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A Classical Limit of Noumi’s q-Integral Operator
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Abstract. We demonstrate how a known Whittaker function integral identity arises from
the t = 0 and q → 1 limit of the Macdonald polynomial eigenrelation satisfied by Noumi’s
q-integral operator.
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The class-one glN -Whittaker functions are of great interest in representation theory, inte-
grable systems and number theory (see Gerasimov, Lebedev and Oblezin [8] and references
therein). Givental [5, 9] gave the following integral representation, which we will take as our
definition:

ψλ(x) =

∫
RN(N−1)/2

N−1∏
k=1

k∏
i=1

dxk,i e
Fλ(X),

where λ = (λ1, . . . , λN ) ∈ CN , x = (x1, . . . , xN ), X = (xk,i : 1 ≤ i ≤ k ≤ N), xN,i = xi, and

Fλ(X) = i
N∑
k=1

λk

(
k∑
i=1

xk,i −
k−1∑
i=1

xk−1,i

)
−
N−1∑
k=1

k∑
i=1

(
exk,i−xk+1,i + exk+1,i+1−xk,i

)
.

Whittaker functions satisfy the following two integral identities.

Proposition 1. Suppose u > 0 and λ, ν ∈ CN with <(λi + νj) > 0 for all 1 ≤ i, j ≤ N . Then

∫
RN

dx e−ue
x1
ψ−iλ(x)ψ−iν(x) = u

−
N∑
j=1

(λj+νj) ∏
1≤i,j≤N

Γ(λi + νj),

and ∫
RN

dx e−ue
−xN ψiλ(x)ψiν(x) = u

−
N∑
j=1

(λj+νj) ∏
1≤i,j≤N

Γ(λi + νj).
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The first of these identities is due to Stade [13], while the second follows readily by appealing
to the fact that ψλ(x) = ψ−λ(x′) where x′ = −xN−i+1. They also follow from [12, Corollaries 3.6
and 3.7] once one observes that the multiplicative Whittaker functions ΨN

λ (x) in [12] are related
to those defined above via ΨN

λ (x) = ψiλ(log x), with log x = (log x1, . . . , log xN ).

The Plancherel theory for Whittaker functions (see, for example, [2, Section 4.1.1]) implies
that for x, y ∈ RN ,∫

RN
dλψ−λ(x)ψλ(y)mN (λ) = δ(x− y),

where the Sklyanin measure mN (λ) is defined as

mN (λ) =
1

(2π)NN !

N∏
i,j=1
i 6=j

1

Γ(iξi − iξj)
,

and δ(x− y) is the Dirac delta function for x = y. Using the above identity one readily observes
the equivalence of the results of Proposition 1 and the following two eigenrelations. The integral
operator on the right-hand side of (1) is referred to as a dual Baxter operator by Gerasimov,
Lebedev and Oblezin [6], wherein the below result is demonstrated in a rather different manner
than that followed in this present work.

Proposition 2. For u > 0 and Im(wi) < 0, 1 ≤ i ≤ N ,

e−ue
−x1

ψ−w(x) =

∫
RN

dξ mN (ξ)u
i
N∑
k=1

(wi+ξi) ∏
1≤i,j≤N

Γ(−iξi − iwj)ψξ(x), (1)

and

e−ue
−xN ψw(x) =

∫
RN

dξ mN (ξ)u
i
N∑
k=1

(wi+ξi) ∏
1≤i,j≤N

Γ(−iξi − iwj)ψ−ξ(x). (2)

The aim of this note is to explain how the eigenrelation in (2) arises as the q → 1 limit
of a certain eigenrelation involving Noumi’s q-integral operator and the Macdonald symmetric
polynomials.

Definition 3. The q-shift operator Tq,zi acts by mapping function f(z1, . . . , zi, . . . , zN ) 7→
f(z1, . . . , qzi, . . . , zN ). For u ∈ C of suitably small modulus, Noumi’s q-integral operator Nu

acts on the space of analytic functions in z1, . . . , zN as

Nζ =
∑

ν∈(Z≥0)N

ζ |ν|
∏

1≤i<j≤N

qνizi − qνjzj
zi − zj

N∏
i,j=1

(tzi/zj ; q)νi
(qzi/zj ; q)νi

N∏
i=1

(Tq,zi)
νi .

Here |ν| = ν1 + · · ·+ νN .

