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1 Introduction

In the past years the study of separable systems (whose Hamilton—Jacobi equations can be
integrated by separation of variables) has shown a remarkable development, also in relation
with other kinds of integrable systems (bi-Hamiltonian systems, Lax systems). I think that
an outline of the Riemannian background of this theory may be useful for specialists as well
as beginners. With the exception of the last section, we will confine our discussion to the
orthogonal separable systems (called Stdckel systems) and to a special class of Stéckel systems,
referred to as L-systems. Some of the theorems presented here are new. For some of the recalled
theorems a new shorter proof is provided. Let Q be an n-dimensional Riemannian manifold with
generic local coordinates ¢ = (¢') and (contravariant) metric tensor G = (¢*/), which we assume
to be positive-definite, and let T*(Q be the cotangent bundle of @), with canonical coordinates
(¢,p) = (¢*,p;). We will deal with the additive separation of the Hamilton—Jacobi equations

G(gvg):E7 H(gvﬂ):E, pi = O;W,
where G = %gijpipj is the geodesic Hamiltonian on T*Q, and H = G +V = %gijpipj +Vis
a natural Hamiltonian, V (q) being the potential energy, a smooth function on Q canonically lifted

to a function on T*Q. A coordinate system ¢ is called separable if the geodesic Hamilton—Jacobi
equation G = E admits a complete solution of the form

W(g.c)=> Wi(d,c), c=I(c), (1.1a)
det [8:‘/‘2} # 0. (1.1b)
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Such a solution is called separated solution. Also note, that in these definitions the presence
of a set of n constants ¢ satisfying the completeness condition (1.1b) is fundamental. Note that
here we consider only natural canonical coordinates, where q are coordinates on the configuration
manifold. Levi-Civita [37] proved that a Hamilton-Jacobi equation H(q,p) = E admits a sepa-
rated solution (1.1) if and only if the differential equations® o

Lij(H) = 0;HO;HO'O'H + 0'HY 9;0;H — 0;HO' HO'0;H — 0'HO; HO;0' H = 0

are identically satisfied. These are known as the separability conditions or separability equations
of Levi-Clivita. They provide not only a simple method for testing whether a coordinate system
is separable or not, but also the basis for the geometrical (i.e., intrinsic) characterisation of the
separation. A first (and well known) example of application is the following: the Levi-Civita
equations for a natural Hamiltonian, L;;(G + V') = 0, are polynomial equations of fourth degree
in the momenta p, which must be identically satisfied for all admissible values of these variables.
It is easy to note that the fourth-degree homogeneous part of these equations is Li;(G) = 0.
This means that: (i) the separation of the geodesic equation is a necessary condition for the
separation of equation G + V = E; (ii) the study of the geodesic separation plays a prominent
role, (iii) the above-given definition of separable coordinates makes sense.

A special but fundamental case in this theory is the orthogonal separation, where the co-
ordinates are assumed to be orthogonal, ¢ = 0 for i # j. In this case, examined firstly by
Stéackel [52, 53], later on by Levi-Civita [37], Eisenhart [26, 27], and more recently by many
authors, the Levi-Civita equations L;;j(G) = 0 are equivalent to equations

Sij(g*) =0, i#j, (1.2)

where S;;(-) denote the Stickel operators associated with an orthogonal metric (¢%). For any
smooth function V on @), it is defined by

Si(V) = 0:0;V = 0;ln g0,V — 0;lng "oV, i j.
The Levi-Civita equations L;j(G + V) = 0 are equivalent to

Si‘(gkk) =0, Sij(V) =0. (1.3)

2 Killing tensors

As shown by Eisenhart [26, 27] (for the orthogonal case) and by Kalnins and Miller [32, 33],
the geodesic separation is related to the existence of Killing vectors and Killing tensors of order
two. In this section we recall the basic properties of these objects. The contravariant symmetric

tensors K = (K%+) on @Q are in one-to-one correspondence with homogenous polynomials
on T*Q),

K = (K"7) +— Px=P(K)=K"7p;--p;.
For a tensor of order zero, i.e., a function f on @), we define Py = f, where f is canonically lifted
to T*Q (by constant values on the fibers). The space of these polynomial functions is closed

with respect to the canonical Poisson bracket

{A, B} = 0'"A0;B — 9'BO; A.

'Notation: 8; = 8/8qi, 9 = 9/0p;.
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Hence, on the space of the symmetric contravariant tensors we define a Lie-algebra structure [-, -]
by setting

P([K1, K2]) = {P(K1), P(K2)},
and the symmetric product ® by setting

Note that all the above-given definitions do not depend on a metric tensor. If a metric tensor G
is present, then we say that K is a Killing tensor (KT) if P(K) is in involution with P(G) = 2G,

{P(K),P(G)} =0 < [K,G]=0. (2.1)

This means that P(K) is a first integral of the geodesic flow. In the special case of a function f,
this definition is equivalent to V. f = 0 (by V f we denote the gradient of a function f). A vector
field X is a Killing vector, [ X, G] = 0, if and only if its flow preserves the metric.

Let us consider the case of a symmetric 2-tensor K. Since a metric tensor is present, the
boldface object K can be represented in components as a tensor of type (2,0), (1,1) and (0, 2),
respectively, K = (K%) = (K;) = (Kjj).

As a symmetric tensor of type (1,1), K defines an endomorphism on the space X' (Q) of the
(smooth) vector fields on @ and an endomorphism on the space ®!(Q) of the (smooth) 1-forms
on Q). We will denote by K X the vector field image of X € X(Q) by K, and by K¢ the 1-form
image of ¢ € ®1(Q) by K. This means that KX = K}Xjﬁi, K¢ = Kjlqzbl dq’. Note that the
metric tensor G coincide with the identity operator I, whose (1,1) components are given by the
Kronecker symbol 5; Then a 2-tensor K gives rise to eigenvalues, eigenvectors or eigenforms,
according to equations KX = pX, K¢ = p¢. We recall that, in a positive-definite metric,
(i) all symmetric tensors have real eigenvalues; (ii) the algebraic multiplicity of an eigenvalue p
(i.e., its order as a root of the characteristic equation det(K —pG) = 0) is equal to its geometrical
multiplicity (i.e., the dimension of the space of the corresponding eigenvectors, or eigenforms);
the eigenspaces corresponding to distinct eigenvalues are orthogonal. We will denote by K1 K2
the product of the two endomorphisms K7 and Ko; in components (K1K3)" = K {hKQJh. The
algebraic commutator of the two tensors will be denoted by

[K1, K3 = K1 Ky — Ko K.

