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Abstract. We show that the co-rays to a ray in a complete non-compact Finsler manifold
contain geodesic segments to upper level sets of Busemann functions. Moreover, we charac-
terise the co-point set to a ray as the cut locus of such level sets. The structure theorem
of the co-point set on a surface, namely that is a local tree, and other properties follow
immediately from the known results about the cut locus. We point out that some of our
findings, in special the relation of co-point set to the upper lever sets, are new even for
Riemannian manifolds.
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1 Introduction

Roughly speaking, a Busemann function is a function that measures the distance to a point at
infinity on a complete boundaryless non-compact Riemannian or Finsler manifold. Originally
introduced by H. Busemann for constructing a theory of parallels for straight lines (see [2, 4, 5,
10]), the function plays a fundamental role in the study of complete non-compact Riemannian
or Finsler manifolds (see [8, 10, 11], etc).

In the present paper, we study the differentiability of the Busemann function in terms of
co-rays and co-points to a ray in the general case of a forward complete non-compact Finsler
manifold. We show that the notions of geodesic segments to a closed subset and the cut locus
of such sets can be extremely useful in the study of co-rays and co-points to a ray, that is points
where Busemann function is not differentiable.

The originality of our research is two folded. Firstly, the detailed study of Busemann func-
tions, co-rays and co-points on Finsler manifolds is new. Secondly, in the special case of Rie-
mannian manifolds, our main Theorems 1.1 and 1.2, first statement, are new and they lead to
new elementary proofs of other results already known.

Let (M,F ) be a forward complete boundaryless Finsler manifold. A unit speed globally
minimising geodesic γ : [0,∞) → M is called a (forward) ray. A ray γ is called maximal if
it is not a proper sub-ray of another ray, i.e., for any ε > 0 its extension to [−ε,∞) is not
a ray anymore. Moreover, let us assume that (M,F ) is bi-complete, i.e., forward and backward
complete. A Finslerian unit speed globally minimising geodesic γ : R → M is called a straight
line. We point out that, even though for defining rays and straight lines we not need any
completeness hypothesis, without completeness, introducing rays and straight lines would be
meaningless.

Let γ : [0,∞) → M be a given forward ray and let x be a point on a non-compact forward
complete Finsler manifold (M,F ). Then, a forward ray σ : [0,∞) → M is called a forward
co-ray (or a forward asymptotic ray) to γ if there exists a sequence of minimal geodesics {σj}
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from qj := σj(0) to σj(lj) := γ(tj), for some divergent sequence of numbers {tj}, such that
lim
j→∞

qj = σ(0) and σ̇(0) = lim
j→∞

σ̇j(0).

A co-ray to γ is called maximal if for any ε > 0 its extension to [−ε,∞) is not an co-ray
to γ anymore. The origin points of maximal co-rays of γ are called the co-points to γ (a slightly
stronger definition can be found in [8]).

Similarly, one can define asymptotic straight lines. If γ : R → M is a straight line in a bi-
complete Finsler manifold, then the straight line σ : R→M is an asymptotic straight line to γ
if σ|[0,∞) is asymptotic ray to γ|[0,∞), and σ̄|[0,∞) is asymptotic ray to γ̄|[0,∞) with respect to the
reverse Finsler metric F̄ (x, y) := F (x,−y), where σ̄(t) := σ(−t) and γ̄(t) := γ(−t), t ∈ [0,∞)
are the reverse rays of σ and γ, respectively (see [8] for details). This definition makes sense
because if σ is a geodesic for F , then the reverse curve σ̄(t) is geodesic for F̄ .

If γ is a forward ray in the forward complete boundaryless non-compact Finsler manifold
(M,F ), then the Busemann function is defined by x ∈ M 7→ bγ(x) := lim

t→∞
{t − d(x, γ(t))},

where d is the Finsler distance function (see Section 2 for details).
Let us recall from [12] some notions that will be useful later.
Let N ⊂ M be a closed subset of M . For a point p ∈ M\N , a unit speed geodesic segment

α : [0, a]→M from p = α(0) is called a forward N -segment if d(α(t), N) = a− t holds on [0, a],
where d(x,N) := inf{d(x, q) : q ∈ M} for any x ∈ M . The existence of N -segments from any
p ∈ M\N follows from the fact that N is closed and the forward completeness hypothesis. If
a unit speed (nonconstant) geodesic segment α : [0, a] → M is maximal as an N -segment, then
the point p = α(0) is called a cut point of N along the N -segment α, i.e., any geodesic extension
α̃ : [−ε, a]→M , ε > 0, α̃|[0,a] = α|[0,a] of α is not a forward N -segment anymore. The cut locus
of N , denoted hereafter CN , is the set of all cut points of N along all nonconstant N -segments.
Observe that CN ∩N = ∅. If a point p ∈M\N admits two N -segments of equal length, then p
is a cut point of N . Therefore, any interior point of N -segment is not a cut point of N .

