugates of J by powers |z|* (a € R), and therefore their study can be reduced to
the case of J [3]. Our first theorem analyzes a different perturbation of J.

Theorem 1.1. Let 0 < u <1 and £ > 0. If o > u — 1/2, then there is a positive self-adjoint
operator U in L2 satisfying the following:

(i) S is a core of UY?, and, for all ¢,7) € S,
U2, U)o = (T, )0 + E(lal 0, 2] 7)o (1.1)

(11) U has a discrete spectrum. Let \g < A1 < --- be its eigenvalues, repeated according to
their multiplicity. There is some D = D(o,u) > 0, and, for each € > 0, there is some
C =C(e,0,u) >0 so that, for all k € N,

(2k + 1+ 20)s + EDs"(k +1)7% < A\ < (2k 4+ 1 + 20) (s 4 Ees™) + ECs™. (1.2)

Remark 1.2. In Theorem 1.1, observe the following:

(i) The second term of the right hand side of (1.1) makes sense because |z|~“S C L2 since
o>u—1/2.

(ii) U = U, where U := J + &|z|~2* with D(U) = (oe_, D(U™) (see [11, Chapter VI, § 2.5]).
The more explicit notation U, will be also used if necessary.

(iii) The restrictions Uey /oqq are self-adjoint in Lz ev/odd and satisfy (1.1) with ¢, € Sey/oda
and (1.2) with k£ even/odd. In fact, by the comments before the statement, U, oqq is
defined and satisfies these properties if 7 > u — 3/2.

To prove Theorem 1.1, we consider the positive definite symmetric sesquilinear form u defined
by the right hand side of (1.1). Perturbation theory [11] is used to show that u is closable and u
induces a self-adjoint operator U, and to relate the spectra of & and J. Most of the work
is devoted to check the conditions to apply this theory so that (1.2) follows; indeed, (1.2) is
stronger than a general eigenvalue estimate given by that theory (Remark 3.21).

The following generalizations of Theorem 1.1 follow with a simple adaptation of the proof.
If £ < 0, we only have to reverse the inequalities of (1.2). In (1.1), we may use a finite sum
Yo &Gl T e, x| )y, where 0 < u; < 1, 0 > u; —1/2 and & > 0; then (1.2) would be
modified by using max; u; and min; §; in the left hand side, and max; & in the right hand
side. In turn, this can be extended by taking RP-valued functions (p € Zy), and a finite sum
Yol T Eg, |z T ) in (1.1), where each Z; is a positive definite self-adjoint endomorphism
of RP; then the minimum and maximum eigenvalues of all Z; would be used in (1.2).

As an open problem, we may ask for a version of Theorem 1.1 using Dunkl operators on R",
but we are interested in the following different type of extension. For ¢ > —1/2 and 7 > —3/2,
let L2, = L2, & Lf,odw whose scalar product and norm are denoted by ( , )o . and || o
Matrix expressions of operators refer to this decomposition. Let J,r = Jsev @ Jrodd i L§7T,
with D(J,,) = S. The hypotheses of the generalization of Theorem 1.1 are rather involved to
cover enough cases of certain application that will be indicated. The following sets are used:



A Perturbation of the Dunkl Harmonic Oscillator on the Line

e 7 is the set of points (o, 7) € R? such that:
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1 R | 1 _
T+5<0=0—-5=0>3,-T,

_1 1 g _ 1 7=041 o471
o—5<0<7T+5=0>%— 7, 5=, 7",

1 1 o 1 o—7—1
U_§<9’T+§§0:>9>§_Z’ 2 ,U+T>0.

e &) be the set of points (o, ,0) € R3 such that:

1 1
0<o—3, 0<7T=0>7%—3, %2,
1 T _ 1 17—0+1
o—5<0<7T=0>35—1,—5—,
9> _L1 o1 gk
1 1 2 4 2 7 4
T<0<o—-3,7T+5;= o7 1 i
2 T4 4
0> L r=otl 54751 or
1 1 2 4 2 ) )
o—5<0, 7<0<7T+5 =
0 > z_+_l T—0+1
2T 4T 2

T—I—%:9<a—%:>7'>—%,%*2,

1 - 1 1
g §<9_7'—|—2:>’7'> 3 o,
o—1—1 o+T

THi<f<o-Ll=0>7 41 o=l odr
U—%§9,7+%<0:>9>§+%,7_g+1,U+T>O.

Theorem 1.3. Let 0 <u<1,£>0,n€R, 0 >u—1/2, 7 >u—3/2 and 0 > —1/2, and let
v=o0+ 71— 20. Suppose that the following conditions hold:

(a) Ifo=0#7 and T —0 ¢ —N, thencr—1<7'<a+1,2c7—|—%.

(b) Ifc #0 =7 and 0 — 7 & =N, then (o,7) € J1 U Ja.

(¢) Ifo#0=717+1ando—7—1¢ —N, then7’<37”—%,a—%.

(d) Ifco£0#7T and o — 0,7 — 0 & —N, then (o,7,0) € (£ U KR2) N (R} URY).

Then there is a positive self-adjoint operator V in L?,,T satisfying the following:

(i) S is a core of V2 and, for all ¢, € S,
<V1/2¢7 V1/2¢>0,T = (Jor 0, V)or + &l 0, 2] T )0 r
+ 1 ((27 dodds Yev)o + (Pev, 2 Poaa)o) - (1.3)

(1) Let s = o if k is even, and ¢ = 7 if k is odd. V has a discrete spectrum. Its eigenvalues
form two groups, g < Ao < -+ and A\ < A3 < - -+, repeated according to their multiplicity,
such that there is some D = D(o,7,u) > 0, and, for each € > 0, there are some C =
C(e,o,7,u) >0 and E = E(e,0,7,0) > 0 so that, for all k € N,

(2k+142¢)s +ED(k+1)7" < X\
< (2 + 1+ 26) (s + (€5 + 2|n[sTI/2)) 4 £0s® + 2pn| Es /2, (1.4)
Remark 1.4. Note the following in Theorem 1.3:
(i) In (b), the condition (o, 7) € J1 holds if
—0,%,0-1<7<%+10+1,
which requires —1/6 < o < 5/4. In (d), the condition (o, 7,0) € £ N K] holds if

g_ 3 o=1T T—0 o+t T _ 1
(9>2 e et L s 1 c+71>0.
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(i) Like in Remark 1.2(ii), we have V = V, where

v Uo’,ev 77|x’2(970)x71
n|z 20"z Ur 0dd ’

with D(V) = (2°_g D(V™).
(iii) Taking 8’ =6 —1 > —3/2, since

<:L‘¢7 ¢>9’ = <¢7 $_1w>9

for all ¢ € Sey and Y € Syqq, we can write (1.3) as

<V1/2¢7 V1/2¢>0,T = <JG,T¢7 w>077 +&(|x| 7", ‘$|_u¢>0,7
+n (<¢0dd7 wwev>0/ + <x¢eva ¢0dd>9’) )

and, correspondingly,

V= Uo,?v 77|95|2(6,_U)9U )
nlz|?@ ="z Ur odd

(iv) A slight improvement of (d) could be achieved according to Remark 5.7, but it is omitted
because it is useless in our application (Section 7).

Versions of these results on Ry are also derived (Corollaries 6.1, 6.2 and 6.3). In [4], these
corollaries are used to study a version of the Witten’s perturbation Ay of the Laplacian on
strata with the general adapted metrics of [5, 12, 13]. This gives rise to an analytic proof of
Morse inequalities in strata involving intersection homology of arbitrary perversity, which was
our original motivation. The simplest case of adapted metrics, corresponding to the lower middle
perversity, was treated in [2] using an operator induced by J on R;. The perturbations of J
studied here show up in the local models of A; when general adapted metrics are considered.
Some details of this application are given in Section 7.

2 Preliminaries

The Dunkl annihilation and creation operators are B = sx+T and B’ = sz — T (s > 0). Like J,
the operators B and B’ are considered in L2 with domain S. They are perturbations of the
usual annihilation and creation operators. The operators T, B, B’ and J are continuous on S.
The following properties hold [3, 18]:

e B’ is adjoint of B, and J is essentially self-adjoint.

e The spectrum of .J consists of the eigenvalues' (2k + 14 20)s (k € N), of multiplicity one.

e The corresponding normalized eigenfunctions ¢y are inductively defined by

do = S(2U+1)/4F(O_ + 1/2)71/2673232/2’ (21)
2ks) V2B ¢y if k i

by = (2ks) Ok—1 1 k ?s even, 1 (2.9)
(2(k +20)s)"Y2B'¢y_1 if k is odd,

Tt is assumed that 0 € N.
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e The eigenfunctions ¢; also satisfy

Bgo =0, (2.3)

1/2 .
By = (2ks)*/“p_1 %f k %s even, 1 (2.4)
(2(k 4 20)8)2¢p_1 if k is odd,

* M=o D(J™) = 8.

By (2.1) and (2.2), we get ¢ = pke_st/z, where py, is the sequence of polynomials inductively
given by pg = s7tD/4T(¢ +1/2)~1/2 and

{(2k5)1/2(2smpk1 —Tpr_1) if k is even,
Pr =

k> 1.
(2(k +20)s)~Y2(2sxpp_1 — Tpr—1) if k is odd,

Up to normalization, py is the sequence of generalized Hermite polynomials [21, p. 380, Prob-
lem 25], and ¢ is the sequence of generalized Hermite functions. Each py is of degree k, even/odd
if k is even/odd, and with positive leading coefficient. They satisfy the recursion formula [3,
equation (13)]

~1/2 1/2 —(k — 1/2 if ki
e {k ((28)Y2apg—1 — (b — 1+ 20)2pp_5)  if k is even, (2.5)

(k+20) Y2 ((25) 2apr—1 — (k — 1)Y2py_s) if k is odd.