This operator as well as the below eigenrelation it satisfies is due to M. Noumi. It first
appeared in [4, Proposition 3.24], and further details regarding its derivation are forthcoming
in [11]. It was subsequently discussed in [3, Section 4] and a proof of the eigenrelation was
given in an appendix therein by E. Rains. The Macdonald q-difference operators are like-
wise diagonal in the basis of Macdonald symmetric polynomials with eigenvalues of the form
er
(
qλ1tN−1, qλ2tN−2, . . . , qλN

)
, with er the rth elementary symmetric polynomial. While these
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difference operators must commute with the Noumi q-integral operator there is presently no
easy way to express them through each other.

Recall the Macdonald symmetric polynomial Pλ(z) indexed by partitions λ and symmetric
in the z-variables with coefficients which are rational functions of two auxiliary parameters
q, t ∈ [0, 1) (see, for example, [2, 10]). We have the following eigenrelation.

Proposition 4. Noumi’s q-integral operator is diagonal in the basis of Macdonald symmetric
polynomials so that for any partition λ,

(
NζPλ

)
(z1, . . . , zN ) =

∏
1≤i≤N

(
qλitN+1−iζ; q

)
∞(

qλitN−iζ; q
)
∞

Pλ(z1, . . . , zN ). (3)

This eigenrelation can be understood as a formal power series identity in ζ or as a convergent
series identity, provided |ζ| is suitably small.

The remainder of this note will be devoted to showing how when t = 0 and q → 1 under
particular scaling this eigenrelation yields that of (2). We will proceed formally. Various uniform
estimates would be necessary for this particular route to yield a rigorous derivation of (2). Since
this identity has already been proved through other means, we do not provide these necessary
details.

Our derivation has two steps. The first takes the termwise limit of the Noumi operator,
yielding the eigenrelation (5). It is this step which we do not fully justify. The second step uses
residue calculus to rewrite the resulting summation as the claimed contour integral formula.

From here on set t = 0 and take the following scalings

q = e−ε, λk = (N − 2k + 1)ε−1 log
(
ε−1
)

+ ε−1xk, zk = eiεwk , ζ = −uεN .

Furthermore, define the following scaled version of t = 0 Macdonald symmetric polynomial

ψεw(x) = ε
N(N−1)

2
+
N(N−1)

2
A(ε)Pλ(z), A(ε) = −1

6π
2ε−1 − ε−1 log(ε/2π).

Note, at t = 0, the Macdonald symmetric polynomial has been identified with the class-one
q-Whittaker functions, as defined in the work of Gerasimov, Lebedev and Oblezin [7] (the term
“q-Whittaker function” is used to denote different objects by different authors).

Since we will not be proving a theorem, let us summarize here the result we will formally
demonstrate. Under the above scaling, assume that a sequence of symmetric function f ε(z) have
a limit as ε→ 0 to some f̃(w). Then, formally we will show that(

Nζf ε
)
(z)→

(
Ñ−uf̃

)
(w),

where the limiting operator Ñu is defined in (4) and is identified with the dual Baxter operator
through Lemma 5. This is the key result of this paper.

Step 1. Let us consider how (3) scales as ε→ 0. The right-hand side at t = 0 equals

1

(qλN ζ; q)∞
Pλ(z1, . . . , zN ).

Observe that from the convergence of the eq-exponential to the usual exponential (see [2, Sec-
tion 3.1.1]),

1

(ζqλN ; q)∞
−→ e−ue

−xN .
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In [8, Theorem 3.1], it was explained how t = 0 Macdonald polynomials (i.e., q-Whittaker
functions) converge to Whittaker functions. Certain tail estimates necessary for that argument
were further provided in [2, Theorem 4.1.7]. The resulting convergence holds that

ψεw(x) −→ ψw(x).

Note that in both [8] and [2] there was a mistake – the prefactor for A(ε) in the definition

of ψεw(x) should be N(N−1)
2 (as above) whereas in [8, Theorem 3.1] and [2, Theorem 4.1.7] it was

written as (N−1)(N+2)
2 . Let us briefly explain where this error came from (in reference to the

proof of [2, Theorem 4.1.7]). Comparing equation (3.8) with (4.25) we find that in (4.25) the
term ∆ε(x`) should actually be ∆ε(x`+1) (here `+1 = N). This error resulted in neglecting `+1
extra factors of eA(ε) which jives with the difference between the incorrect and correct powers
(N−1)(N+2)

2 − N(N−1)
2 = N .