We point out that in [12], for a closed subset N of a backward complete Finsler manifold
(M,F ), a backward N -segment is defined analogously. The notions of forward and backward
N -segments to a closed subset N are equivalent. Indeed, if we consider the reverse Finsler
metric F̃ on the manifold M given by F̃ (x, y) := F (x,−y) for each (x, y) ∈ TM , a backward
N -segment on (M,F ) is a forward N -segment on (M, F̃ ).

Notice that, since we consider only boundaryless manifolds, any geodesic segment on a com-
pact interval admits forward and backward local geodesic extensions even if the manifold M is
not forward nor backward complete. For more basics on Finsler manifolds see [1] or [9].

Here are the main results of our paper.

Theorem 1.1. Let (M,F ) be a forward complete boundaryless Finsler manifold and let α : [0, a]
→M be a unit-speed geodesic. The following three statements are equivalent.

1. α is a subarc of a co-ray to γ.

2. α satisfies

bγ(α(s)) = s+ bγ(α(0)) (1.1)

for all s ∈ [0, a].

3. α is a forward N b
γ-segment, where N b

γ := b−1γ [b,∞) and b = bγ(α(a)).

From here the relation between co-points to a forward ray and the cut points of a level set
of Busemann function naturally follows.

Theorem 1.2. Let (M,F ) be a forward complete boundaryless Finsler manifold, and γ a ray
in M .
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1. For every b ∈ R, the set of co-points of γ in the sub-level b−1γ (−∞, b) is exactly the cut

locus of the subset N b
γ, i.e., Cγ ∩ b−1γ (−∞, b) = CNb

γ
. Moreover, CNb

γ
⊂ CNc

γ
, for any b < c.

2. The Busemann function bγ is differentiable at a point x of M if and only if x admits a
unique co-ray σ to γ emanating from x = σ(0). In this case ∇bγ(x) = σ̇(0).

Loosely speaking, Cγ =
⋃
b CNb

γ
, where CNb

γ
denotes the cut locus of N b

γ . Here “loosely”
means that it is possible that the local part of CNb

γ
near a fixed point x keeps changing and

never stabilises as b goes to +∞.
These two main theorems make possible to apply known results about the N -segments and

cut points of a closed subset of (M,F ) to the study of co-rays and co-points, allowing the use
of our previous results from [12].

Seen in this light, the proof of the structure theorem for the co-point set on a Finsler surface,
namely that is a local tree, becomes trivial. It is also clear that the topology of (Cγ , δ), with
the induced metric, coincides with the topology of the Finsler surface, as well as that (Cγ , δ)
is forward complete (see Theorem 2.13). Other results are also straightforward from [12] (see
Theorem 2.14).

Section 3 contains some consequences of the characterisation of the Busemann function’s
differentiability given above. Here we study the conditions for the set b−1γ (−∞, c] to be compact
(Theorem 3.1), and for bγ to be an exhaustion (Corollary 3.3). If the co-point set Cγ contains
an isolated point, then some important consequences are proved in Theorem 3.6.

2 Busemann functions

Let (M,F ) be a forward complete boundaryless non-compact Finsler manifold (see [1, 9] for de-
tails on the completeness of Finsler manifolds). In Riemannian geometry, the forward and back-
ward completeness are equivalent, hence the words “forward” and “backward” are superfluous,
but in Finsler geometry these are not equivalent anymore.

Definition 2.1. If γ : [0,∞) → M is a ray in a forward complete boundaryless non-compact
Finsler manifold (M,F ), then the function

bγ : M → R, bγ(x) := lim
t→∞
{t− d(x, γ(t))} (2.1)

is called the Busemann function with respect to γ, where d is the Finsler distance function.

The Busemann function for Finsler manifolds was introduced and partially studied by Eg-
loff [3] and more recently by [8].

Remark 2.2.

1. The limit in (2.1) always exists because the function t 7→ t − d(x, γ(t)) is monotone non-
decreasing and bounded above by d(γ(0), x).

2. Obviously bγ(γ(t)) = t, for all t ≥ 0. Moreover, if γ0 is a sub-ray of the ray γ, then
bγ0(x) = bγ(x) − t0 for any point x ∈ M , where t0 ≥ 0 is the parameter value on γ such
that γ0(0) = γ(t0).