When k =2m + 1 (m € N), we have [3, equation (14)]
“ , T(i+L+0)s
-1 m—i | 2
T = —1 ;e 2.6
P Z( ) \/z'!r(m+3+a)p2’ (2:6)
=0 2
Let j be the positive definite symmetric sesquilinear form in L2, with D(j) = S, given by

i(p, ) = (Jp,v),. Like in the case of J, the subindex o will be added to the notation T', B, B’
and ¢y and j if necessary. Observe that

B; Sev,
B, = e (2.7)
B, +2(c— 1)z on Sodd,
B! Sev,
By =1 e (2.8)
L+ 2(r —o)x on Sodd-

The operator z: Sey — Sodd 18 a homeomorphism [3], which extends to a unitary operator
T: L?,,ev — Lg—l,odd' We get £Jy eyt = J,;_10da because x[%,x_l] = —2%1“1. Thus, even
for any 7 > —3/2, the operator J; oqq is densely defined in L72',odd’ with D(J7.0dd) = Sodd, and has
the same spectral properties as J-y1ev; in particular, the eigenvalues of m are (4k+1427)s
(kj € 2N+ 1)7 and qb’r,k: = $¢T+1,k‘—1'

To prove the results of the paper, alternative arguments could be given by using the expression
of the generalized Hermite polynomials in terms of the Laguerre ones (see, e.g., [19, p. 525] or

20, p. 23)).

3 The sesquilinear form t

Let 0 < u < 1 such that ¢ > u — 1/2. Then |z|~%S C L2, and therefore a positive definite

g
symmetric sesquilinear form t in L2, with D(t) = S, is defined by

e, ) = (|27, |2|™"Y)o = (& Y)o—u-
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The notation t, may be also used. The goal of this section is to study t and apply it to prove
Theorem 1.1. Precisely, an estimation of the values (¢, ¢¢) is needed.

Lemma 3.1. For all ¢ € Spqq and ¥ € Sey,
H(B'¢, ) — (o, BY) = (o, B'Y) — (Bg,v) = —2ut(z™', ).
Proof. By (2.7) and (2.8), for all ¢ € Spqq and 1) € Sey,

t(BQ.Qb, w) - t(¢7 Baw) = <Bé'—u¢a ¢>o—u - 2’U,<ZL'_1(Z), w>o'—u - <¢> Bo—uw>0—u
= —2Ut($_1¢, ¢)7
t(¢7 Béﬂ/]) - t(Ba<Z>, w) = <¢7 Bgqup)U—u - <Ba—u¢7 1/}>J—u - 2u<x71¢7 w>a—u
= —2ut(x_1q§,¢). [ ]

In the whole of this section, k, ¢, m, n, i, j, p and ¢ will be natural numbers. Let ¢y, =
(¢, ¢¢) and di ¢ = ci¢/co,0. Thus dy ¢ = dgj, and di o = 0 when k + £ is odd. Since

/ €—8$2|x|2fid$ — 8—(2H+1)/2I‘(,{ + 1/2) (3.1)

for k > —1/2, we get
oo =T(0 —u+1/2)0(c +1/2) " sv. (3-2)

Lemma 3.2. If k =2m > 0, then

dko_imz: 71)!F(j+%+0)d2'0
’ \F:U ST (m+ 3 +0) e

Proof. By (2.2), (2.3), (2.6) and Lemma 3.1,

Cko = L (B'¢r—1, ¢0)

vV 2sk
(k1 Bbo) — et 1, B0) = — etz 1, 60)
o k—1, Do ook k—15 90 5ot k—15 90
'S (m -1+ 35 +0)
— €24.0- |
\F Z{) \/ T (m + % + o) 210
Lemma 3.3. If k =2m > 0 and ¢ = 2n > 0, then

Im (n—1 'I‘]—l— +o
dk,f = dk 1,6—1 + — Z \/ an—(l_ n ) )dk,Zj.
! 2

Proof. By (2.2), (2.4), (2.6) and Lemma 3.1,

. \/;@«W,B’w_l) _ V;% ;itwk,xlm_l)

fm u n—1ITG+35+0)
=4/ —Ck—14-1+ Ck 9 |
n oLl nz \/ j.I‘(n+§+ o) .27

(B, po—1) —
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Lemma 3.4. If k=2m+1 and { =2n+ 1, then

n+s3 +ad - \/n‘F(j—i— 5 +0)
k—1,0—1 — = 5 0k-1,25-
\/ +i4o /er +U]O T(n+3+0)
Proof. By (2.2), (2.4), (2.6) and Lemma 3.1
N S
2(k +20)s ho
1 2u
k:—+2 t(Pr—1, Bdy) —

T a7 o (¢k LT ¢Z)
2(k + 20 )
n+ 3 +a - n‘F(j—l— -1—0) -
c - —— ——Ck—12{-
The following definitions are given for k > ¢ with k£ + ¢ even. Let
T(n+ 1+
Iy = \/ G : ?) (3.3)
n'F(m + 3 + O')
if k=2m > /¢ =2n, and

0, — m!T(n+ 3 + o)
BTN D (m + 2+ o)

Ci =

(3.4)
if k=2m+1>/¢=2n+1. Let ¥, be inductively defined as follows
o= (1- =0 (3.5)
7 i=1 :
if £ =2m;
(n—=DIT(G + 5 +a
Ske = Yrp-1,0- 1+UJZ% ani s ) k.2 (3.6)
if k=2m > /¢ =2n > 0; and
"l +1+40)
Zk,l = Zk—l,é—l - UZ; mzk—l,% (3-7)
n— 1
u (n—DITG+3+0)
=(1-—— | Zp1po1 — 195 3.8
( n_’_%_'_(j)kl,él ;2 n++) k—1,2] (3-8)

ifk=2m+1>/¢=2n+1. ThusEoo—l Zzo—u 240—* (1—|—U) and

u
Sy =|1- S
,1 ( % T 0’> 1,0

2We use the convention that a product of an empty set of factors is 1

(3.9)

. Such empty products are possible
in (3.5) (when m = 0), in Lemma 3.10 and its proof, and in the proofs of Lemma 3.11 and Proposition 3.18
Consistently, the sum of an empty set of terms is 0. Such empty sums are possible in Lemma 4.4 and its proof.
and in the proof of Proposition 4.7
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if k£ is odd. From (3.5) and using induction on m, it easily follows that
u m—1
Ypo=— ; .
kO = Z 2250 (3.10)
7=0
for k = 2m > 0. Combining (3.6) with (3.7), and (3.8) with (3.6), we get
(n—=1'C(j + 3 +0)
Spe=3 — Sk 929 — Xk 3.11
kl = Zk—20—2 UJZ(:) jF(n—§+ ) ( k—2,2j k,2y) ( )
if k=2m > /¢ =2n > 0; and
u
Spe=1— ———— | Zp_0s_
k.l ( n+1+0_> k—2,0—2
n— 1
- DTG+ 5 +
+ (1 4 + ° ) u n j U) k—1,2j (312)

= nf§+a)

ifk=2m+1>/=2n+1>1.

Proposition 3.5. dyy = (—1)™ "1 Spe if k=2m >0 =2n, orifk =2m+1>(=2n+1.

Proof. We proceed by induction on k and [. The statement is obvious for £ = £ = 0 because

dop = Ilp,o = Yoo = 1.

Let k = 2m > 0, and assume that the result is true for all dojo with j < m. Then, by

Lemma 3.2, (3.3) and (3.10),

u o m=DITG+ 1 +0) ,
dio=—= —1)m 2 — 1)y %o,

m—1 . .
gt \/(m.—l)!l“(]+;+a)\/ ]!f(%l+a) S

m = j!l“(m—l—%—l—a) L(j+35+0)
u m—1
= (=1)" o > Saj0 = (=1)"koSk0
§=0

Now, take k = 2m > ¢ = 2n > 0 so that the equality of the statement holds for dj_q ,—; and

all dj, o; with j < n. Then, by Lemma 3.3,

m
die = 4 E(—l)m+"ﬂk—1,z—12k—1,e—1
U n— 1)IT(y + Lto) .
— —1)™ Ty, 95k 25
\F Z \/ j'T(n + 5 + J) (=1) 2§ k.25

Here, by (3.3) and (3.4), \/m/nlly_1 ¢—1 = I}, and

n—l'F]—i— +0) mT(n+i4+0) -DI(G+35+0)
f Hhas = f JT(n+1+0)

L(n+3+o0) nfl‘ljmqL + o)
n—l'Fj+ +0)

JT(n+ 3 +0)

=1Ilgy

Thus, by (3.6), dre = (—1)™ L), (X .



10 J.A. Alvarez Lépez and M. Calaza

Finally, take £ = 2m + 1 > ¢ = 2n + 1 such that the equality of the statement holds for all
dy—1,2; with 7 < n. Then, by Lemma 3.4,

n+i+o
die = | —2——(=1)" "1 01 Sp—1,0—
k.t m+%+0( ) k—14—12k—1,0—1

- G+ +0 .
= (,1)71—3 \/m(l)mﬂﬂk—mjzk—mj-

2 T
/m—i—%—i-aj:o JIT(n+ 35 + o)

u
Here, by (3.3) and (3.4),

1
n+3+o
721 My 1,01 = gy,
m+5+0

and
nl(j+ 3 +0)
G Il —1 25
\/m n + + )
ml(n+3+o0)nl(j+5+0) _ nl(+3+0)
\/m nFm—i— +0) !F(n+§+a)_ kﬁj!r(n—i—%—i—(j)'
Thus, by (3.7), de = (—1)" " (X - u

Lemma 3.6. X3, > 0 for all k and {.