If a symmetric 2-tensor K can be diagonalised in orthogonal coordinates, K% = 0 for i # 7,
then K% = pig®, where (p’) are the eigenvalues of K. By writing the Killing equation (2.1) in
these coordinates, we see that K is a KT if and only if equations

Oip) = (pi — p7)8@ In g%/ (2.2)

are satisfied by the eigenvalues. These equations have been called Killing—Fisenhart equations
in [13] since they have been extensively used by Eisenhart [27]. However, they appear in an
earlier paper by Levi-Civita [36, p. 285].

3 Killing—Stackel spaces

Equations (2.2) can be interpreted as a linear system of n first-order partial differential equations
in normal form, in the n unknown functions p’(q). It is a remarkable fact that the integrability
conditions assume of the form

(0" = ") Sii(g"*) = 0.
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Then their link with the orthogonal separation is at once clear. A second, and even more
remarkable property, is that the unknown functions p’ appear in the integrability conditions
through their differences p’ — p/. This means that if the system (2.2) admits a solution such
that p* # p’, then it is completely integrable. Note that for a linear system the converse is always
true. Going back to the orthogonal separability conditions (1.2) we can immediately conclude
that: (I) a system of orthogonal coordinates is separable if and only if there exists a KT which
1s diagonalised in these coordinates and which has pointwise simple eigenvalues. Furthermore,
since the system (2.2) is linear, if it is completely integrable then it admits a n-dimensional
space of solutions (and its converse). As a consequence: (II) a Killing tensor K which has
simple eigenvalues and is diagonalised in orthogonal coordinates generates a n-dimensional spa-
ce KK of Killing tensors which are all diagonalised in the same coordinates. Such a space will
be called Killing—Stackel space (KS-space). In the space of direct sums of Killing tensors, K =
cOb K ®Ky® - & K, ®--- endowed with the Lie bracket [-,-] defined above, a KS-space,
which is made of elements 0 0D Ko ® 0@ -- -, is an involutive subalgebra. For this reason it
has also been called Killing—Stdickel algebra in [13, 14].

Three remarks are in order: (i) the metric tensor belongs to any KS-space — indeed, p* = 1
is a trivial solution of the system (2.2); (ii) if two KS-spaces have an element with simple
eigenvalues in common, then they coincide; (iii) all elements of a KS-space are in involution (if
equations (2.2) are satisfied for two tensors K; and Ko, then {P(K ), P(K2)} =0).

All the above properties have a local character and are related to a coordinate system. We
remark, however, that they are more precisely related to an equivalence class of orthogonal
systems, being equivalent to two systems of coordinates ¢ and g’ simply related by a separated
transformation or a rescaling: ¢' = qi(qi/).

We look for a coordinate-free description of all this matter. To this end we recall some basic
concepts.

A frame on a differentiable manifold () (not necessarily Riemannian) is a set of vector
fields (X;) which form a basis of the tangent space T, at each point ¢ of their domain of
definition. In general, frames exist only locally. Global frames are defined if and only if the
manifold is parallelisable, i.e., when TQ ~ Q x R™. Two frames (X;) and (X}) are said to be
equivalent if there are nowhere vanishing functions f; such that X; = f; X}. A frame is called
holonomic or integrable if it is equivalent to a natural frame (0;) associated with coordinates (¢*).
A basic property is (cf. [49] and [13])

Theorem 3.1. The three following conditions are equivalent: (i) the frame (X;) is holonomic,
(it) for each pair of indices (i, j) the distribution spanned by the vectors X; and X ; is completely
integrable, (iii) for each index i the distribution spanned by the n — 1 vectors X for j # i is
completely integrable.

On a Riemannian manifold a vector field X is called normal if it is orthogonally integrable
or surface forming, i.e., if it is orthogonal to a family of hypersurfaces. In a positive-definite
metric a symmetric tensor K with simple eigenvalues and normal eigenvectors gives rise to and
equivalence class of holonomic orthogonal frames hence, to an equivalence class of orthogonal co-
ordinates. Then we get the following simple intrinsic characterisation of the orthogonal geodesic
separation [32, Corollary 4, Section 3| (see also [6]):

Theorem 3.2. The geodesic Hamilton—Jacobi equation is separable in orthogonal coordinates if
and only if there exists a Killing 2-tensor with simple eigenvalues and normal eigenvectors.

A KT having these properties will be called a characteristic Killing tensor (ChKT). The
eigenvectors generates a family of n orthogonal foliations of manifolds of codimension 1, which we
call Stickel web. Any coordinate system (q¢*) such that the web is locally described by equations
q' = const (this is equivalent to say that dg’ are eigenforms of the ChKT), is separable.
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In accordance with the remarks above, a ChKT generates a KS-space. A suitable coordinate-
independent definition of this concept is the following: a Stdckel space on a Riemannian mani-
fold @, is a n-dimensional linear space I, of Killing 2-tensors whose elements (a) commute
as linear operators, [K1,Ks] = 0, and (b) are in involution, [K1, K9] = 0. Indeed, in the
algebraic realm it can be proved that in such a space there exists an element with pointwise
distinct eigenvalues (in the neighborhood of any given point of the domain of definition of Cy,);
as a consequence, the commutation relation (a), applied to such a tensor K, shows that all
elements have common eigenvectors. Furthermore, from (b) it follows that

Theorem 3.3. If n independent KT’s in involution have the same eigenvectors, then these
eigenvectors are normal.