It follows that a point x of M is an element of b−1γ (a,∞), for some real number a, if and
only if t− d(x, γ(t)) > a for some t > 0, and hence we get

Lemma 2.3. For each a ∈ R, b−1γ (a,∞) =
⋃
t>0B

−
t (γ(t + a)) holds, where B−t (γ(t + a)) :=

{x ∈ M | d(x, γ(t + a)) < t} denotes the backward open ball centred at γ(t + a) of radius t. In
particular b−1γ (a,∞) is arcwise connected for each a ≥ 0.
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The triangle inequality implies

Lemma 2.4. The function bγ is locally Lipschitz, i.e.,

−d(x, y) ≤ bγ(x)− bγ(y) ≤ d(y, x)

for any two points x, y ∈M .

The differentiability of Busemann function is fundamental for the study of co-rays. Some
results are already known (see for instance [4]). Let us denote by ∇f(x) the Finslerian gradient
of a smooth function f : M → R (see [8] or [9, p. 41]).

Theorem 2.5 ([8]). Let γ be a forward ray in a non-compact forward complete Finsler mani-
fold (M,F ).

1. For any x ∈M , there exists at least one co-ray σ of γ such that σ(0) = x.

2. If the geodesic ray σ is a co-ray to γ, then bγ(σ(s)) = s+ bγ(σ(0)), ∀ s ≥ 0.

3. If bγ is differentiable at a point x ∈M , then σ(s) := expx(s∇bγ(x)) is the unique co-ray
to γ emanating from x, where ∇bγ(x) is the Finslerian gradient of bγ at x.

Remark 2.6. The converse of statement 2 in Theorem 2.5 is actually contained in our Theo-
rem 1.1, 2 ⇒ 1.

For any closed subset N of M , we have defined N -segments in Introduction. From now on,
any N b

γ-segment will mean forward N b
γ-segment, where N b

γ := b−1γ [b,∞).

Proof of Theorem 1.1. 1⇒ 2. Suppose that the property 1 holds. Then, statement 2 follows
immediately from Theorem 2.5(2).

2⇒ 3. Choose any s ∈ [0, a] and any x ∈ b−1γ [b,∞), where b := bγ(α(a)). By definition we
have bγ(x) ≥ b = bγ(α(a)), and from Lemma 2.4 it follows

bγ(α(a))− bγ(α(s)) ≤ bγ(x)− bγ(α(s)) ≤ d(α(s), x). (2.2)

On the other hand, the relation (1.1) implies

d(α(s), α(a)) ≤ a− s = bγ(α(a))− bγ(α(s)). (2.3)

From relations (2.2) and (2.3) it results d(α(s), α(a)) = d(α(s), N b
γ) for any s ∈ [0, a], and

since the point x is arbitrarily chosen from N b
γ we obtain that α is an N b

γ-segment.
3 ⇒ 1. Choose any sufficiently small ε > 0. Let σε : [ε,∞) → M denote a co-ray to γ

emanating from α(ε), α|(ε,∞) 6= σε|(ε,∞).

Since σε satisfies (1.1) for all s ≥ ε, σ|[ε,a] is also an N b
γ-segment emanating from α(ε). Thus,

the two geodesic segments α|[ε,a] and σε|[ε,a] must coincide, since α(ε) is an interior point of α
and interior points of N -segments have a unique N -segment. Therefore, α is a subarc of the
co-ray lim

ε→0
σε. �

By Theorem 1.1 we get

Corollary 2.7. If a unit speed geodesic σ : [0, a]→ M satisfies relation (1.1), for all s ∈ [0, a],
then σ is a co-ray to γ.

Corollary 2.8. For each a ∈ R such that b−1γ (a) 6= ∅, we have

d(x,Na
γ ) = a− bγ(x), ∀x ∈ b−1γ (−∞, a].

Hence, bγ is differentiable at a point x if and only if for each real number a > bγ(x) the distance
function d(·, Na

γ ) is differentiable at x.
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Proof. Choose any x ∈ b−1γ (−∞, a], and denote by σ : [0,∞) → M a co-ray to γ emanating
from x = σ(0). Since σ|[0,a−bγ(x)] is an Na

γ -segment and noticing that σ(a − bγ(x)) ∈ b−1γ (a),
we obtain d(x,Na

γ ) = d(σ(0), σ(a− bγ(x))) = a− bγ(x). �

Proof of Theorem 1.2. Let x ∈M be any co-point of γ. Choose b > 0 such that b > bγ(x).
Then, from Theorem 1.1 it follows that, for any co-ray σ : [0,∞)→M of γ from x, we have

• the relation bγ(σ(s)) = s+ bγ(σ(0)) = s+ bγ(x) holds good for any s ≥ 0. Hence, for our
chosen b > 0, there always exists a > 0 such that b = bγ(σ(a)) = a+ bγ(x);

• the geodesic segment σ|[0,a] is a maximal N b
γ-segment.