Proof. We proceed by induction on ¢. For ¢ € {0, 1}, this is true by (3.5) and (3.9) because
o >u—1/2. If ¢ > 1 and the results holds for ¥/ » with ¢’ < ¢, then ¥, > 0 by (3.6) and (3.12)
since 0 > u — 1/2. [

Lemma 3.7. If k=2m >/{=2nork=2m+1>/{(=2n+1, then

1—-u
Yk < <1 - ) k2,0
m
Proof. We proceed by induction on ¢. This is true for £ € {0,1} by (3.5) and (3.9).

Now, suppose that the result is satisfied by X with ¢/ < £. If k = 2m > ¢ = 2n > 0, then,
by (3.6) and Lemma 3.6,

Ek@ < <
1—

< <1 - u) k-2,
m

Ifk=2m+1>{¢=2n+1>1, then, by (3.12) and Lemma 3.6, and since o > u — 1/2,

Uu 1—wu
Yer=(1— ———— 1— —— )| 34—
kit ( n—i—l—l—a)( m—l) k=3,6-2

nl
— DHIT( 1-—
. u+n " (n (G+3+0) (1_ U)Eklzj

n+i+o prd I(n—3+o0) m '

]__
< (1 - “) Se_a.s- m
m

n—l‘Fj+ +o0) 1—u
)Zk 3,0~ 1+UZ Cnt1+o0) <1— - )Ek—Z,Qj
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Corollary 3.8. If k =2m > ¢ =2n > 0, then
u(l —u
Yp—1,0-1 < gy < (1 - (m)> Yg—2,0-2.

Proof. The first inequality is a direct consequence of (3.6), and Lemmas 3.6 and 3.7. On the
other hand, by (3.11), and Lemmas 3.6 and 3.7,

1 . 1
u(l —u) x= (n =T + 5 +0)
Yo < Xg—24-2 — : Yk—2,2j
’ 2tz jgo iT(n—13+0) 227
u(l —u) u(l—u) = (n— DTG+ 3 +0)
=(1——— | Xp_0p—9— Yk_29;
< — > k—2,0—2 E:o JT(n—1+0) k—2,2j
1—
< <1 - u(u)> Yp—2.0-2 u
m

Corollary 3.9. If k=2m+1>/{=2n+1, then

u u
1l ———— | Y 9p o< < |1 ————— | Xp_10-1-
( n—l—%—l—a) k—2,0—2 k.t ( n_{_%_’_o_) k—1,0—1

Proof. This follows from (3.8), (3.12) and Lemma 3.6 because o > u — 1/2. [

Lemma 3.10. For 0 <t < 1, there is some Cy = Cy(t) > 1 such that, for all p,

p
_ _ t _
Co'p+1) " <] (1—@,) < Colp+1)~"
=1

Proof. For each ¢t > 0, by the Weierstrass definition of the gamma function,

=1

j
where y = lim () } —Inj) (the Euler-Mascheroni constant), there is some Ko > 1 such that,

Jj—00 i=1

forall pe Z,

p p p
. t )
Ko e <] (1 ¥ ) < KoJJe i (3.13)
=1 i=1 i=1

Now, assume that 0 < ¢ < 1, and observe that

(-1

i=1 i=1

By the second inequality of (3.13), for p > 1,

p ¢ —1 p t_l p / Pl
: < 14 - <Kolle"=Kyexp|—-t) =
(%) <II() =l =men (3

Pd
< Kgexp (—t (1 —|—/ a:)) = Koe 'p' < Koe 2 (p+1)7"
1

x
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On the other hand, by the first inequality of (3.13), for p > 2,

ﬁ<1+iit>_12(1—t)lﬁ<l+j>_l (1-1)K, 1H€—t/z

= =1

= (1-t)Ky exp< fz ) (1 -t Ky eXp( t<1+/1p_1d5>)
|

(- DK - 1) > (1 DKy (o 1)

Lemma 3.11. There is some C' = C'(u) > 0 such that
S < C(m+1)70 " (m — n 4 1)~
fork=2m>0=2nork=2m-+1>(=2n+1.

Proof. Suppose first that k£ = 2m > ¢ = 2n. By Lemma 3.7 and (3.10), we get

e I () T ()
; .

=1

1_ —1m-n 1w\ !
U . u)> (1+ u>
i ey 1

(202 f o 22) T 1 252)

Then the result follows in this case from Lemma 3.10.
When k =2m+1 > ¢ = 2n+ 1, the result follows from the above case and Corollary 3.9. W

IA
e
+
7 N
—
+

Lemma 3.12. For each t > 0, there is some C; = C1(t) > 1 such that, for all p,

I‘(p+ 1)

- F(p+t) 1p+1)

Ot p+ 1)

Proof. We can assume that p > 1. Write ¢t = ¢+ r, where ¢ = |[t]. If ¢ =0, then 0 < r < 1
and the result follows from the Gautschi’s inequality, stating that

=r < w < (z+ 1) (3.14)

for 0 <7 < 1 and z > 0, because z'=" > 2"~} (z + 1)1 7" for z > 1.
If ¢ > 1 and r = 0, then

Fp+1) p! B B
Llp+t) (p+qg-—1)! = (p+ )01 =(+1)!

I'(p+ ) p! 1 » y
I(p+t) (p+q— 1)! = (p+q—1)2-1 =z (qp)a~ 1 > ¢! (p+1)1

< (p+1)79 < 2(p+ 1)1t
Flp+t) — (p+ D p+r)(p+r) — p+r — 147

)
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Tp+1) L(p+1) N
Fp+t) — (p+t-1)T(p+r) ~ (p+t-1)
1-r
> 21_(33(;3 T 2 min{1,2/¢}2" " (p + 1)1 m

Corollary 3.13. There is some C" = C"(c) > 0 such that

/l(n+1
I, < m+1

1\ /214
C"(”:J Fh=2m+1>0=2n+1.
m

o/2—-1/4
) if k=2m >{=2n,

Proof. This follows from (3.3), (3.4) and Lemma 3.12. [

For the sake of simplicity, let us use the following notation. For real valued functions f and g
of (m,n), for (m,n) in some subset of N x N, write f < ¢ if there is some C' > 0 such that
fim,n) < Cg(m,n) for all (m,n). The same notation is used for functions depending also on
other variables, s,0,u, ..., taking C' independent of m, n and s, but possibly depending on the
rest of variables.

Lemma 3.14. For o, 3,7y € R, if a+ B, a+v,a+ 5+ v <0, then there is some w > 0 such
that, for all naturals m > n,

(m+1)n+1m-—n+1)<x(m+1)"“(n+1)"%.

Proof. We consider the following cases:
1. fa <0, 8<0and~ <0, then

(m+1D)%n+1)P(m—n+1)7 < (m+1)%n+ 1)~
2. If 6> 0 and v < 0, then
(m—+1)%n+1)P(m —n+1)Y < (m+1)°H8 < (m + 1)@/ 2(n 4 1)(@+H)/2,
3. Ifa>0,y<0and m+1<2(n+1), then 8 <0 and
(m+1)%(n+1)%(m —n+1)Y <278 (m +1)*H8 <278 (m 4 1)@+ (5 4 1)(eH)/2,
4. Ifa>0,y<0and m+1 > 2(n+1), then § < 0and m—n+1 > (m+1)/2, and therefore
(m+1)%n+1)P(m—n+1)Y <277 (m+1)°M(n+ 1)
5. If 5 < 0 and v > 0, then
(m+1)%n+1)P(m—n+1) < (m+1)2(n+1)°,
6. If 3 > 0 and v > 0, then
(m+1)n+1D%m—n+1) < (m+1)F < (m + 1)(a+6+7)/2(n + 1)(a+6+w)/2‘ [
Proposition 3.15. There is some w = w(o,u) > 0 such that
ldkel < (m+1)"“(n+1)"%

fork=2m and £ =2n, or fork=2m+1 and { = 2n + 1.
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Proof. We can assume k > ¢ because dj ¢ = dy .
If k = 2m+1 > ¢ = 2n+1, then, according to Proposition 3.5, Lemma 3.11 and Corollary 3.13,

\dio| < (m 4 1)70/2HAul=w) (g 4 )0/ 2014 (g iy 4 1)~ (-7,
Thus the result follows by Lemma 3.14 since
—0/2—-1/4—u(l —u) — (1 —u)>=—0/2+u—5/4<u/2—-1<0.
If Kk =2m > £ = 2n, then, according to Proposition 3.5, Lemma 3.11 and Corollary 3.13,
\di.o| < (m + 1)70'/2+1/47u(17u) (n+ 1)0’/271/4(m 4 1)7(17u)2.
Thus the result follows by Lemma 3.14 since
—0/24+1/4—u(l —u) — (1 —u)*=—0/2+u—3/4 <u/2—-1/2<0. u

Corollary 3.16. There is some w = w(o,u) > 0 such that, for k = 2m and { = 2n, or for
k=2m+1and £ =2n+1,

lckel < s (m+1)"“(n+1)"
Proof. This follows from Proposition 3.15 and (3.2). [
Proposition 3.17. For any € > 0, there is some C = C(e,0,u) > 0 such that, for all ¢ € S,
t(0) < es" (o) + Cs"||gll5.