This remarkable property was firstly discovered by Kalnins and Miller [32]. However, it is
also a remarkable fact that in this last theorem the assumption that the independent tensors
are KTs is redundant. In fact, it can be proved that

Theorem 3.4. An orthogonal frame made of common eigenvectors of n independent symmetric
2-tensors in involution is holonomic (the eigenvectors are normal).

For a detailed discussion and proof see [13]. As a consequence, we have a second intrinsic
characterisation of the orthogonal geodesic separation (compare with [32, Theorem 6, Section 3]
and [50]; note that in [32, Theorem 6(4)] turns out to be redundant):

Theorem 3.5. The geodesic Hamilton—Jacobi equation is separable in orthogonal coordinates if
and only if the Riemannian manifold admits a KS-space, i.e., a n-dimensional linear space K
of Killing tensors commuting as linear operators and in involution.

In the applications, one of these last two theorems can be used according to the convenience.
By applying Theorem 3.2 we have the advantage of dealing with a single KT, but difficulties may
arise in testing if it has simple eigenvalues and normal eigenvectors. Nevertheless, for solving
this problem we can use the following two effective criteria:

Theorem 3.6. A (1,1) tensor K has distinct eigenvalues if and only if

n ST ... Sp_1
D= 5:1 S:Q S" £0, S, =tr(KP).
a1 Su . S
Here KP? is the power p =0,1,2,... of the linear mapping K. This theorem is a consequence

of a classical theorem of Sylvester about the discriminant D of an algebraic equation, here
applied to the characteristic equation of K.

Theorem 3.7. A symmetric tensor K with simple eigenvalues has normal eigenvectors if and
only if

HJ KK+ 2H) KK + HEKP KL = 0,

where H is the Nijenhuis torsion of K,
HJ\(K) = 2K(10) K}, — 2K 0, K.
This is a special case of a more general theorem due to Haantjes [29] (see also [49, p. 248)).

As will be seen in Section 7, it is interesting the case of a torsionless tensor: H(K) = 0. We
will apply the following
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Theorem 3.8 ([45]). A symmetric tensor K with simple eigenvalues p* is torsionless if and
only if it has mormal eigenvectors X; such that

Xip =0, i#j.

This means that each eigenvalue p? is constant on the hypersurfaces orthogonal to the corre-
sponding eigenvector X ;. It is worthwhile to observe that

Theorem 3.9. A torsionless KT with simple eigenvalues is necessarily a constant KT on a flat
Riemannian manifold.

Proof. If H(K) = 0, then equations (2.2) imply

This shows that p' = const and that ;g7 = 0 for i # j. This last condition means that g’/ is
a function of ¢/ only. In this case, up to a change of scale of the coordinates, we can consider
g77 = const. |

This is a case considered in [21]. Going back to Theorem 3.5, it is interesting to make a
comparison with the intrinsic characterisations of the geodesic orthogonal separation due to
Eisenhart [26, 27] and Woodhouse [58]. In the Fisenhart theorem [26, p. 289] the necessary and
sufficient conditions for the orthogonal separation are: (i) the existence of n — 1 independent
Killing tensors Ky,..., K,_1 with normal common eigenvectors and such that (ii) for each of
these tensors the eigenvalues are simple and (iii) for any pair (i, «) of fixed indices (o = 2, ..., n,
i=1,...,n) the square matrices |pf — p|| (with j # i) are regular. In the Eisenhart notation,
pS are the eigenvalues of K,. Condition (i) should be replaced by the existence of n — 1
Killing tensors such that G, K1,..., K, _1 are independent. Then Theorem 3.5 shows that
conditions (ii) and (iii) are redundant. In [58, Theorem 4.2] the n —1 KT’s are assumed to be in
involution and with common closed eigenforms. Theorem 3.3 shows that the requirement closed
is redundant, since it is equivalent to the normality of the eigenvectors.

4 The orthogonal separation of a natural Hamiltonian

With each symmetric 2-tensor K and a function U on @ we associate the function F' = %PK +U
on T*Q. We observe that F' is a first integral of H =G+ V, {H,F} =0, if and only if

{(G,Px}=0, dU=KJdV.

The first equation means that K is a Killing tensor. If it is a ChKT, then, in any orthogonal
coordinate system determined by its eigenvectors, the second equation is equivalent to 0;U =
p'0;V. Due to the fundamental equations (2.2), the integrability conditions of these equations
assume the form 9;0,U — 9;0;U = (p* — p?)S;;(V) = 0. This proves

Theorem 4.1. If K is a symmetric 2-tensor with simple eigenvalues and normal eigenvectors,
then F is a first integral of G+ V if and only if K is a Killing tensor and S;;(V) = 0 in any
orthogonal system of coordinates generated by the eigenvectors.

Since the existence of coordinates is a local matter, condition dU = K dV can be replaced
by d(K dV') = 0. Thus, by recalling Theorem 3.2 and the remarks at the end of Section 1, we
find that
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Theorem 4.2 ([6]). The Hamilton-Jacobi equation G +V = E is separable in orthogonal
coordinates if and only if there exists a Killing 2-tensor K with simple eigenvalues and normal
etgenvectors such that

d(K dV) = 0. (4.1)

This equation has been called characteristic equation of a separable potential V. We observe
that for n = 2 any vector field is normal. Since it can be proved that on a two-dimensional
manifold the separation always occurs in orthogonal coordinates [37], we get

Theorem 4.3. On a two-dimensional Riemannian manifold the Hamilton—Jacobi equation
G +V = FE is separable if and only if there exists a (non-trivial) quadratic first integral.

This is the extension to a two-dimensional manifold of the so-called Bertrand—Darboux—
Whittaker theorem for the Euclidean plane Eg [1, 57].