It results that x ∈ CNb
γ
.

Conversely, we choose any point x ∈ ∪b>0CNb
γ
. It follows that x is a cut point of N b

γ , for some

b > 0. Let σ : [0, a] → M be an N b
γ-segment from x = σ(0), where b = bγ(σ(a)) = a + bγ(x).

Theorem 1.1 implies that there exists a maximal co-ray σ̃ : [0,∞)→M of γ such that σ̃|[0,a] =
σ|[0,a]. This means that x = σ̃(0) ∈ Cγ .

We will prove now that CNb
γ
⊂ CNc

γ
, for any b < c. Indeed, let us consider any point x ∈ CNb

γ
,

and let σ : [0, a]→M be an N b
γ-segment emanating from x = σ(0), i.e., b = bγ(σ(a)) = a+bγ(x).

Notice that any short backward geodesic extension σ̃ : [−ε, a]→M of σ, where ε > 0, cannot
be an N b

γ-segment, due to the fact that x ∈ CNb
γ
.

On the other hand, by Theorem 1.1, σ|[0,a] is a subarc of a maximal co-ray σ̃ : [0,∞) → M
of γ. Taking into account that a + bγ(x) = b < c, that is, there exists ã > 0 such that
a < ã := c− bγ(x), then again from Theorem 1.1 it results that the subarc σ̃|[0,ã] is a maximal
CNc

γ
-segment, and hence x ∈ CNc

γ
. In other words we have proved that CNb

γ
⊂ CNc

γ
, for any b < c.

2. Follows easily from Theorem A in [12], Corollary 2.8 and Theorem 1.1. �

Corollary 2.9. If x ∈M is an interior point of a co-ray σ of γ, then bγ is differentiable at x.

Proof. Choose any point σ(t0), t0 > 0. By Theorem 1.1, the subray σ|[t0,∞) is a unique co-ray
to γ emanating from σ(t0). Thus, Theorem 1.2, statement 2 shows that bγ is differentiable
at σ(t0). �

Let us denote by Cγ the co-point set of the ray γ, that is the origin points of the maximal
co-rays to γ.

Remark 2.10. From the definition of co-points it follows that if p ∈ Cγ , then there exists
a maximal co-ray of γ emanating from p. Equivalently, any co-ray emanating from p ∈ Cγ is
maximal.

By Proposition 2.5 in [12] and our Theorem 1.1 we obtain the following.

Corollary 2.11. Let (M,F ) be a forward complete boundaryless Finsler manifold, γ a forward
ray in M and Cγ the co-point set of γ.

Then, the subset

C(2)γ := {p ∈ Cγ : there exist at least two maximal co-rays from p to γ} ⊂ Cγ

is dense in Cγ.

Remark 2.12. Let ND(bγ) ⊂ M be the set of non-differentiable points of the Busemann

function bγ . Then, from Corollaries 2.9 and 2.11 it follows C(2)γ = ND(bγ) ⊂ Cγ ⊂ ND(bγ).

In the special case when Cγ is closed set in M , we have ND(bγ) ⊂ Cγ = ND(bγ). This is
not true in general (see Remark 3.10).
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In the two dimensional case, the structure theorems of the cut locus from [12] can be easily
extendend to the structure of Cγ . We recall that an injective continuous map from the open
interval (0, 1) (or closed interval [0, 1]) of R and from a circle S1 into M is called a Jordan arc
and a Jordan curve, respectively.

A topological space T is called a tree if any two points in T can be joined by a unique Jordan
arc in T . Likewise, a topological space C is called a local tree if for every point x ∈ C and for
any neighborhood U of x, there exists a neighborhood V ⊂ U of x such that V is a tree.

A continuous curve c : [a, b]→M is called rectifiable if its length

l(c) := sup

{
k∑
i=1

d(c(ti−1), c(ti)) | a =: t0 < t1 < · · · < tk−1 < tk := b

}
.

is finite.
By Theorem 1.2 and Theorem B in [12] we obtain (compare with [6])

Theorem 2.13. Let γ be a ray in a forward complete boundaryless 2-dimensional Finsler mani-
fold (M,F ). Then, the of co-point set Cγ of γ satisfies the following three properties.

1. The set Cγ is a local tree and any two co-points on the same connected component of Cγ
can be joined by a rectifiable curve in Cγ.