Proof. For each k, let v = 2k + 1 + 0. By Proposition 3.15, there are Ky = Ky(o,u) > 0 and
w = w(o,u) > 0 such that

|cke| < Kos"v “v, (3.15)

for all £ and ¢. Since S = S(o,u) := ), I/k_l_zw < 00, given € > 0, there is some ko = ko (€, 0, u)
so that

2

1-20 €

So = So(e, 0,u) Zyk K25
k>ko 0

Let S1 = Si1(€,0,u) = Y pcpy Vi - For ¢ =3, tidr € S, by (3.15) and the Schwartz inequality,
we have

$) = Zt,ﬁck,g < Z [tk [tel e

w12 \tk! |tel (ves)'/? w1 N el ()2 = el (ves) /2
< Kos / Z Z 1/2+w + Kos Z 1/2+w Z 1/2+w
k<ko k>ko Vi
< Koslsl/Qs“’l/Q\\¢\|aj(¢)1/2+KoSé/2Sl/23“*11(¢)

estL 2K2528gv
: < 0~1
) s ———

< KoS15'25 12 ¢l|03(0)2 + 1915 + es"~'i(¢). .
Proposition 3.18. There is some D = D(o,u) > 0 such that, for all k,

t(¢r) > Ds“(k+1)"¢
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Proof. By Proposition 3.5 and (3.2), and since I}, = 1, it is enough to prove that there is
some Doy = Dy(o,u) > 0 so that 3, < Do(k+1)~". Moreover we can assume that k = 2m +1
by Corollary 3.8.

We have py := |1/240] > 0 because 1/24+0 > u. According to Corollary 3.9 and Lemma 3.10,
there is some Cyp = Cy(u) > 1 such that

i u u Mo u
See > [T [1-——— ) >(1- 1-=
kak—ng( z‘+§+a> _< §+a> 11 < p>

p=1+4po
( " ) hil u) 1] w) !
1
bl +o =1 p =1 p
u —2 —u “ U _o u
2 1_1+ Co (m+po+1) " (po+1)" = |1-5 Cy“(k+1)"" [ |
2 4 3 g

Remark 3.19. If 0 < u < 1/2, then limt(¢2;,4+1) = 0. To check it, we use that there is some
m

K > 0 so that |z|>?¢?(2) < Kk~'/6 for all z € R and all odd k € N [1, Theorem 1.1(ii)]. For

any € > 0, take some x> 0 and ko € N such that 25" < /2 and Kkglmx(l]_z“ < €(l—2u)/4.
Then, for all odd natural k > ko,

Qo )
t(dr) = 2 / o2 (x)2* " dx + 2 / 62 ()22 dx
0 0

1-2u

x0 o)
< 2K}kV/0 / w2 dr 4 205" / O (e)a? de < 2Kk MO0 g < e,
0 xo — ZU

because 1 — 2u > 0 and ||¢k||c = 1. In the case where o > 0, this argument is also valid when &
is even. We do not know if infy, t(¢) > 0 when 1/2 <u < 1.

Proof of Theorem 1.1. The positive definite sesquilinear form j of Section 2 is closable by
[11, Chapter VI, Theorems 2.1 and 2.7]. Then, taking € > 0 so that £es*~! < 1, it follows from
[11, Chapter VI, Theorem 1.33] and Proposition 3.17 that the positive definite sesquilinear form
u = j + £t is also closable, and D(i1) = D(j). By [11, Chapter VI, Theorems 2.1, 2.6 and 2.7],
there is a unique positive definite self-adjoint operator U such that D(U) is a core of D(u),
which consists of the elements ¢ € D(i1) so that, for some x € L2, we have ii(¢, ) = {x,¥)s
for all ¢ in some core of u (in this case, U(¢) = x). By [L1, Chapter VI, Theorem 2.23|, we
have D(U'/?) = D(1i), S is a core of U'/? (since it is a core of u), and (1.1) is satisfied. By
Proposition 3.18,

u(de) > (2k + 1+ 20)s + EDs"(k+ 1)

for all k. Therefore U has a discrete spectrum satisfying the first inequality of (1.2) by the form
version of the min-max principle [17, Theorem XIII.2]. The second inequality of (1.2) holds
because

u(¢) < (1+€es")i(e) +ECs"|¢]l3

for all ¢ € D(u) by Proposition 3.17 and [11, Chapter VI, Theorem 1.18], since S is a core of 1
and j. |

Remark 3.20. In the above proof, note that it = j + &t and D(j) = D(j1/2). Thus (1.1) can be
extended to ¢, € D(U'Y?) using <j1/2¢,j1/2z/1>0 instead of (J¢,1),.
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Remark 3.21. Extend the definition of the above forms and operators to the case of £ € C.
Then [t(¢)] < es®* I Rj(¢) + Cs¥||¢||2 for all ¢ € D(j), like in the proof of Theorem 1.1. Thus
the family 4 = u(§) becomes holomorphic of type (a) by Remark 3.20 and [11, Chapter VII,
Theorem 4.8], and therefore U = U(E) is a self-adjoint holomorphic family of type (B). So
the functions A\, = A\;(€) (£ € R) are continuous and piecewise holomorphic [11, Chapter VII,
Remark 4.22, Theorem 3.9, and § 3.4], with A\;(0) = (2k + 1 + 20)s. Moreover [11, Chapter VI,
Theorem 4.21] gives an exponential estimate of | A; (&) — Ax(0)| in terms of . But (1.2) is a better
estimate.

4 Scalar products of mixed generalized Hermite functions

Let o,7,0 > —1/2, and write v = 0 + 7 — 20. This section is devoted to describe the scalar
products

Cht = Cor 0kt = Dok, Pre)o,

which will be needed to prove Theorem 1.3. Note that ¢, = 0 if k + £ is odd, and

607T79ak»e = 6770707€7k (4'1)

for all £ and ¢. Of course, ¢ ¢ = O if o =7 = 0.
According to Section 2, if £ and ¢ are odd, then ¢, ;g ¢ is also defined when o, 7,6 > —3/2,
and we have

Cor 0kt = (TOot1k—1,TPr41,0-1)0 = Cotlr41,041k—1,01- (4.2)

4.1 Case wherec =0 # Ttand 7 — o & —N
In this case, we have v =7 — 0. By (2.1) and (3.1),

¢o0 = s°?D(o 4+ 1/2)20(r +1/2)"1/2, (4.3)
Lemma 4.1. If k > 0 is even, then ¢, = 0.

Proof. By (2.2), (2.3) and (2.7),

1 1
¢ :73/0—37' o= =
w0 m< o9ak-1,r0) V2ks

Lemma 4.2. If{ =2n > 0, then

n_l (n— 1)'I‘(] —|— + 7')

<¢O’,]€—1)BT¢T,O>U =0. [ ]

Cop = C0,2;-

B

]:0
Proof. By (2.2), (2.3), (2.6) and (2.8),
1 1

C = U)B/T—O'Zi O'vB/_2 -1 T4—1/0

Co,e \/%<¢ ,0 Td) 84 1> \/ﬁ«b ,0 ( o v )¢ 44 1>
1 -1 (n=DTG+5+7),
— %S( Bos¢o0, Oro—1) g \/ A+ 157 €0,2;

-1 ;
. i (n—l)!l“(j—i—i—l-T)A '
(—1) . i C0,2;- u
JITn+35+7)



A Perturbation of the Dunkl Harmonic Oscillator on the Line 17

Lemma 4.3. If k =2m >0 and { =2n > 0, then ¢y o = \/n/MmCp_1,0-1.
Proof. By (2.2), (2.4) and (2.7),

1 1 n
Cpe = —— (B! _ = — -1, B =4/ —Ck—1,0-1- |
Ckl \/%< gd)a,k 17¢’T,K>O’ \/%<¢O',k 1 T¢T,€>O‘ mckj 17Z 1

Lemma 4.4. If k=2m+ 1 and £ = 2n + 1, then
1
n+s5+o

Crp =
\/(m+%+0)(n+%+7)

n—1
_LZ(_DH J\/TW_'_T) Cro1.2j.

\/m+3+0 =0 ID(n+3+7)

Proof. By (2.2), (2.4), (2.6) and (2.7),

Ch—1,0—1

1 1

B o k-1, Prt)e = W@Sok 1 (B — 2ux~ )qu’g)o-
In+3 —|—7'C - \/n'F(]+ 5+7).
k—1,6—1 — 7% w5 Ck—1,2j
n+i+o .
= Ck—1,0—1
Jm+i+o)n+i+m)
n—1 ' T - 1 +
— UZ(_l)n_]\/Wéklﬁj' H
Corollary 4.5. If k >, then ¢ = 0.
Proof. This follows by induction on ¢ using Lemmas 4.1, 4.3 and 4.4. |

Remark 4.6. By Corollary 4.5, in Lemma 4.4, it is enough to consider the sum with j running
from m to n — 1.

Proposition 4.7. If k =2m < { = 2n, then

T i —
s = (_1)mnge/2 n!T(m + 2 +o0)T(n m—i—v)’
m!T'(n+ 5 +7) (n—m)!T'(v)

and, if k=2m+1</0=2n-+1, then

T 3 -
bop = (—1ymHngel? n!T(m + §+U) T'(n m+v)‘
’ mT'(n+ 35 +7) (n—m)!T'(v)

Proof. This is proved by induction on k. In turn, the case k = 0,

o) — (gt I'(i+0) T(n+v)
0e=(=1) 2\/n!F(n2+ % +7) I'(v) ~’ (4:4)
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is proved by induction on ¢. If k = ¢ =0, (4.4) is (4.3). Given ¢ = 2n > 0, assume that the
result holds for £ = 0 and all ¢/ = 2n’ < £. Then, by Lemma 4.2,

) Un* VH_UTU+ Y47, | TG+o) TG+
Cop = —— (—].)JS ; ; 1
\/ﬁ]:O .F(n—|—2—|—7') JCG+5+7) '(v)

= (—1)"s"/? (n-1DTG+0) v I +v)
nl(n+3+7) T(v)

obtaining (4.4) because

Fltpt
@+ + E: Z+ (4.5)

for all p € Nand t € R\ (—N), as can be easily checked by induction on p.
Given k > 0, assume that the result holds for all ¥’ < k. If k is even, the statement follows
directly from Lemma 4.3. If k is odd, by Lemma 4.4, Remark 4.6 and (4.5),

ékgz n—l—%—{—o' (_1)m+nsv/2\/nlr(m+%+0) F(n—m+v)
: \/(m+ T m!\T'(n+ 54+ 7) (n —m)!T'(v)

n—1 . 1
v (_l)n_j\/n!F(j +35+7)

R
m+ 4o om JIT(n+35+7)

g JT(m+i4+0)0(G —m+v)
(=1 ¢mwo+;+fwy— ()

— (71)m+n5v/2 n‘T(m +3 3+ U) 1
(m+ 3+ a)m'F(n +3+7)T(v)

y (F(n—m+v)(n+2+a) vnilf(z+v)>

(n—m)! B — i

_ (_qymng/2 nll(m+ 3 +0) D(n —m +v)
=™ \/m!r(n"f'g-i-T) (n—m)'T(v) u

Remark 4.8. By (4.2), if k and ¢ are odd, then Corollary 4.5 and Proposition 4.7 also hold
when o, 7 > —3/2.