When written in Cartesian coordinates on a Euclidean n-space, equation (4.1) gives rise to the
so-called Bertrand-Darbouz (BD) equations. If we know the form of all characteristic tensors of
a manifold, then equation (4.1), written in any coordinate system (even not separable), provides
an effective criterion for the separability of the Hamilton—Jacobi equation. This criterion have
been applied for instance in the study of the super-separability of the inverse-square three-
dimensional Calogero system [11]. In [11] you can find the intrinsic (i.e., “boldface”) expressions
of all the characteristic Killing 2-tensors in the Euclidean three-space Eg, so that this criterion is
ready to be used for any potential V. For a general E,,, the basic ChKT’s and the corresponding
BD equations have been determined in Marshall and Wojciechowski, and in [4, 6]. This analysis
has been completed by Waksjo [55]. In his thesis he presents an effective general criterion for
the separability of a potential V' in the Euclidean n-space (see also [56]). Other separability
criteria can be based on the analysis of the fundamental invariants of spaces of Killing tensors
under the action of isometry groups and the method of moving frames (see [24, 42], also for
related references).

If in E,, we take

K =tr(L)G - L, L=A+mrer+wor, (4.2)

where A is symmetric and constant, m € R, w is a constant vector, and r is the vector
representing the generic point, then in Cartesian coordinates (z°) equation (4.1) yields the
Bertrand-Darboux equations (3.25) in [55]. The correspondence of notation is the following:
A= (7). m = a, w = (26,).

For w = 0 we get the BD equations for the separation in elliptic coordinates centered at the
origin. For m = 0 we get the BD equations for the separation in parabolic coordinates centered
at the point P, where Lp(w) (the existence of such a point is proved in [4]). For w = 0 and
m = 0 we have the separation in Cartesian coordinates. In the remaining case w # 0 and m # 0,
we have the separation in elliptic coordinates centered at the point ¢ = —ﬁfw (see below).

It must be emphasised that in the characteristic equation (4.1) for a separable potential V'

the eigenvalues of K must be simple (outside a singular set). For the present case we have

Theorem 4.4. The tensor K defined in (4.2) has simple eigenvalues if and only if for m =0
the eigenvalues of A are simple and for m #£ 0 the eigenvalues of A — ﬁw ® w are simple.

This is (a slightly modified version of) a theorem of Waksjo [55, p. 45]. We give here an
alternative proof.

Proof. The tensor K has simple eigenvalues if and only if L has simple eigenvalues. For m = 0
we have L = A+w ®r; we are in the case of the parabolic web [4] and L has simple eigenvalues
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if and only if A has simple (constant) eigenvalues. For m # 0, let us change the origin by
considering the transformation 7 = ¢ + 7/, where ¢ is a constant vector. We obtain

L=A+mer+2r'oc+ec®ec)+woct+twor.
If we take ¢ = —ﬁw, then
L=A-twew+mr'er =A"+mr'ar.

We known that for a symmetric tensor of the kind A’ + 7' ® 7’ the eigenvalues (u') are the roots
of equation

2
Z T; :i
u—at m’

7

where (;) are Cartesian coordinates and (a’) are the constant eigenvalues of A’. This equation
is equivalent to

mZx%H(ufak)fH(ufaj):O. (4.3)

i ki j

If (a*) are simple, then also (u) are simple, since a! < u! < a? <u? < ... <u" ! <a® < u™

If (a’) are not all simple, for instance a' = a2, then equation (4.3) has a double root u = a'. W

The tensors K and L have a mechanical meaning: they were introduced in [4] as the inertia
tensor and planar inertia tensor of a set of massive points (including, this is important, negative
masses) in [E,,. The parameter m is just the total mass (it may be 0). Indeed, it is a remarkable
fact that an inertia tensoris a KT. This interpretation is of help in the problem of finding the
intrinsic expressions of all the ChKT’s of E,, (see also [41]).

Notation 4.5. A matrix of the kind A + 7 ® r has been used by Moser [44] for constructing
a Lax pair for the geodesic flow of an asymmetric ellipsoid. For this reason it was denoted by L
in [4] (indeed, in analogy with the Lax method, starting from L we can construct a complete
system of first integrals in involution through a pure algebraic process). There were other two
reasons which suggested this notation: (i) L is a letter adjacent to K, and this is appropriate
because a tensor L generates a tensor K according to (4.2); (ii) L stands for Levi-Civita, and
indeed the orthogonal metric associated with L was firstly introduced by Levi-Civita [36] (see
the end of Section 7).

5 First integrals associated with the orthogonal separation

Going back to the characteristic equation (4.1) we recall that at the beginning of Section 3 we
observed that a characteristic Killing tensor, like that appearing in equation (4.1), generates
a KS-space K. It is a remarkable fact that

Theorem 5.1. If (K,) = (Ko, Ka,...,K,_1) is a basis of K (G and K may belong to this
basis) then locally there exist functions V, such that

H, = 3Pk, + Va (5.1)

are independent first integrals in involution.
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A proof can be found in [6]. Indeed, it can be shown that equation (4.1) implies d(K,dV) =0
for each index a. This implies that a ChKT K and a separable potential V' generates a n-
dimensional space H (K, V) of first integrals in involution,

HK:%PK-FVK, K e K,

and that the associated potentials Vg can be determined by integrating the closed 1-forms
K, dV. We observe that there are separable systems (an example is the three-body Calogero
system, see [11]) in which this integration can be avoided and replaced by an algebraic process.

We remark that, if we know a basis of a KS-space, then for testing if a potential V' is separable
it is sufficient to verify that equation (4.1) is satisfied for an element of this space with simple
eigenvalues. When the answer is affirmative, then a complete set of integrals in involution can
be determined by integrating the closed 1-forms K, dV.

It is well known that the orthogonal (as well as the non-orthogonal separation) is related
to Stiickel matrices. A Stdckel matriz in the n variables (¢') is a regular n x n matrix S =

[goz(»a)] of functions @Ea) depending on the variable ¢’ corresponding to the lower index only. We
i

denote by [(p(a)] the inverse matrix. The original Stdckel theorem asserts that an orthogonal
coordinate system (q') is separable if and only if there exists a Stickel matriz such that g% = cpéo).