Turning to the left-hand side, let us consider how each term in the summation scales:

qνizi − qνjzj
zi − zj

=
e−ενi+iεwi − e−ενj+iεwj

eiεwi − eiεwj
−→ i(νj − νi) + (wj − wi)

wj − wi
,

1

(qzi/zj ; q)νi
=

1

1− e−ε+iε(wi−wj)
1

1− e−2ε+iε(wi−wj)
· · · 1

1− e−νiε+iε(wi−wj)

=
1

ε(1− i(wi − wj))
· · · 1

ε(νi − i(wi − wj))
+ l.o.t.

= ε−νi
Γ(1 + i(wj − wi))

Γ(1 + νi + i(wj − wi))
+ l.o.t.,

where l.o.t. denotes lower order terms in ε. Also note that

N∏
i=1

T νiq,ziPλ(z) = Pλ
(
eiεw1−εν1 , . . . , eiεwN−ενN

)
=

N∏
i=1

Sνii,wiψ
ε
w(x)ε−

N(N−1)
2

− (N+2)(N−1)
2

A(ε),

where the effect of Sa,wi is to shift wi by a. Putting all of this together we deduce that

Ñu =
∑

ν∈(Z≥0)N

(u)|ν|
∏
i<j

wj − wi + i(νj − νi)
wj − wi

∏
i,j

Γ(1 + i(wj − wi))
Γ(1 + νi + i(wj − wi))

N∏
i=1

(Si,wi)
νi (4)

satisfies the eigenrelation

Ñ−uψw(x) = e−ue
−xN ψw(x). (5)

This completes the first step of our derivation. As we already mentioned, various estimates are
needed in order to turn this into a rigorous proof.

Step 2. The purpose of the second step is to show how Ñ−u can be rewritten in terms of
contour integrals through residue calculus. We will obtain this as a consequence of the following
slightly more general result:

Lemma 5. Let a be a positive real number and consider a symmetric function f defined on the
set {w ∈ CN : Im(wi) ≤ −a, i = 1, . . . , N} which is bounded and analytic in each variable in this
set. Then(

Ñ−uf
)
(w) =

∫
(a+iR)N

dξ sN (ξ)u
∑
i(iwi−ξi)

N∏
i,j=1

Γ(ξj − iwi)f(−iξ) (6)

for u > 0, where sN is the following variant of the Sklyanin measure:

sN (ξ1, . . . , ξN ) =
1

(2πi)NN !

N∏
i,j=1
i 6=j

1

Γ(ξi − ξj)
.



A Classical Limit of Noumi’s q-Integral Operator 5

To see that this implies the desired result, let f(w) = ψw(x) and observe that f satisfies the
necessary boundedness thanks to [2, Lemma 4.1.19]. Making the change of variables ξ 7→ −iξ
and combining (6) with (5) we easily deduce (2).

Proof of Lemma 5. We will prove the result by expanding the integral on the right-hand side
of (6) into residues and matching the result with the summation on the right-hand side of (4).

For i, j = 1, . . . , N , the integrand on the right-hand side of (6) has singularities coming
from the factor Γ(ξj − iwi) at each point of the form ξj = iwi − ν for ν ∈ Z≥0 (where Z≥0
stands for the set of non-negative integers). By shifting each contour to the left to −∞ we
will pick up each of these singularities, and the result is that the integral will equal the sum
of the associated residues (The fact that the contours of integration can be deformed in this
way follows from our assumption on f and the known asymptotics of the Gamma function,
which give c1e

−π
2
|Im(z)||Im(z)|η ≤ |Γ(z)| ≤ c2e

−π
2
|Im(z)||Im(z)|η for Re(z) in some finite interval

and some c1, c2 > 0 and η ∈ R, see, e.g., [1, (6.1.45)]; observe also that, thanks to the factor
u
∑
i(iwi−ξi), there is no pole at −∞). Each of these residues is evaluated at a point of the form

(ξ1, . . . , ξN ) = (iwm1 − ν1, . . . , iwmN − νN ) for some (m1, . . . ,mN ) ∈ {1, . . . , N}N and νi ≥ 0 for
i = 1, . . . , N , so the right-hand side of (6) equals

1

N !

∑
(m1,...,mN )∈{1,...,N}N

∑
ν∈(Z≥0)N

u
∑
i(iwi−iwmi+νi)

(−1)
∑
i νi∏

i νi!
f(wm1 + iν1, . . . , wmN + iνN )

×
∏
i 6=j

Γ(iwmj − νj − iwi)
∏
i 6=j

1

Γ(iwmi − νi − iwmj + νj)
.