4.2 Case where o #0 #7and o — 0,7 — 0 & —N
By (2.1) and (3.1),

¢o0 = s°?T (o 4+ 1/2)7 V20 (r + 1/2)7 Y20 (0 4 1/2)V/2. (4.6)
Lemma 4.9. If Kk =2m > 0, then

mz: —1)!F(i+%+a)6
iC(m+ 1 +0) 20

1=0

ClcO—
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Proof. By (2.2) and (2.8),
. 1
Ck}70: \/ﬁ< ¢Uk 1’¢T0>

Here, by (2.3), (2.6) and (2.7),
(Bpdo k-1, 9r0)0 = (bok—1, Bodr0)g = (dok—1, Brdr0)0
m—1 . 1
. — DTG+ 5 +0)s
—1 o N — _ —1)ym—i (m 2
Lemma 4.10. If k =2m >0 and { = 2n > 0, then

n o—0"= m!l'(i+5+0)
Gro = 1| b1 o1 + S (-
it - Ch=1,0-1 2 (-1) \/z!l“(m+2+ ”) C2i0-

=0

0_
2F< Byoo -1, r0)0 + \/ﬂ%@_l%,k—h@,oﬁ-

621',0. |

Proof. Like in the proof of Lemma 4.9,

1 0—o
b1t = ——(Bhoo k- gk
Cht 2m< 9Dok—15 Prt) m@ o k-1, Pre)6;

Now, by (2.4), (2.6) and (2.7),
(Bybok—1, 07006 = (Do k-1, B1j2br0)o = (bop—1, Brore)g = 2v/nsér_1,0-1,

m—1 . 1
. mei M=+ 35 +0)s,
T Do ko1, Pro)g = — -1 Coi . |
(7" Pok—1,Pr )0 ;( ) \/ iAT(m + 1+ o) 2i,0
Lemma 4.11. If k=2m+1 and { =2n + 1, then
m+5+6

Ch—1,4-1

Cip =
\ﬂm+%+@m+%+ﬂ

o—0 mfl(_l)m \/m‘F(z +5+0),

\m+;+T;; ilf(m + 3 +0)

Proof. By (2.2),

C2i.0—1-

. 1
Chiy = (Go s Brre-1)0,
2y/(n+1+7)s

where, by (2.8),
(bo ks Brtvri—1)0 = (bok, Bydri—1)o = (Bobo ks bro—1)0
= (Bybo ke, Ori—1)0 +2(0 — 0) (@ ok, Pro—1)0-
Hence, by (2.4) and (2.6),

m+3+o - mT(i+1+40),
Ckﬁ Ck‘ 1,0— 1_7 m —02251
n+i+r /n+ +7_10 iD(m+ 3 +0)

m + § +9 R
= Ck—1,0—1
¢m+%+7mn+%+ﬂ

o—10 m—1(_1)m \/m‘F(z+ s+o).

LTI .
\/n+ s+ T im0 iC(m + 3 + 0)
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Proposition 4.12. If k = 2m and { = 2n, then

1
Gpg = (—1)mHngv/2 m!n!l(5 + 0)
| T(m+3+0)T(n+3+7)

mindmon 'm—-p+o—-0I'n—p+71—0)
2 = p)ln -l — 0T =)’

p=0
and, if k=2m+1 and £ =2n+ 1, then

Gop = (—1)mHngy/2 miniT (5 +0)
’ Fm+3+o)l(n+3+71)

min{m,n}
1+p)T(m—-—p+o—-0T(n—p+71—0)
<D (m—p)ln—p)T(o—OT(r—0)

p=0
Proof. The result is proved by induction on k and ¢. First, consider the case £ = 0. When
k = ¢ =0, the result is given by (4.6). Now, take any k = 2m > 0, and assume that the result

holds for all ¢ ¢ with &' = 2m/ < k. Then, by Lemma 4.9 and (4.5),

S: ¢ m—DI0G+ 1 +0)

£ i0(m + 1 +0)
g2 L'(;+0) 'i+o—-16)
x(=1) ¢mw+;+®ﬂ§+ﬂ G

! U—Hmfllj(i—}—a—ﬂ)
_ _1m'u/2 m
(=1)"s \/F(m+;+a)r(§+7) m ; iT(o — )

Cko =

_ (71)msv/2 F(% +9) F(m+0’—9)
mT(m+Li+0)’(E+7) T(o—19)

From the case ¢ = 0, the result also follows for the case k = 0 by (4.1).
Now, take £ = 2m > 0 and £ = 2n > 0, and assume that the result holds for all ¢/ » with

k' < k and ¢/ < /¢. By Lemma 4.10,

. n _ (m—D(n—1)TE +06)
61y = 4| —(=1)mtn 281}/2
e \/;( by \/P(m +1+0)(n +2% +7)

min{m—1,n—1} (1 +q)1’\(m_ 1l—qg+o0— G)F(n— l—qg+71— 9)

x qgo m—-—1—-g)(n—1-¢)T(c —0)I'(r —0)
ol i [MIT(GE+140) itn /2 inIT(5 + 0)
T ;_) \/ilr(m+§+o)(_1)+s Fi+i+o)l(n+3+7)

it p+a—9)F(n p+71—0)
(i —p)l(n—p)!T(c—0)I(r—0)

X

_ (_1)M+nsv/2i m'n'F( +6)
m I‘(m+§+0)I‘(n+2—|—7)
min{m—1,n—1}
1+¢gI'm—-1—-g+0c—-0)'n—1—q+7—10)
% Z m—1—-g)(n—1-¢)T(c —0)I'(r —0)

q=0




A Perturbation of the Dunkl Harmonic Oscillator on the Line 21

m—1min{i,n}
Fi—p+o—-0n—p+71-10)
IS RS e

=0 p=0

Then the desired expression for ¢ ¢ follows because

min{m—1,n—1}

Z l1+gI(m—-1—q+oc—-0)I'(n—1—q+7—10)
m—1—q¢)l(n—1—-9¢)T(c —0)'(r —0)

q=0

_ mir%’n}pF(m—erJ —0)(n—p+71—0)

B = (m=p)n—p)T(o -0l -0 ’
and, by (4.5),

a— Wimlﬁn}r z—p+0—9)F(n p+T_0)
—p)IN(c — )L (7 — 0)

i=0 p=0

min{m—1,n} m—1— p

_ j+0 OI(n—p+7—-90)
=(oc—10) Z Z (n — p‘F(O’—Q)F(T_e)

min{m,n}

B (m—p)’'(m—p+oc—-—0)'(n—p+7—0)
> (m —p)l(n —p)'T'(c — 6)I'( — 0)

(4.7)
p=0

Finally, take k = 2m + 1 and £ = 2n + 1, and assume that the result holds for all ¢, » with
k' <k and ¢’ < . By Lemma 4.11,

(n+ 1)(—1)m+nsv/? \/ min'T(L + 6)

Chp =
Jn+ L+ o)+ 5 +7) L(m+5+0)0(n+3+7)

min{m,n}

Z I'm—p+o—-0)I'(n—p+71—0)

© L - p)ln—p)(e - 0T — )
_ m-l T+ 1
PR < \/W
n+3+7 iz i#l(m+3 +0)
i 0/2 i (3 + 0) Pl r Gt o — 0T (n—p+ T —0)
x (=1)"""s 1 1 Z
Pi+z+o)l(n+5+7) = (i—pln—p)T(e -0 (r—0)
_ (g2 m!n!T(3 + 6)
L(m+3+o0)l(n+3+7)

Fi—p+o—-0)'(n—p+71—0)
— (=9 Z (ip)!(np)!F(a@)F(TH)) '

Then we get the stated expression for ¢, using (4.7) again. |

Remark 4.13. By (4.2), if k and ¢ are odd, then Proposition 4.12 also holds when o,7 > —3/2.
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5 The sesquilinear form t/

Consider the notation of Section 4. Since £ 'Sy,qq = Sev, a sesquilinear form ¢ in L?,?T, with
D(t) =S, is defined by

t,(Qba Q;Z)) = <¢ewl‘_1¢odd>0 = <x¢eVa¢odd>0—1'

Note that t' is neither symmetric nor bounded from the left. The goal of this section is to
study t, and use it to prove Theorem 1.3.
Let CW = (o, Ore). Clearly, C;M =01if k is odd or £ is even.

5.1 Case whereo =0 =171

In this case, we have v = 0.