In this case, (i) the diagonalised tensors K& = gp’@ are the basis of a Stdckel space, (ii) all

separable potentials V' have the form V = (bi(qi)goéo), where ¢; is a function of the corresponding

coordinate ¢' only; (iii) a basis H, of the space of first integrals in involution is given by (5.1)
with Va = d)igoéa)?

6 Conformal Killing tensors

As remarked above, the existence of a KT K with simple eigenvalues and normal eigenvectors
is a necessary and sufficient condition for the existence of a KS-space K, i.e., of a n-dimensional
linear space of KT’s with common normal eigenvectors (and, consequently, in involution). The
following question arises: s it possible to construct a basis of the space K by a coordinate
independent algebraic procedure, starting from K? Note that this problem can be solved (in
principle) by integrating the linear differential system (2.2), if we know a separable coordinate
system.

As illustrated in [4] the answer is affirmative at least for special kinds of Stéckel systems.
In the next sections we will revisit this matter, by proposing new definitions and theorems. To
this end, we need to recall some basic definitions and properties concerning conformal Killing
tensors.

A conformal Killing tensor (CKT) on a Riemannian manifold @,, is a symmetric tensor L of
order [ satisfying equation {Pr, Pg} = Px Pg, where X is a suitable symmetric tensor of order
I — 1. Since we are interested in CKT’s of order two, we write this equation in the form

{PrL,Pc} = —2PcPe, (6.1)

where C' is a vector field which we call associated with L (also denoted by C(L)).

2Gtéackel systems have been the object of several researches in recent years. A generalisation of Stickel systems
has been proposed in [19]. Relations between finite- (Stéickel systems) and infinite-dimensional (Harry—Dym
hierarchies) integrable systems are investigated in [40]. The separability of a Hamiltonian in different Stéckel
systems is a standard procedure to determine superintegrable systems (see [43] and references therein). More
links between Stéackel systems and superintegrability are shown in [54]. An analysis of the Killing—Stéckel spaces
is the basis for a classification of the orthogonal separable coordinates in [46]. (Bibliographical footnotes added
by Giovanni Rastelli.)
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A CKT is said to be of gradient-type (GCKT) if C = V f. An example of GCKT is fG. In
this case we have C = Vf. Indeed, {P;q, Pa} = {fPa, Pc} = Pc{f, Pc} = —2¢"p;0;fPa. A
KT is obviously a GCKT with C = 0.

Theorem 6.1. A CKT L is of gradient-type with C = Vf if and only if K = fG — L is
a Killing tensor.

Proof. {Pr, — fPg,Pg} ={PL,Pc} — Pc{f,Pc} = —2PcPg + 2PgPyy. |

A conformal Killing tensor of trace-type L is a CKT for which C = Vtr(L). In this case,
K =tr(L)G — L is a KT.
By considering in (6.1) Pg = ¢%p? and Pr, = u'g"p?, we find

Theorem 6.2. Assume that a symmetric 2-tensor L is diagonalised in orthogonal coordinates,
so that L' = u'g", LV =0, i # j, where u’ are the eigenvalues. Then L is a CKT if and only
if the following equations are satisfied,

ouF = (ul — uk)ai In gkk + C;, C; = o' (6.2)

7 L-tensors

Let us call L-tensor a (i) conformal Killing tensor L with (ii) vanishing torsion and (iii) pointwise
simple eigenvalues (u'). The reasons for introducing such an object will be explained in the next
section. In the present section we examine the basic properties of an L-tensor. Due to the
vanishing of the torsion, there is an equivalence classes of orthogonal coordinates (¢*) in which
this tensor is diagonalised and d;u’ = 0 for i # j. We say that these coordinates are associated
with L. Since L is a CKT, due to Theorem 6.2 equations

8iuj = (ul — uj)c‘)Z lngjj +C; =0, i# 7, C; = aluz (7.1)
hold. For C = 0 we find the equations (2.2) of a KT.

Remark 7.1. In the above definition no assumption is made about the independence of the
eigenvalues as functions on @); some of them may be constant (a criterion for the independence
of the eigenvalues is given in Theorem 9.2 below). This definition has to be compared with those
given in [15, 20, 30], where L is assumed to be a torsionless CKT of trace-type (and called Benenti
tensor), and in [22, 23], where L is assumed to be a torsionless CKT with independent (i.e.,
coordinate-forming) eigenvalues (and called special conformal Killing tensor, see Theorem 9.1
below). In all these papers the essential condition that L has simple eigenvalues is missing (or
understood).

In fact it can be proved that

Theorem 7.2. If an eigenvalue u' of a torsionless CKT of trace-type is not simple, then it is
constant.

The proof of this theorem (here omitted) requires the use of the Haantjes theorem for a tensor
with non-simple eigenvalues.

Theorem 7.3. Let L be an L-tensor with associated coordinates (q'). Then: (i) Each eigenva-
lue u' depends on the associated coordinate q* only, u* = u'(q"). (i1) It is of trace-type, C =
Vtr(L). (i13) In associated coordinates the metric has the form

1 . o
gkk = ¢ki1;£ mv u' = u' (qz), K = Pk (qk) > 0, (7.2)
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or, after a rescaling
H L uk‘ (7.3)

In both cases,
Oz’
Olnght = ——— %k
ut —u
(We call normal coordinates associated with L the orthogonal coordinates for which equa-

tions (7.3) hold). (iv) The associated coordinates are separable. (v) L commutes with the Ricci
tensor R, [L,R] = 0, i.e., the Robertson condition is satisfied: in the associated coordinates,
Ri; =0 fori #j.

These properties are derived from [4, 6]. They follow from equations (7.1) and from the funda-
mental properties of the elementary symmetric polynomials (see the next section). From (7.2) it
follows that the contracted Christoffel symbols T'; = g™ 'y take the simple form I'; = —%gb;ﬁqﬁk.
Thus, in normal coordinates I'; = 0. Since in separable orthogonal coordinates R;; = %(%Fj,
for i # j, the Robertson condition (v) is proved. Item (ii) (which follows from (7.1): C; = O;u’
and d;u? = 0 for i # j implies C; = 0; PP u?) shows that in [22, Proposition 1, Section 1] the
assumption that (u’) are functionally independent eigenvalues is redundant.