2. The topology of Cγ induced from the intrinsic metric δ (see definition below) coincides with
the induced topology of Cγ from (M,F ).

3. The metric space Cγ with the intrinsic metric δ is forward complete.

Indeed, by the first statement, any two co-points q1, q2 ∈ Cγ can be joined by a rectifiable
arc in Cγ if q1 and q2 are in the same connected component. Therefore, the intrinsic metric δ
on Cγ defined as

δ(q1, q2) :=


inf{l(c)| c is a rectifiable arc in Cγ joining q1 and q2},

if q1, q2 ∈ Cγ are in the same connected component,

+∞, otherwise

is well defined.
By Theorem 1.2 and Theorem C in [12] we have

Theorem 2.14. Let γ be a ray in a forward complete boundaryless 2-dimensional Finsler mani-
fold (M,F ). Then, there exists a set E ⊂ [0,∞) of measure zero with the following properties:

1. For each t ∈ (0,∞)\E, the set b−1γ (t) consists of locally finitely many mutually disjoint
arcs. In particular, if b−1γ (a), is compact for some a > t, then b−1γ (t) consists of finitely
many mutually disjoint circles.

2. For each t ∈ (0,∞)\E, any point q ∈ b−1γ (t) admits at most two maximal co-rays.

Here locally finitely many means that for x ∈ bγ(t), and any forward (or backward) ball
B+(x, r) := {p ∈M : d(x, p) < r}, the set B+(x, r) ∩ bγ(t) contains only finitely many arcs.

3 Implications of the differentiability of bγ

Here are some results that follow from the previous section (compare with [4]).
In [4] it is proved for G-spaces that if the co-point set Cγ 6= ∅ is compact, then bγ is an

exhaustion function. We will give a more general result.
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Theorem 3.1. Let (M,F ) be a forward complete non-compact boundaryless Finsler manifold
and γ a ray in M .

If for some given c ≥ inf bγ(M), the set Cγ ∩ b−1γ (−∞, c] is compact and non-empty, then
b−1γ (−∞, c] 6= ∅ is compact.

Proof. For the number c ≥ inf bγ(M) given, we define the set

Sc :=
{
q ∈ b−1γ (c) | q belongs to some co-ray to γ emanating from a point in Cγ

}
.

For later use we also define

M̃ := {x ∈M | there is a maximal co-ray σx : (a,∞)→M, passing through x,

for some a ∈ [−∞,∞)}.

Remark that if F is bi-complete, then a = −∞ always in the definition of M̃ , but since we
assume only forward completeness here, a finite value for a might happen.

We will divide the proof in two steps.
Step 1. Firstly, we prove that

Sc = b−1γ (c).

In the case c < inf bγ(M), we prove this by showing the followings

(i) the set Sc is non-empty,

(ii) Sc is open in b−1γ (c),

(iii) M̃ is closed in M ,

(iv) M̃ is open in M .

Proof of (i). Firstly, we show that Sc 6= ∅. Indeed, taking into account the hypothesis, we
can consider a point p ∈ Cγ ∩ b−1γ (−∞, c]. If bγ(p) = c then p ∈ Sc and there is nothing to
prove.

We can therefore assume bγ(p) < c, that is there exists l > 0 such that bγ(p) = c− l.
Since p ∈ Cγ , we consider the maximal co-ray σ : [0,∞) → M from p to γ and let q be the

point on σ such that d(p, q) = l. Then bγ(σ(s)) = s + bγ(p) implies bγ(q) = d(p, q) + bγ(p) =
d(p, q) + c − l = c and hence q ∈ b−1γ (c) and q ∈ σ, that is q ∈ Sc. These show that Sc is
non-empty and (i) is proved.

Proof of (ii). Next, we prove by contradiction that Sc is open. Indeed, assuming by contra-
diction that for q ∈ Sc there is a points sequence {qj} ⊂ b−1γ (c)\Sc such that q = lim

j→∞
qj . We

denote by σj and σ the co-rays passing through qj and q, respectively. Let x be the initial point
of σ, and by our assumption x ∈ Cγ ∩ b−1γ (−∞, c].

Consider now a scalar r > d(q, x) and the forward closed ball B+(q, r) := {p∈M | d(q, p) ≤ r}.
Obviously B+(q, r) is compact due to the forward complete hypothesis and the Hopf–Rinow
theorem, and x ∈ B+(q, r).

Let σj denote a co-ray to γ emanating from qj = σj(0). Since B+(q, r) is compact and qj /∈ Sc,
we can extend backward σj to some interval [sj , 0] with d(q, σj(sj)) = r+ δ. Any limit geodesic
of the sequence {σj} is a co-ray passing through q which contains x as an interior point, that is
a contradiction (see Fig. 1).