Proposition 5.1. For k =2m and { =2n+1, if k > £ (m > n), then ¢ , =0, and, if k < {
(m <n), then

1
o= (_1)n7m81/2 n'F(m + 2 + 0—)'
kit m!T(n+ 2 + o)

Proof. This follows from (2.6) since ¢, ¢ = 0y ¢ in this case. |
Proposition 5.2. There is some w = w(o,7) > 0 so that, for k =2m and { = 2n + 1,

kel < 8P (m+ 1) (n+1)7%.
Proof. We can assume that m < n according to Proposition 5.1. Moreover

|chol < 812 (m 4 1)7/27 A (n 4 1)70/27 1A

for all m < n by Proposition 5.1 and Lemma 3.12. Therefore the result follows using Lemma 3.14,
reversing the roles of m and n, because —0/2 —1/4 < —u/2 < 0. [ |

5.2 Case wherec =0 #7and 7 — o0 & —N
Recall that v = 7 — o in this case. Moreover c?c,é = 01if £ > ¢ by (2.6) and Corollary 4.5.

Proposition 5.3. For k=2m </{=2n+1 (m <n),

¢ o = (1)t g(1Hv)/2 nll(m+ 3 +0)T(n—m+1+0)
ot m!T(n + % +7) (n=m)IT(1+v)

Proof. By (2.6), Corollary 4.5, Proposition 4.7 and (4.5),

" v TG +E+7) s DM+ L+ o) T —m v
=57 30 (-1 [T T gy [P 3 RO T 0 )
= JT(n+35+7) m!l'(j+5+7) (j —m)!IT'(v)

1
— (_1)m+ns(l+v)/2 n!F(m t3to
mT(n+3+7

)
)
_ (_1)m+ns(1+v)/2 nlr(m + % + U)

m!T'(n + 5 +7)

(n—m+1+4v)
(n—m)IT(1+wv)’
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Proposition 5.4. Ifc—1<7<o0c+1,20+ %, then there is some w = w(o,7) > 0 so that, for
k=2m<{l=2n+1,

el < s (m 4+ 1) (n+ 1) 7
Proof. By Proposition 5.3 and Lemma 3.12,
ool < ST 2 (m 4+ 1)727 VA (0 4 1) T2 (n -+ 1),

Then the result follows by Lemma 3.14, interchanging the roles of m and n, using the condition
of Theorem 1.3(a). [ |

5.3 Case where o #0 =7 and 0 — 0 & —N
Recall that v = ¢ — 7 in this case.

Proposition 5.5. For k=2m and { =2n+1,

mn_(1+v m!n! TG4 L4+ 7)D(m—j +v)
C;c,é = (—1)™* s+ )/2\/ Z 2 '

IWn+%+ﬂFm+%+T%ﬁ) gl (m — §)'T(v)

Proof. By (2.6), Corollary 4.5, Proposition 4.7 and (4.1),

o= gl i(_l)n—j nll(j + 5 +7) (—1)itm v/ m!T(j+ 3 +7)T(m — j +v)
e gt JT(n+3+7) JT(m+ % +0) (m—j)'T(v)

_ (— 1y glio),2 m!n! I+ % + T)I‘(m —Jj+v)
I(m+3+0)(n+3+7) g1 m — )T (v)

Define the following subsets of R*:

e G is the set of points (a, 8,7,0) such that:

v>0,>-1=a+v,a+8+v+5+1<0,
v>0,d<-1l=a+v,a+8+v<0,
v<0,0>-1=a+v,a+pB+0+1,a+8+v+0+1<0,
7<0, < -1=a+p,a+v,a+8+v<0.

e &3 be the set of points (a, 8,7, d) such that:

¥>0,6>—-3=a+v,a+B+7+5+1<0,
>0, < —3=a+v,a+B+7+3 <0,
_§<7<Q5>_§:j{a+%ajﬂ+6+La+ﬁ+v+5+1<Qor
aty+za+f+y+0+1<0,
at+v,a+pB+ 5,0+ B8+y+35<0, or
at+y+g,a+B+y+3<0,
y=-3,6>-1=0aa+B+5+1<0,
y=-3,0<-1=a,a+B<0,
Y<—3,6>-1t=a+y+ia+B+5+La+B+7+5+1<0,
y<—3,0<-t=a+v+3a+B,a+B8+7+1<0.

—§<7<0,5§—§:{
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In particular, (o, 8,7,0) € &7 if

a+B,at+v,at+B+y,a+B+i+L,a+B+y+5+1<0.

Lemma 5.6. If (o, 3,7,0) € &1 U &g, then there is some w > 0 such that, for all naturals

m>n,

n

m+1)*mn+1)°%) (m—p+1)7(p+1)° < (m+1)“(n+1)"*

p=0
Proof. For all € > 0,
n+2
n n+1 / 2 dx if 6§ >0
>_(p+1) Zq< g
p=0 1+/ 2dr if5<0
\ 1
(n+1)°*1  if§> -1 (n+1)°F1 if § > —1,
<{ql4+Inn+1) ifd=-1<x(n+1)° if§d=—
1 ifo<—1 1 if 6 < —1.
Hence, using that
n
. (m+17Y (p+1)° iy >0,
dm—p+1)(p+1)° < =0,
p=0 —n+172p+1 if v <0,
p=0

we get

(m+1)n+1Y (m—p+1)(p+1)°

p=0
(m 4 1)+ (n 4 1)8+0+1 ify>0and d > —1,
(m 4 1)+ (n 4 1)5+¢ ify>0and § =—1,
- (m + 12T (n + 1)8 ify>0and § < —1,
T (mA4 D)%+ 1) (m —n+1)7 ify<0and § > —1,
(m+ 1)%n+ 1) (m —n+ 1) ify<0andd=-1,
(m+1)%n+1)%(m —n+1)7 if y<0andd < —1,

for all € > 0. Then the result follows when (o, 8,7,0) € &1 by Lemma 3.14.
On the other hand, for all € > 0,

m+2
n m+1 / xVdx ify>0
dm—p+1)T= > g < Imon -
p=0 g=m-n+1 (m—n+1)"+ / 2Vdx ify <0
m—n+1

(m + 1)1+ ify>-1 (m+1)*Tt ify > -1,
<ql+In(m+1) ify=-1=<x4¢(m+1)° if v =—1,
(m—n+1)7 ify< -1 (m—n+1)7 ify< -1

(5.2)
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The following gives a better estimate when v > 0, and an alternative estimate when —1 < v < 0:

n y . >
Sm-prip < gt 20 63)
= m—n+1)(n+1) if -1 <vy<0.
Now, using the Cauchy—Schwartz inequality
1 1
n n n 2
Y m—p+1)(p+1)° < D> (m—p+1)> | (D p+1*| ,
p=0 p=0 p=0
and applying (5.1) with 26, and (5.2) and (5.3) with 2v, we obtain
n
(m+1)%n+1)" Z(m —p+1)7(p+1)°
p=0
(m + 1)2H7(n 4 1)8+0+ ify>0,6>-3,
(m + 1)+ (n + 1)+ 5t ify >0, 6=—1,
(m+ 1)+ (n +1)7+3 ify>0,0<-1,
(m+ 1)%(n + 1) (m —n +1)7 ¢ 0. 6 1
(m_|_1)04+’7 %(n_i_l)ﬂ‘i'é""% 1 —7<’Y< >_§7
(m+ D) (n+ D)7 m —n 1| 0. 5 1
(m + 1)*™3 (n + 1)8+¢ -3 << o
1
<4 (m+ D+ 1P m—n 1) 1
(m 4+ 1)+ 2(n+1)6 1f——<7<0 d < —3,
(m+1)0‘+6(n+1)6+5+% if v = —% 5> —%,
(m + 1)2F¢(n + 1)+ if v = 5 =
(m+1)*(n+1) if v = 5< -3
(m+ 1)+ 1) 2 (m—n+ 12 ify < —%, 5> -1
(m+1)2(n+ 1) (m—n+ 172 ify <-4 5=},
L(m+1)*(n+1)(m —n+ 1)tz ify< -1 §<-1
for all € > 0. So the result also holds when («, 3,7,0) € S5 by Lemma 3.14. [ |
Remark 5.7. Lemma 5.6 could be slightly improved by using also that
n
. (n+1)52(m—p+1)7 if 0 >0,
Stm-p+1y(n+1)’<{ P
p=0 > (m—p+1) if § <0,
p=0
n m+1
and estimating »  (m—p+ 1)Y= > ¢ like in the proof. But this would have no conse-
p=0 g=m—n+1

quences in our application (Section 7).

Proposition 5.8. If (0,7) € J1 UJ2, then there is some w = w(o,7,0) > 0 so that, for k = 2m
and { =2n +1,

ool < ST (m + 1) (n 4+ 1)
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Proof. By Proposition 5.5 and Lemma 3.12,

n

|C;§,Z| < S(1+v)/2(m + 1)1/4—0/2(n + 1)—1/4—7—/2 Z(m —j+ 1)7—1/2(j + 1)v—1
§=0
Then the result follows by Lemma 5.6 since (o,7) € J1 U J2 means that («, 3,7,0) € &1 U S,
fora=1/4—0/2,6=-1/4—7/2,y=7—1/2and § =v — 1. |

54 Case whereo #0=7+4+1lando—7—1¢ —N
Note that v = 0 — 7 — 2 in this case. Moreover

et = (Dojor ¥ brt)r1 = (BGa, Drt)r = (Dr0, o i) r (5.4)
for k =2m and ¢ = 2n + 1 (Remark 1.4(iii)).
Proposition 5.9. Let k =2m and £ =2n+1. If k+1<{ (m <n), thencj ,=0. Ifk+1>¢
(m >n), then

ro_ min w22 ML+ +7)T(m—n+v+1)
o= (=1)"""s ' T — )
n!D(m+ 5 + o) (m—n)T'(v+1)

Proof. By (2.5) and (5.4),

, m + +o m.,
Cro = 73 Cromrkil,e+ 5 Cromho1L: (5.5)

So ¢, =0 if k+1 < ¢ by Corollary 4.5. When k+1 =/ ( ), by (5.5) and Proposition 4.7,

/m+ +o S(042)/ n+ +7) S0 H1)/2 n+ +7)
m+ +0) m~l— +0)