It is a remarkable fact that the metric (7.2) associated with L is that of the correspon-
ding geodesics found by Levi-Civita [36]: there exists a metric G = () having the same
(unparametrized) geodesics of a given metric G = (g) if and only if there are orthogonal
coordinates in which the metric G assumes the form (7.2). It must be pointed out that this
theorem holds under the assumption that the tensor G has simple eigenvalues with respect to G.
This matter has been recently analysed by Bolsinov and Matveev [20] and by Crampin [23]. The
metric (7.2) is a special case of the orthogonal separable metric determined by Eisenhart [27,
Appendix 13] and characterised by the condition Rj;, = 0 for 4, j, k #.

8 L-systems

Let 0q(u) denote the elementary symmetric polynomial of degree a of the n variables u = (u?).
Let 0! and o7 be the functions obtained from o, by setting u’ = 0 and v/ = 0. Let us set

00—00—00—1 0_1201_1:(7?1:0, y:anl—o (8.1)

Then the following equations are satisfied [4, Section 2]:

oo =0 +ulol ol =0l 4 uioflj_l, ol — ol = (uj - ui)a?‘_l. (8.2)

Zuiafl,l = aoyg, det [o}] = H (u' — ). (8.3)
7 7>

80’ ; 80"7 ) . . 80"7 .

81; = 0.31717 81:; = 0.111]—17 ('LL] - ul) 8U(; = O-ZL - Ué (84>

If u' # w for i # j, then

da’ i J )
9a _ %o~ Ya det [o}] #0, a=0,1,...,n—1, i=1...,n

out wl —ut’

It follows that for any coordinate system (g*),

o h J
90}, = O" ”" =Y ooyl =Y ot Ce (8.5)
hi hi “
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Theorem 8.1. Let L be a symmetric 2-tensor with eigenvalues (u'). The tensors (K,) =
(Ko, K1,...,K,_1) defined by

Ko=G, K,=tr(K, L)G-K, L  a>0, (8.6)

or by

a
Ka = (—]_)kga_k.Lk’ Ka = O'aG — KaflL, K*l = 0, (87)
k=0

form a basis of a KS-space if and only if L is an L-tensor.

Proof. (i) Assume that (K,) defined by (8.6) is a basis of a KS-space. Then they are linearly
independent and there are orthogonal (separable) coordinates in which these tensors as well as L
are diagonalised and equations

0ipl, = (pl — pl)Oing”,  det [p}] #0, (8.8)

hold, being pa the elgenvalues of K. Due to (8.6), these eigenvalues fulfill the recurrence
relation pl, = Zk ok 1“ — pa LUt On the other hand, from the first equations (8.3) and (8.2)
we get 1 Yo ub — ol jut =0, — ol _ju’ = of. This shows that

P = 0a(w).

It follows that: (I) Due to the second equations (8.3) and (8.8), the eigenvalues u’ are simple.
(IT) Due to the first equation (8.2), the definition (8.6) implies the alternative definitions (8.7).
(IIT) Due to the first equation (8.8), d;p%, = 0 thus, 0 = > d;uc |. Let us consider the case

hti
i = 1. We get the linear homogeneous system of n — 1 equations
Y ool =0, a=1,...,n-1, (8.9)
h>1
in the n — 1 unknown functions d;u”, with h = 2,...,n. We can put 0 1 = & where 5{)‘,
b=0,...,n— 2, are the symmetric polynomials in the n — 1 variables (u?,... ) n analogy
with the third equation (8.4) we have det[5'] = [ (u’—u/), thus det[6}}] = det[o1,] £ 0. It

j>i>1
follows from (8.9) that dju” = 0 for all h > 1. In a similar way we prove that d;u" = 0 for all
h # i. This shows that H(L) = 0. Finally, from K = tr(K1L) — L we get

L2 (K@ - K. (8.10)

n J—
Being K; a KT, L is a CKT. (ii) Conversely, assume that L is an L-tensor. In coordinates
associated with L we have d;u" = 0 for all h # i, and moreover, 0 = (u’ — u/)9; In g% + d;u’.
By (8.5) we get

o — guile — (o — 69V In g%
00l = Oiu i (o) — 02)0;Ing".

Being p!, = o, this shows that the tensors K, are Killing tensors. They are pointwise indepen-
dent due to (8.3). [

We call L-system any separable orthogonal system whose KS-space is generated by an L-tensor
according to Theorem 8.1. We call L-web any orthogonal web corresponding to an L-system?.

3L-systems have been considered in [17, 18]. See also the extensive classification [9] of special symmetric
two-tensors (including L-tensors) with application to the theory of the equivalent dynamical systems and to the
theory of cofactor and bi-cofactor systems.
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Remarks 8.2.

(i) All the Killing tensors K, (a # 0) have simple eigenvalues. The sequence (8.6) was
suggested by the analysis [4] of the planar inertia tensor L of an asymmetric massive body
in the Euclidean n-space. The tensor K is the corresponding inertia tensor. Formula (8.7)
shows that K, = 0 for a > n — 1, since for a = n the right-hand side vanishes due to
the Hamilton—Cayley theorem. Formula (8.6) is more effective than (8.7) since it does dot
require the knowledge of the eigenvalues of L.

(ii) Within a completely different context, a sequence like (8.6) is considered by Schouten [49,
p. 30] generated by a matrix P, as an effective tool for computing the eigenvectors of
a matrix P without solving systems of linear equations (when the eigenvalues are known
and simple). Such a method was firstly introduced by Fettis [28] and Souriau [51].