It follows that Sc must be open set and (ii) is proved.

Proof of (iii). Now we show that M̃ is closed in M . Indeed let {xj} be a set of points in M̃ ,
such that xj → x in M , and let σj : (aj ,∞) → M be maximal co-rays to γ, parametrised such

that σj(0) = xj , with aj ∈ [−∞, 0). Obviously, such σj exist from the definition of M̃ .
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Figure 1. Sc is an open set.

By extracting some sub-sequence of σj we can assume, without loosing the generality, that
σj |[0,∞) converges to some σx|[0,∞).

We will show that x ∈ M̃ . As the sequence {xj} was arbitrary, this would imply M̃ closed. So

assume by contradiction x ∈ M\M̃ . This means that the domain of definition of the maximal
co-ray extension of σx is the interval [a,∞), for some a ∈ [−∞, 0). Therefore σx(a) ∈ Cγ , and
hence q := σx(1) ∈ Sc, for c := 1 + bγ(x), where we use Theorem 1.1.

On the other hand, for j large enough, consider the points qj := σj |[0,∞)∩b−1γ (c), and observe
that qj ∈ b−1γ (c)\Sc, by definition. But this contradicts the fact that Sc is open, a fact proved
already in (ii).

Thus, the (unique) maximal co-ray through x must be of the form σx : (a,∞)→M , for some

a ∈ [−∞, 0), and therefore x ∈ M̃ . This shows that M̃ is closed and hence (iii) is proved.

Proof of (iv). Finally, we prove M̃ is open set in M , or, equivalently, that M̃\M is closed, in
a similar manner.

Consider a sequence {xj} in M̃\M with xj → x in M , and consider the maximal co-rays
σj : [aj ,∞) → M , with σj(0) = xj . Obviously this is the form of the maximal co-rays due to

the choice of xj and definition of M̃ .

Observe that the sequence of points {σj(aj)} ⊂ Cγ∩b−1γ (−∞, c], for c := 1+bγ(1), and by the
compactness hypothesis of Cγ∩b−1γ (−∞, c] it follows that the limit point σx(a) ∈ C∩b−1γ (−∞, c].
Thus x ∈ M̃\M , and hence M̃ is open, so (iv) is proved.

Using these we will build our argument as follows.

Reminding ourselves that a topological space X is connected if and only if the only closed
and open sets are the empty set and X, by taking X = M , and using claims (iii) and (iv)

proved above, that is M̃ is closed and open in M it follows M̃ = ∅ or M̃ = M (obviously M is
connected by hypothesis). However, since Sc 6= ∅ (claim (i) proved above), the maximal co-ray

passing through any point x ∈ Sc has the form σx : [a,∞)→M , so M̃ = M cannot be possible,

hence M̃ = ∅.

We obtain Sc = b−1γ (c). Indeed, Sc ⊂ b−1γ (c) by definition. Conversely, for any q ∈ b−1γ (c),
it is now clear that there exists a maximal co-ray σq : [a,∞)→M to γ through q, hence q ∈ Sc
and the claim S = b−1γ (c) is proved.

We discuss now the case c = inf bγ(M). Firstly, we observe that, for any c ≥ inf bγ(M),
if σ : (−ε,∞) → M is a co-ray such that σ(0) ∈ b−1γ (c), then bγ(σ(− ε

2)) < c, and thus

b−1γ (inf bγ(M)) ∩ M̃ = ∅.
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In particular, if c = inf bγ(M), and b−1γ (−∞, c] = b−1γ (c) is non-empty, then Sc = b−1γ (c).
The proof of this fact is similar to the proof of (i).

Observe that this immediately implies that Sc 6= ∅ for all c ≥ inf bγ(M).
In other words, what we have proved in Step 1 is that for any point q ∈ b−1γ (c), there exists

a maximal co-ray, i.e., a co-ray emanating from a point x ∈ Cγ, passing through q.
Step 2. Using this we proceed to proving that b−1γ (−∞, c] is compact. We assume the

converse, i.e., we assume there exists a divergent sequence {xj} in b−1γ (−∞, c] in the sense that
for any compact set K ⊂ b−1γ (−∞, c], there exists NK > 0 such that xj /∈ K for any j > NK .

For each j there exists a co-ray σj from xj such that σj ∩ b−1γ (c) = {yj} (this can be easily
seen by a similar argument as in the proof of S 6= ∅). From Step 1 it follows that we can
extend σj up to the point zj = σj(0) ∈ Cγ .