If mi = mj for some i 6= j then the associated term in the above sum equals 0. In fact, such
a term has a factor of the form Γ(νj − νi)−1Γ(νi − νj)−1, which equals 0 because νj − νi ∈ Z.
Hence the above sum is restricted to the case where mi = σ(i) for some σ ∈ SN and equals

1

N !

∑
σ∈SN

∑
ν∈(Z≥0)N

u
∑
i(iwi−iwσ(i)+νi) (−1)

∑
i νi∏

i νi!
f(wσ(1) + iν1, . . . , wσ(N) + iνN )

×

N∏
i=1

∏
j 6=i

Γ(iwσ(j) − νj − iwi))∏
i<j

Γ(iwσ(i) − νi − iwσ(j) + νj))Γ(iwσ(j) − νj − iwσ(i) + νi))
.

By the symmetry of f , the sum in ν does not depend on σ ∈ SN , and therefore if we choose σ
to be the identity we deduce that the sum equals

∑
ν∈(Z≥0)N

(−u)
∑
i νi

1∏
i νi!

f(w + iν)

∏
i 6=j

Γ(i(wj − wi)− νj))∏
i<j

Γ(i(wi − wj)− νi + νj)Γ(i(wj − wi)− νj + νi)
.

To complete the argument matching the right-hand side of (6) to the right-hand side of (4) it
suffices to show that

1∏
i νi!

∏
i 6=j

Γ(i(wj − wi)− νj))∏
i<j

Γ(i(wi − wj)− νi + νj)Γ(i(wj − wi)− νj + νi)

=
∏
i<j

wj − wi + i(νj − νi)
wj − wi

∏
i,j

Γ(1 + i(wj − wi))
Γ(1 + νi + i(wj − wi))

.
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Observe first of all that in the last product on the right-hand side of the above equation, the
terms i = j equal Γ(1 + νi)

−1 = 1/(νi!). Therefore if we write ri = iwi, we need to show that∏
i 6=j

Γ(rj − ri − νj))
Γ(ri − rj − νi + νj)

=
∏
i<j

rj − ri − νj + νi
rj − ri

Γ(1 + ri − rj)Γ(1 + rj − ri)
Γ(1 + νj + ri − rj)Γ(1 + νi + rj − ri)

. (7)

Recalling Euler’s reflection formula

Γ(1− z)Γ(z) =
π

sin(πz)
(8)

and the fact that zΓ(z) = Γ(1 + z) we have

Γ(1 + ri − rj)Γ(1 + rj − ri)
rj − ri

=
π

sin(π(rj − ri))

and

rj − ri − νj + νi
Γ(1 + νj + ri − rj)Γ(1 + νi + rj − ri)

=
sin(π(rj − ri − νj + νi))

π

Γ(1− rj + ri + νj − νi)
Γ(1 + νj + ri − rj)

Γ(1 + rj − ri − νj + νi)

Γ(1 + νi + rj − ri)
.

Using these identities and the fact that sin(π(a+k)) = (−1)k sin(πa), the right-hand side of (7)
becomes∏

i<j

(−1)νi−νj
∏
i 6=j

Γ(1− rj + ri + νj − νi)
Γ(1 + νj + ri − rj)

,

and hence (7) is equivalent to∏
i<j

(−1)νi−νj
∏
i 6=j

Γ(1− ri + rj + νi − νj)
Γ(1 + νj + ri − rj)

Γ(ri − rj − νi + νj)

Γ(rj − ri − νj)
= 1.

But using (8) again the left-hand side equals∏
i<j

(−1)νi−νj
∏
i 6=j

π

sin(π(ri − rj − νi + νj))

sin(π(rj − ri − νj))
π

= (−1)κ

with

κ =
∑
i<j

(νi − νj) +
∑
i 6=j

(νi − 2νj)

=
n∑

m=1

(n− 2m+ 1)νm − (n− 1)
n∑

m=1

νm = 2
n∑

m=1

(1−m)νm,

which finishes our derivation since κ is even. �

Acknowledgements

We appreciate helpful comments from our referees. AB was partially supported by the NSF
grant DMS-1056390. IC was partially supported by the NSF through DMS-1208998 as well
as by the Clay Mathematics Institute through the Clay Research Fellowship, by the Institute
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