(iii) We observe with Schouten [49] that the (1,1) tensor Q(x) = cof(L — Q) is polynomial of
degree n — 1 in x, whose coefficients, up to the sign, are the tensors K, defined in (8.7).
We recall that the cofactor A = cof(A) of A is defined by AA = AA = det(A)G. Hence,
the Stéckel systems of the kind considered in the last two theorems are just the so-called
cofactor systems (cf. [16]). In fact, they should be called Levi-Civita systems (so that
“L-systems” is a good notation) since the separable metric (7.3) (but not the tensor L)
appears for the first time in [36], where it is also shown that for such a metric the function

. . . . . i 2
F(g,g,c) =[] (W + ) [u? — | (")
J#
is a first integral of the geodesics for all values of the parameter c¢. Since F' is a poly-
nomial in ¢ of degree n — 1, its coefficients gives rise to n first integrals. These first

integrals coincide, up to the sign and after the Legendre transformation, with the first
integrals P(K,).

(iv) Due to item (v) of Theorem 7.3, a necessary condition for a Stéckel system to be an L-
system is the Robertson condition: [K, R] = 0 for a characteristic tensor K (thus, for all
elements of the KS-space).

A criterion for testing if a Stackel system is an L-system is the following.

Theorem 8.3. A Stickel system is an L-system if and only if in the corresponding KS-space
there exists a characteristic tensor K1 such that the tensor L defined by (8.10) is torsionless.

Proof. (i) Assume that there exists a ChKT K such that the tensor L defined by (8.10) is
torsionless. Any tensor of the kind fG + K is a CKT if K is a KT. Since K has simple
eigenvalues, also L has simple eigenvalues. Then L is an L-tensor. The tensors K, constructed
by applying (8.6) form a KS-space K, which has K in common with the original KS-space K.
Thus, Ky = K since two KS-spaces with a ChKT in common coincide. (ii) The converse is
obvious. |

About the uniqueness of an L-tensor generating an L-system, it can be proved that

Theorem 8.4. Two L-tensors L and L generates the same L-system if and only if L = aL+bG,
a,beR, a+#0.

In accordance with the remarks at the end of Section 5, a basis (K ) of a KS-space corresponds
i i

to the inverse of a Stickel matrix S~! = [go(a)}, Pla) = K. In the sequence (8.6) we have
Ko= G, then go’@ = ¢ and (p’('a) = K% = olg”. By using the formulas concerning the
elementary symmetric function at the beginning of Section 8 it can be proved that
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Theorem 8.5. For an L-system the Stdckel matriz associated with the basis (8.6), S = [goga)],
assuming u' < u? < --- < u", is of alternating Vandermonde type,

%(a) = (=1)neti(yhynet a=0,...,n—1, i=1,...,n index of row. (8.11)

For n = 3 we have (a index of row)

gll g22 933
[(p%a)] — (u2 —{—u3)911 (US +u1)922 (ul +u2)933 ,
u2u3gll u3ulg22 u1u2g33
gll — 1 922 — 1 g33 — 1
(ul ) (ul — )’ (u? — ) (ul — )’ (u? —u?) (P — )’

In accordance with Theorem 8.1, the inverse matrix is

(ut)? w1
§=[g"= |- w1
(u3)2 —u3 1

Remark 8.6. If we multiply each row <pl(-a) of a Stickel matrix by a function f;(¢') # 0, then
we get a new Stackel matrix @(a) = figoga) whose inverse 95%(@) defines a new basis of the same
KS-space. By multiplying the lines of (8.11) by +1 in a suitable way and by changing L in —L,

we can get a Stéckel matrix which is of the Vandermonde type (see the case n = 3, for instance).

9 The functional independence of the eigenvalues of an L-tensor

The results of Section 8 hold without any assumption on the functional independence of the
eigenvalues (u') of L. Some of them may be constant. The only essential assumption is that
they are pairwise and pointwise distinct. The following theorems deal with this matter.

Theorem 9.1. If a torsionless CKT has functionally independent eigenvalues (u'), then it is
an L-tensor (its eigenvalues are pointwise simple).

Proof. In this case the eigenvalues define local orthogonal coordinates ¢* = u in which the ten-
sor is diagonalised. We can apply Theorem 6.2. Equations (6.2) become 6% = (u’—u*)9; In g**+1.
For i # k we have u’ # u”. |

Note that in this case L is a special type of L-tensor (the type considered by Crampin [22, 23]).

Theorem 9.2. Let L be an L-tensor. (i) The eigenvalues (u') of L are independent functions
(i.e., they define locally an orthogonal coordinate system) if and only if L is not invariant
with respect to a Killing vector X . (ii) If there exists a Killing vector X such that [ X, L] =0,
then X is a linear combination (with constant coefficients) of Killing vectors in involution which
are eigenvectors of L.

In case (i) we have no symmetry of the separable web generated by the eigenvectors of L.
This means that all the structures associated with L are not invariant with respect to groups of
isometries.
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Proof. The eigenvalues of a (1,1)-tensor L are functionally independent, and thus they define
a coordinate system, if and only if det[0;u?] # 0. For a torsionless tensor with simple eigenvalues
we have, with respect to the associated coordinates, d;u’ = 0 for i # j. Hence, the eigenvalues
are independent functions if and only 9;u’ # 0 for all indices. (i) If an eigenvalue u’ of L is
constant, d;u’ = 0, then from the expression (7.3) of the metric we see that the corresponding
(normalised) coordinate ¢ is ignorable. This means that 0/dq’ is a Killing vector which leaves
invariant L. Conversely, let us assume that there is a Killing vector X such that [X, L] = 0.
These two assumptions on X are equivalent to {Px,Pg} = 0 and {Px,Pr} = 0. In an
orthogonal coordinate system (g') associated with L, these two equations read {Xp;, g7/ p?} =0
and {X'p;, v g/’ p?} = 0, respectively. Since they are algebraic equations in p, to be satisfied
for any value of these variables,they are equivalent to