From hypothesis 2 of the theorem, there exists a subsequence zjk of zj convergent to z and
hence there exists a sequence of co-rays σjk (emanating from each zjk) convergent to a co-ray σ
(emanating from the limit point z). For the sake of simplicity we assume lim

j→∞
zj = z. It follows

that there exists a point y ∈ b−1γ (c) such that lim
j→∞

yj = y.

Since xj is by construction an interior point of the N c
γ-segment σj |[0,sj ] that joins zj to yj ,

it follows that there exists a point x interior to the N c
γ-segment σ|[0,s] that joins z to y. But

this implies that the sequence {xj} cannot be divergent in the sense above, that is we obtain
a contradiction. Therefore, b−1γ (−∞, c] must be compact. �

Remark 3.2.

1. Observe that the conclusion of the theorem above cannot hold for c < inf bγ(M) since, in
this case, b−1γ (−∞, c] would be empty set.

2. Similarly with the proof of (ii) above, one can show that actually Sc is also closed. We
will not prove this property here because we don’t need it.

Corollary 3.3. Let (M,F ) be a forward complete non-compact Finsler manifold and γ a ray
in M . If there exists a numerical sequence {ci} with lim

i→∞
ci = +∞, such that for each i such

that Cγ ∩ b−1γ (−∞, ci] is compact and non-empty, then set b−1γ (−∞, ci] is compact, i.e., the
Busemann function bγ is an exhaustion function.

The following lemma shows that Innami’s result in [4] is a special case of our Theorem 3.1.

Lemma 3.4. Let (M,F ) be a bi-complete Finsler manifold and γ a ray in M . If Cγ 6= ∅ is
compact, then for all sufficiently large a ∈ R, the level set b−1γ (a) is arcwise connected.

Proof. Since Cγ 6= ∅ is compact we can choose a number a > max bγ(Cγ). Thus there does not
exist a co-point of γ in b−1γ [a,∞). Choose any two points x and y in b−1γ (a). By Lemma 2.3,
there exists a continuous curve c in b−1γ [a,∞) joining x to y. Since Cγ ∩ b−1γ [a,∞) = ∅, we can
get a curve in b−1γ (a) joining x to y by deforming the curve c along the co-rays intersecting c.
Therefore, the level set is arcwise connected. �

Remark 3.5. Observe that the bi-completeness hypothesis is needed for deforming the curve c
above.

Moreover, we have

Theorem 3.6. Let (M,F ) be a forward complete non-compact boundaryless Finsler manifold
and γ a ray in M . If Cγ contains an isolated point p, then

1. The exponential map expp : TpM →M is a C1-diffeomorphism and any geodesic emanating
from p is a maximal co-ray to γ.
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2. Cγ = {p} only.

3. For any fixed point q ∈M , the relation

d(p, q) + bγ(p) = bγ(q) (3.1)

holds good. In particular, for any a > bγ(p) the level sets b−1γ (a) coincide with the forward
spheres S+(p, a− bγ(p)) := {q ∈M : d(p, q) = a− bγ(p)}.

Proof. 1. Since p ∈ Cγ is isolated in Cγ , it follows by definition that there exists ε0 > 0 such
that

Cγ ∩ B+(p, ε0) = {p},

where B+(p, ε0) is the forward ball in (M,F ).
Claim 1. There exists ε1 ∈ (0, ε0) such that any co-ray to γ emanating from a point of

M\B+(p, ε0) does not intersect B+(p, ε1).
Indeed, let us assume the contrary, that is, we shall assume that for each positive integer j ∈

{1, 2, . . . }, there exists a co-ray σj : [0,∞)→M , emanating from a point qj = σj(0) /∈ B+(p, ε0),
that intersects B+(p, 1j ).

Under this assumption, by extracting a subsequence of {σj} we can construct a convergent
sequence of co-rays with the properties in the assumption above. For simplicity, we denote this
subsequence by {σj} again. In this way, we obtain a limit co-ray σ := lim

j→∞
σj , and a convergent

sequence of points pj ∈ B+(p, 1j ) ∩ σj |[0,∞), lim
j→∞

pj = p. It follows that there exists a co-ray σ

and p is interior point of σ. This is a contradiction with p ∈ Cγ and Claim 1 is proved.
Claim 2. For any point q ∈ B+(p, ε1), the geodesic emanating from p and passing through

the point q is a co-ray of γ.
Let σ : [0,∞)→M be a co-ray to γ emanating from q = σ(0), and let σ̃ : (a,∞)→M be the

maximal geodesic extension of σ. One of the following situations happen.
Case 1. σ̃|(a,0] ⊂ B+(p, ε0).
In this case, since B+(p, ε0) is compact, there exists b ∈ (a, 0) such that σ̃|[b,0] is not minimal.