When k— 1> ¢ (m > n), by (5.5) and Proposition 4.7,

d, = \/m(_l)mms(wz)/z m!T'(n + % +7)T(m—n+v+2)
; s n!l(m + % + o) (m —n)'T(v +2)
" \/R(—1)”%”_15(”“)/2 (m—1DT(n+354+7) T(m—n+v+1)
° nl(m+3+0) (m—1-n)T(v+2)

3
:(_1)m+n5<v+1>/z\/m!F(n+2+T) L(m—n+v+1) <m—n+v+1_1>

n!F(m+%+J)(m—1—n)!F(v+2) m—n
= (_1)m+n8(v+1)/2 m!F(n + % + T) F(m —n+v+ 1) .
n!F(m +140)(m—n)T(v+1)
Proposition 5.10. If7 < 32 — 9 a— 2 then there is some w = w(7,0) > 0 so that, for k = 2m
and £ =2n+1,

ool < 8TV (m + 1) (n 4+ 1)

Proof. By Proposition 5.9, we can assume that k+1 > ¢ (m > n), and, in this case, using also
Lemma 3.12, we get

|C§§,Z| < S(v+1)/2(m + 1)1/4—0/2(n + 1)1/4+T/2(m —n+ 1)—1)‘

Then the result follows using Lemma 3.14. |
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5.5 Case where o #60 #717and o — 0,7 — 0 & —N
Proposition 5.11. For k =2m and { =2n+ 1,

1
&, = (—1)mtngito)/2 mIn!['( + 0)
: T(m+3+0)(n+32+7)

min{m,n}

Z 'm—-p+o—-0OTn—p+1+7-10)
(m—p)(n—p)T(c—-0OT(1+7-0)

X
p=0

Proof. By (2.6) and Proposition 4.12,

" __31/2252 nl(j + 3 +-T)(__1yn+jsv/2 m!jI0(% + 6)
!F(n+2+7) F(m+%+J)F(j+%+T)
mm{m,j}

I(m—p+o—0(j—p+71—0)
X =)l — 0T =)

p=0

_ (_1)m+n8(1+v)/2\/ m'n‘F( + 0)
I(m+41+0o)l(n+3+7)

n mln{m,]}

'm—-—p+oc—0)(G—p+7—10)
8 2 G- pTe — 0T =)

j=m  p=0
But, by (4.5),
n  min{m,j} .
DS I(m—p+o—-0T(G—p+7—0)
= = (m=p)(G—-p)T(o - OL(T—0)

min{m,n} n .
(m — p+a—mFO—p+r—m
- Z Z —p)IT (o —OL(r — 0)

mln{m n} n— p

(m— p+a—9)F(i+T—9)
- Z Z )il (o — O)L(1 — 0)

mln{m,n}

& m=pln—p)le—OT(1+7-0)
Lemma 5.12. If (o, 8,7,9), (3, a,8,7) € &1 U Gq, then there is some w > 0 such that, for all
m,n € N,
min{m,n}
(m+1)*(n+1)° Z (m=p+ 1) (n—p+10 < (m+1)“(n+1)
p=0

Proof. Since (m,a,v) and (n,(,d) play symmetric roles, we consider only the case where

n n+1
m > n. Then the result follows like Lemma 5.6 because > (n —p+1)° = 3 ¢°. [
p=0 q=1

Remark 5.13. In particular, the conditions of Lemma 5.12 are satisfied if

a+ B, a+v,68+6<0,
a+B+v+1lLa+B+d+l,a+B+7+5+1<0.
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Proposition 5.14. If (o,7,0) € (R UR2) N (K] URY), then there is some w = w(o,7,0) > 0 so
that, for k =2m and £ =2n + 1,

[l < 82 (m 4+ 1) (0 + 1) 7.
Proof. By Proposition 5.11 and Lemma 3.12,

|C§€’£| < S(1+v)/2(m+1)1/4—0/2(n+1)—1/4—T/2
min{m,n}

X Z (m—p+1)7n—p+1)°.
p=0

Then the result follows by Lemma 5.12, since (o,7,0) € (£ U R2) N (K] U KR)) means that
(a,B8,7,0),(B,a,d,7) € 6 UGSy for « = 1/4 —0/2, B = —1/4—7/2, v = 0 — 6 — 1 and
0=1—-40. [

5.6 Proof of Theorem 1.3

Assume the conditions of Theorem 1.3. Let j, , be the positive definite symmetric sesquilinear
form in L2 | with domain S, defined by jy+(¢, %) = (Jord, ) o+

Proposition 5.15. For any € > 0, there is some E = E(e,0,7,0) > 0 such that, for all ¢ € S,
V(9)] < est 1255 () + EsTTI2 g2

Proof. This follows from Propositions 5.2, 5.4, 5.8, 5.10 and 5.14 using the arguments of the
proof of Proposition 3.17. |

Proof of Theorem 1.3. This is analogous to the proof of Theorem 1.1. Thus some details
and the bibliographic references are omitted.

Let t, - be the positive definite sesquilinear form in L?,,T, with D(t,,-) = S, defined by t,
on Sey and t; on Syqq, and vanishing on Sey X Spqq. The adjoint of \x!Q(G*U)x*I: Sodd — Sev,
as a densely defined operator of Liodd to Liew is given by |z|2¢~7z=1, with the appropriate
domain. Then the symmetric sesquilinear form v = j,  + &t - + 2Rt in L?T,T, with D(v) = S,

is given by the right hand side of (1.3). Using Propositions 3.17 and 5.15, for any € > 0, there
are some C' = C(e,0,7,u) > 0 and E = E(e,0,7,60) > 0 such that, for all ¢ € S,

|(€to.r + 20 RY) (¢)]
< e (&7 2nls ) o (6) + (605" + 20| Bs1T/2) |2 . (5.6)

Then, taking € so that e(&s*~1 4 2[n|s+D/2) < 1, since jo,- is closable and positive definite,
it follows that v is sectorial and closable, and D(b) = D(js,-); in particular, v is bounded from
below because it is also symmetric. Therefore v is induced by a self-adjoint operator V in L?,’T

with D(V'/2) = D(b). Thus S is a core of ® and V'/2. By Proposition 3.18 and since t'(¢) = 0
for all ¢ € Sey/oaa, there is some D = D(o,7,u) > 0 such that

0(Po k) > 2k +1+20)s +EDs"(E+1)7" if k is even,

o(orp) > (2k+1+27)s +EDs"(K+ 1) if k is odd.
Therefore V has a discrete spectrum satisfying the first inequality of (1.4); in particular V and
v are positive definite. The second inequality of (1.4) holds because

0(¢) < (14 (&8 +20n|sUT72))is 2 (¢) + ECs™ + 2| Es /2| ¢)|2

for all ¢ € D(b) by (5.6) and since S is a core of b and j, . [ |
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6 Operators induced on R

Let Sevjodd+ = {0r, | € Sevjoda} For ¢;d > —1/2, let L2 = L*(Ry,z%dx) and L2, =

C
Lg L @ L2 .+, whose scalar products are denoted by ( , ). and ( , ).q4, respectively. For
c1,co,dy,ds € R, let

d d
Py=H — 2c1x*1% + oz 72, Qo=H— 2d1%x*1 + doz 2.

Morever let £ > 0 and 1,60 € R.

Corollary 6.1. Ifa’+ (2c; —1)a—c2=0,0<u <1 and 0 := a+c; > u— 1/2, then there is
a positive self-adjoint operator P in L217+ satisfying the following:

(i) 2%Sey 4 is a core of PY? and, for all ¢,1) € x%Sey 1,

(P2 PY24) ) = (Popyth)ey + E(z 70, 27 "), -

(1i) P has a discrete spectrum. Let A\g < Ao < -+ be its eigenvalues, repeated according to
their multiplicity. There is some D = D(o,u) > 0, and, for each € > 0, there is some
C = C(e,0,u) > 0 so that (1.2) holds for all k € 2N.

Corollary 6.2. Ifb> + (2d; + 1)b—dy =0, 0 <u < 1 and 7 := b+ dy > u — 3/2, then there is
a positive self-adjoint operator Q in L?ll o satisfying the following:

(7) a:bSOdd7+ is a core of QY2 and, for all ¢, € 2°Sodd +

(QY2¢, QY)Y 4, = (Qou, ) ay + da{z ™", 27 "Y) g,

(17) Q has a discrete spectrum. Let A\ < A3 < --- be its eigenvalues, repeated according to
their multiplicity. There is some D = D(t,u) > 0, and, for each € > 0, there is some
C =C(e,m,u) >0 so that (1.2) holds for all k € 2N + 1, with T instead of o.

Corollary 6.3. Under the conditions of Corollaries 6.1 and 6.2, if moreover the conditions of
Theorem 1.3 are satisfied with some 6 > —1/2, then there is a positive self-adjoint operator W
mn Lz1,d1,+ satisfying the following:

(i) °Sev,+ ® a’Soad,+ is a core of WY2, and, for ¢ = (¢1,¢2) and ¢ = (1,1h2) in 2°Sev 4 @
22 Sodd,+

W2 WYY 1 ar = (Po @ Qo) V) ey s + E(@ ™y 2 ") ey
+n ((w‘a‘b‘lqbz, Y1)o + (o1, x‘”‘b‘1¢2>9) . (6.1)

(1) W has a discrete spectrum. Its eigenvalues form two groups, Ao < Ao < -+ and A\; < Az <
-+, repeated according to their multiplicity, such that there is some D = D(o,T,u) > 0,
and, for each € > 0, there are some C = C(e,0,7,u) > 0 and E = E(e,0,7) > 0 so
that (1.4) holds for all k € N.