> X'ogtt —2g™oxt =0, g0 X+ g%oxT, j#k,

i
ZX’&- (ukgkk) — 2ukgkk8ka =0, ujgjjank + ukgkkaka, Jj# k.
i

The first two equations characterise the Killing vectors in orthogonal coordinates. The second
and the fourth equations imply (u/ — u¥)g#70;X* = 0 for j # k. Since w/ # u* we conclude
that 9;X* = 0 for j # k, which means that X* = X?(¢%). Since d;u* = 0 for i # k, from the
third equation it follows that X*o,uFgk* + uF > X0;g"* — 2uFg** 9, X* = 0. Due to the first
equation (8.9), this last equation implies X*Oru* = 0 (no summation over the index k). Up
to a reordering of the coordinates, let us assume that X¢ = 0 and X* # 0 fora = 1,...,m
and « = m+1,...,n. From the last equation it follows that u® = const and X = X%0,. At
the beginning of this proof we have seen that if u® = const, then ¢® are ignorable coordinates
(we always assume that the coordinates (¢°) are normalised so that the metric assumes the
form (7.3)). Thus, 0, are Killing vectors in involution and eigenvectors of L. Since X = X0,

is a Killing vector, the components X% must be constant. |
Assume that the eigenvalues u® (u* = m + 1,...,n) of an L-tensor are constant and the
remaining (u®) (a = 1,...,m) are independent functions. Then we can choose associated or-

thogonal coordinates (¢*) = (¢% ¢®) such that ¢® = u® and ¢* are ignorable. From (7.1) it
follows that

(u“ — ub)(?a Ing” +1=0, (ua — u“)aa Ing**+1=0,
being the remaining equations identically satisfied. Thus, we are faced with three cases:

(I) m = 0, all u' = const, i.e., all ¢* are ignorable: the manifold @ is locally flat, the
coordinates (¢') are orthogonal Cartesian coordinates, g* = const and L is a constant
tensor.

(IT) 0 < m < n: in this case g** # const due to equation (u* —u®)J, In g**+1 = 0. Condition
g** # const means that the Killing vectors X, = 9, are not translations [25, Section 52].

(ITII) m = n, all eigenvalues are independent: this is the case examined in Theorem 9.2.
Taking into account the proof of the preceding theorem, cases (I) and (II) shows that:

Theorem 9.3. Let L be an L-tensor. (i) If L has all constant eigenvalues, then the manifold Q
is locally flat and L = const (in the sense that all its components in Cartesian coordinates are
constant). (i1) If L is invariant with respect to m < n Killing vectors, then these vectors are
not translations.
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10 L-potentials

In this section we propose a few remarks on the potential functions associated with an L-system.
For further approaches to this matter we refer the reader to [16, 30]. By virtue of (1.3) and (7.3)
we have

Theorem 10.1. A potential V is separable in an L-system if and only if, with respect to normal
coordinates (q") associated with L,

1 o
00V = OV —0V), 0=

w —ul

Note that in this theorem (as well as in the following) the eigenvalues u of L may not be
independent functions.

Theorem 10.2. Let (K,) be the basis of the KS-space generated by an L-tensor L according
to formula (8.6). Then the functions Vg(u) = oq+1(u) (a = 0,1,...,n — 1) fulfill equations
dVy = KodV, with V. = Vy = tr(L) = ), u?, and the functions H, = %PKG + V. are first
integrals in involution.

Proof. K,dV = 0.0,V dq' = o' dq* = 0;0441dq" = dV,. Apply (5.1). |

11 L-pencils

There are Stéackel webs which are not L-webs. A necessary condition is the Robertson condition.
However, also in manifolds where this condition is identically satisfied, for instance in constant
curvature spaces, there are Stéckel systems which are not generated by an L-tensor. For instance,
due to Theorem 9.3(ii), in a E,, all translational webs (except the Cartesian web) are not L-
webs. As remarked above, also the spherical-conical webs are not L-webs. This last case has
suggested [4] the introduction of a linear combination®

L(m) = Lo+ mLy,
which is an L-tensor for all values the parameter m € R. We call L-pencil such an object.
Theorem 11.1. Let L = Ly + mLy be an L-pencil. Then:

(i) Lo has simple eigenvalues.
(13) L is a CKT for all m if and only if Ly and Ly are CKT’s.
(791) The condition H(L) = 0 is equivalent to

h k k h h k k h
H(LO) = H(Ll) =0, Id [ia\h\ll/ il IO/ ha[ill/ 7] +Il/ [ia\h\% i = 11/ ha[i% i = 0.

(tv) The Ricci tensor R commutes with both Lo and L.

The proof is straightforward. Let us apply the iterative formula (8.6) and Theorem 8.1 to the
tensor L(m). Since L is polynomial of degree 1 in m, each tensor K,(m) is at most of degree a:
K,m)=Hm*+H, im* ' +....

Theorem 11.2. (i) The tensors K,(0) form a KS-space. (ii) The tensors H,, given by the
coefficients of maximal degree of Kq(m), if independent, form a KS-space. (iii) The Stdckel
systems generated by these two KS-spaces satisfy the Robertson condition.

4See also [10].
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Also for this statement we omit the proof. We remark that there are cases in which all the K,
are of degree 1, as in the following example.

Example 11.3 ([4]). In E,, we consider the tensor L(m) = Ly + mr ® r. It represents (for
m # 0) the planar moment of inertia of a massive body with total mass m and center of mass
at the origin. Lg is a constant symmetric tensor (hence, a KT) with simple eigenvalues (a').
L; = »® r is a CKT whose eigenvalues are all zero except one (= 72). It can be proved
that: (i) L is an L-pencil; (ii) the tensors K,(0) form a KS-space corresponding to Cartesian
coordinates; (iii) K 4(m) are all of degree 1 in m, K,(m) = K4(0) + mH,; (iv) the tensors H,
form a KS-space corresponding to the conical spherical coordinates.

The above results stimulate investigations about the notion of an L-pencil, also in relation
with recent studies on the same concept and the notion of cofactor pair system (see, e.g., [38, 39,
47, 48]). A possible generalisation is a multi-pencil of the type L = Lo + m'L; with (m?) € RF
or L = m