In particular, σ̃|[b,∞) is not a ray.
Thus, there must exist b1 ∈ (b, 0] such that σ̃|[b1,∞) is a maximal co-ray to γ. It follows

σ̃(b1) ∈ Cγ ∩ B+(p, ε0) = {p} and hence σ̃|[b1,∞) is a co-ray to γ emanating from p and passing
through the point q.

Case 2. There exists b ∈ (a, 0] such that σ̃(b) /∈ B+(p, ε0).
In this case, let us denote b1 := max{t < 0: d(p, σ̃(t)) = ε0}. Since σ̃(0) = q ∈ B+(p, ε1), it

results that σ̃|[b1,∞) is not a co-ray to γ and σ̃|(b1,0) ⊂ B+(p, ε0).
Therefore, it must exist b2 ∈ (b1, 0) such that σ̃|[b2,∞) is a maximal co-ray to γ passing through

σ̃(b2) ∈ Cγ ∩ B+(p, ε0) = {p}.
From these it results that for any point q ∈ B+(p, ε1), there exists a co-ray to γ emanating

from p and passing through the point q and Claim 2 is proved.
From Claims 1 and 2 we conclude that any geodesic from p is a co-ray to γ.
It follows now from Theorem 1.2 that any two distinct co-rays of γ emanating from p do

not intersect again. Indeed, it is trivial to see that since bγ is differentiable at interior points
of co-rays and the tangent direction of the co-ray at such a point is ∇bγ , it is not possible for
co-rays to intersect each other at their interior points.

In this way we obtain that expp : TpM → M is a C1-diffeomorphism and first statement of
the theorem is proved.

2. The fact that Cγ = {p} it is now obvious from the proof of 1.
3. Let us choose any point q ∈ M\{p}, and let us denote by β : [0,∞)→ M any unit speed

geodesic emanating from p and passing through the point q. From the first statement of this
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theorem it follows that β must be a co-ray to γ and hence the relation bγ(β(s)) = s + bγ(p)
holds for any s ≥ 0. In particular, since q = β(d(p, q)), it results bγ(q) = d(p, q) + bγ(p).

Moreover, from here it follows that for any a > bγ(p), we have b−1γ (a) = S+(p, a − bγ(a)),
and the theorem is proved. �

Remark 3.7. If (M,F ) is a non-compact Finsler manifold whose all geodesics are strightlines,
then (M,F ) is bi-complete and Cγ = ∅.

Remark 3.8. It would be interesting to obtain some geometrical conditions (flag curvature
conditions) on the Finsler manifold (M,F ) such that all Busemann functions are everywhere
differentiable. Since this topic requires more elaboration, we leave it for a future research.

We recall that an end ε of a non-compact manifold X is an assignment to each compact set
K ⊂ X a component ε(K) of X\K such that ε(K1) ⊃ ε(K2) if K1 ⊂ K2. Every non-compact
manifold has at least one end. For instance, Rn has one end if n > 1 and two ends if n = 1.
By definition one can see that a product R×N has one end if N is non-compact and two ends
otherwise.

Here we prove

Corollary 3.9. Let (M,F ) be a bi-complete non-compact Finsler manifold.

1. If Cγ = ∅, then M is homeomorphic to R× b−1γ (0).

2. If M has at least three ends, then there are no differentiable Busemann functions on M .

Proof. 1. Since Cγ = ∅, it follows that bγ is smooth everywhere and hence from each point
there is a unique co-ray to γ. Thus, we can define the function ϕ : M → R × b−1γ (0), p 7→
ϕ(bγ(p), h1(p)), where h1(p) is the intersection point of the co-ray from p with the level set
b−1γ (0). From the bi-completness hypothesis it follows that h1(p) always exists. We can easily
see that this is a homeomorphism by using the Lipschitz continuity of bγ .

2. Due to statement 1 it follows that if bγ is differentiable, then M have at most two ends.
Statement 2 follows by logical negation. �

Remark 3.10. It is known that the cut locus of a point in a Riemannian or Finsler manifold M
is a closed subset of M (see [1]). On the other hand, we have shown in [12], by an example, that
the cut locus of a closed subset in M is not closed in M anymore. A natural question is if the
co-point set Cγ is closed or not. First to answer to this question is Nasu who constructed in [7]
an example of Riemannian complete surface with a ray γ whose co-point set Cγ is not closed.
Obviously, the same conclusion can be derived from our Theorem 1.2 and [12].
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