These corollaries follow directly from Theorems 1.1 and 1.3 because the given conditions on
a and b characterize the cases where Py and Qg correspond to |2|?Uy ey|z|~® and |z|°U; paqlz| 72,
respectively, via the isomorphisms |z|*Sey — 2%Seyv,+ and |2]°Spqqa — beodd7+ defined by re-
striction [3, Theorem 1.4 and Section 5]. In fact, Corollaries 6.1 and 6.2 are equivalent because,

if c; =d; +1 and ¢y = do, then Qp = xPyz~! and x: Lzlﬂr — L§17+ is a unitary operator.
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Remarks 1.2(ii) and 3.20 have obvious versions for these corollaries. In particular, P = P,
Q=Qand W=W, where P = Py +£x7%", Q = Qo + £z~ and

P 2(0—o)+a—b—1 P 2(0—c1)—a—b—1
W= < 2(0—7)+b—a—1 T ) = < 2(0—d1)—a—b—1 T >,
ne Q ne Q

with D(P) = (o7_o D(P™), D(Q) = (yr_o D(Q™) and D(W) = N7_,DOW™). According to
Remark 1.4(iii), we can write (6.1) as

W2 W20 a0 = ((Po ® Qo) by ) er.ar + E(@ ™"y 2 W)y
+ (@ o, 1)g + (P, 27 hn)gr),

and we have

_ P 77:1,‘2(9/_01)_‘1_17—"_1
W= <T].f62(9/_d1)_a_b+1 Q :

7 Application to the Witten’s perturbation on strata

Let M be a Riemannian n-manifold. Let d, § and A denote the de Rham derivative and
coderivative, and the Laplacian, with domain the graded space (M) of compactly supported
differential forms, and let L2Q(M) be the graded Hilbert space of square integrable differential
forms. Any closed extension d of d in L2Q(M), defining a complex (d? = 0), is called an ideal
boundary condition (i.b.c.) of d, which defines a self-adjoint extension A = d*d+dd* of A, called
the Laplacian of d. There always exists a minimum/maximum i.b.c., dpin = d and dyax = &%,
whose Laplacians are denoted by A, /max- We get corresponding cohomologies Hy, /maX(M ),
and versions of Betti numbers and Euler characteristic, 3] . /max and X min / max- These are quasi-
isometric invariants; in particular, Hy,ax (M) is the usual L? cohomology. If M is complete, then
there is a unique i.b.c., but these concepts become interesting in the non-complete case. For
instance, if M is the interior of a compact manifold with non-empty boundary, then dpin / max
is defined by taking relative/absolute boundary conditions. Given s > 0 and f € C°°(M), the
above ideas can be considered as well for the Witten’s perturbations ds = e~ 5/ de’ = d + sdf A,
with formal adjoint 6; = e3/de %/ = § — sdf. and Laplacian A,. In fact, this theory can be
considered for any elliptic complex.

On the other hand, let us give a rough idea of the concept of stratified space. It is a Hausdorff,
locally compact and second countable space A with a partition into C'*° manifolds (strata)
satisfying certain conditions. An order on the family of strata is defined so that X <Y means
that X C Y. With this order relation, the maximum length of chains of strata is called the depth
of A. Then we continue describing A by induction on depth A, as well as its the group Aut(A) of
its automorphisms. If depth A = 0, then A is just a C'°° manifold, whose automorphisms are its
diffeomorphisms. Now, assume that depth A > 0, and the descriptions are given for lower depth.
Then it is required that each stratum X has an open neighborhood T' (a tube) that is a fiber
bundle whose typical fiber is a cone ¢(L) = (Lx[0,00))/(Lx{0}) and structural group c(Aut(L)),
where L is a compact stratification of lower depth (the link of X), and ¢(Aut(L)) consists of
the homeomorphisms ¢(¢) of ¢(L) induced by the maps ¢ x id on L x [0,00) (¢ € Aut(L)). The
point * = L x {0} € ¢(L) is called the vertez. An automorphism of A is a homeomorphism that
restricts to diffeomorphisms between the strata, and whose restrictions to their tubes are fiber
bundle homomorphisms. This completes the description because the depth is locally finite by
the local compactness.

The local trivializations of the tubes can be considered as “stratification charts”, giving
a local description of the form R™ x ¢(L). Via these charts, a stratum M of A corresponds,
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either to R™ x {*} = R™, or to R™ x N x R, for some stratum N of L. The concept of general
adapted metric on M is defined by induction on the depth. It is any Riemannian metric in the
case of depth zero. For positive depth, a Riemannian metric g on M is called a general adapted
metric if, on each local chart as above, g is quasi-isometric, either to the flat Euclidean metric gg
if M corresponds to R™, or to go + 22“§ + (dx)? if M corresponds to R™ x N x R, where § is
a general adapted metric on N, z is the canonical coordinate of R4, and u > 0 depends on M
and each stratum X < M, whose tube is considered to define the chart. This assignment X — u
is called the type of the metric. We omit the term “general” when we take u = 1 for all strata.

Assuming that A is compact, it is proved in [4] that, for certain class of general adapted
metrics g on a stratum M of A with numbers u < 1, the Laplacian A, /max has a discrete
spectrum, its eigenvalues satisfy a weak version of the Weyl’s asymptotic formula, and the
method of Witten is extended to get Morse inequalities involving the numbers [3* and

min / max
another numbers I/mm / max defined by the local data around the “critical points” of a version
of Morse functions on M; here, the “critical points” live in the metric completion of M. This
is specially important in the case of a stratified pseudo-manifold A with regular stratum M,
where Hpax(M) is the intersection homology with perversety depending on the type of the
metric [12, 13]. Again, we proceed by induction on the depth to prove these assertions. In the
case of depth zero, these properties hold because we are in the case of closed manifolds. Now,
assume that the depth is positive, and these properties hold for lower depth. Via a globalization
procedure and a version of the Kiinneth formula, the computations boil down to the case of the
Witten’s perturbation ds for a stratum M = N x (0,00) of a cone ¢(L) with an adapted metric
g = x*"g + (dx)?, where we consider the “Morse function” f = +22/2.
Let dyiy / maxs Omin /max and Amm / masx denote the operators defined as above for N with g.

Take differential forms 0 # v € ker Amm/max, of degree r, and 0 # «,f € D(Amm/max) of

degrees r and r — 1, with Jmin/maxﬁ poand 5mm/maxa = up for some p > 0. Since Amm/max
is assumed to have a discrete spectrum, L2Q(N) has a complete orthonormal system consisting
of forms of these types. Correspondingly, there is a “direct sum splitting” of ds into the following
two types of subcomplexes:

Co*(Ry)y —— C°(Ry)y Ada,
n ds?"

Forgetting the differential form part, they can be considered as two types of simple elliptic
complexes of legths one and two,

ds,r %)
Co'(Ry) —— C5°(Ry),

ds,r— 00 ds,'r
CP(Ry) 2 CF(Ry) @ CF(Ry) —2s CFo(Ry).

Let k = (n—2r —1)u/2. In the complex of length one, d; , is a densely defined operator of Li,_,_
to Li7+, we have

d d
dsr = — + sz Osp=—— — K '+ sz
S,T dz ) s,T dx )
and the corresponding components of the Laplacian are

d d
Agr=H — 2/€x_1% F s(1 4+ 2k), Agri1=H — 2/1%33_1 F s(—1+ 2k).

Up to the constant terms, these operators are of the form already considered in [3], without the
term with 272%, and the spectrum of Ay min / max,r A0d Ay pin /max,r+1 18 well known.
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Table 1. Self-adjoint extensions of As,_1 and Ag ;1.

a o condition b T condition
K+u K > —% 0 K K>Uu— %

1-2(k+u) |[l—k—u|Kw<2-2u|1-25|-1-k|K<i-u

Table 2. Self-adjoint extensions of Ag ;.

a b o T 0 condition

0 0 K K+u K f<;>u—%

1-2k | -1-2(k+u) |1—K|—-1—K—u| —K—u K< $—2u

0 —1—-2(k+u) K —1-k—u|—%-u impossible
1—-2k 0 1—-x K+u % _HTU<F_I-<17?
Or K= —5—1U 35

In the complex of length two, d, —1 is a densely defined operator of L£+u7+ to Li7+ @ Li+u7+,
ds, is a densely defined operator of L2 , & L2, | to LiﬁL, we have

7 _ _
dy, ;= (d i5p> M (up 2k +u)p! isp) ,
dp
d -1
—= —2K +s
+ d + P p
ds,r = <d7) + Sp _:U’> ) 53,7" = ( dp _Mpfgu > 5
and the corresponding components of the Laplacian are

d
Agro1=H =2k +uw)o ™' — + 2272 F s(1 + 2(k + u)),

dx
d
Agrp1=As=H— 2/{d—:n_1 + 12272 F s(—1 + 2k),
x
. A —2pur !
ASJ" = —2,uux_2“_1 B )

where
1 d 2 —2u
A=H —2kx d——l—,ux Fs(1+ 2k),
x

B=H-2(k+ u)%x_l + 2z F (=14 2(k +u)).

Up to the constant terms, A ,_1 and A are of the form of P, and Ay, and B are of the form
of @, in Section 6. In the case u = 1, these operators were studied in [3]. Thus assume that
u < 1. Then, according to Corollaries 6.1-6.3, we get self-adjoint extensions of Ag,_1, Ag,41
and A, as indicated in Tables 1 and 2, where the conditions are determined by the hypotheses;
indeed most possibilities of the hypothesis are needed. With further analysis [4] and some more
restrictions on u, the maximum and minimum Laplacians can be given by appropriate choices
of these operators, depending on the values of k. Moreover the eigenvalue estimates of these
corollaries play a key role in this research.

If A is a stratified pseudo-manifold, our restrictions on u allow to get enough metrics to
represent all intersection cohomologies of A with perversity less or equal than the lower middle
perversity, according to [12, 13].
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