Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 045, 45 pages      arXiv:1508.01752      https://doi.org/10.3842/SIGMA.2016.045
Contribution to the Special Issue on Analytical Mechanics and Differential Geometry in honour of Sergio Benenti

Variational Sequences, Representation Sequences and Applications in Physics

Marcella Palese a, Olga Rossi bc, Ekkehart Winterroth ad and Jana Musilová e
a) Department of Mathematics, University of Torino, via C. Alberto 10, 10123 Torino, Italy
b) Department of Mathematics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
c) Department of Mathematics and Statistics, La Trobe University, Melbourne, Australia
d) Lepage Research Institute, 783 42 Slatinice, Czech Republic
e) Institute of Theoretical Physics and Astrophysics, Masaryk University Brno, Czech Republic

Received September 22, 2015, in final form April 26, 2016; Published online May 02, 2016

Abstract
This paper is a review containing new original results on the finite order variational sequence and its different representations with emphasis on applications in the theory of variational symmetries and conservation laws in physics.

Key words: fibered manifold; jet space; Lagrangian formalism; variational sequence; variational derivative; cohomology; symmetry; conservation law.

pdf (637 kb)   tex (64 kb)

References

  1. Allemandi G., Francaviglia M., Raiteri M., Covariant charges in Chern-Simons ${\rm AdS}_3$ gravity, Classical Quantum Gravity 20 (2003), 483-506, gr-qc/0211098.
  2. Anderson I.M., The variational bicomplex, Technical report of the Utah State University, 1989.
  3. Anderson I.M., Duchamp T., On the existence of global variational principles, Amer. J. Math. 102 (1980), 781-868.
  4. Bauderon M., Le problème inverse du calcul des variations, Ann. Inst. H. Poincaré Sect. A 36 (1982), 159-179.
  5. Bessel-Hagen E., Über die Erhaltungssätze der Elektrodynamik, Math. Ann. 84 (1921), 258-276.
  6. Betounes D.E., Extension of the classical Cartan form, Phys. Rev. D 29 (1984), 599-606.
  7. Borowiec A., Ferraris M., Francaviglia M., Palese M., Conservation laws for non-global Lagrangians, Univ. Iagel. Acta Math. (2003), 319-331, math-ph/0301043.
  8. Bredon G.E., Sheaf theory, McGraw-Hill Book Co., New York - Toronto, Ont. - London, 1967.
  9. Carathéodory C., Über die Variationsrechnung bei mehrfachen Integralen, Acta Litt. Sci. Szeged 4 (1929), 193-216.
  10. Cartan E., Lecons sur les invariants intègraux, Hermann, Paris, 1922.
  11. Cattafi F., Palese M., Winterroth E., Variational derivatives in locally Lagrangian field theories and Noether-Bessel-Hagen currents, Int. J. Geom. Methods Mod. Phys. 13 (2016), 1650067, 16 pages, arXiv:1601.07193.
  12. De Donder Th., Théorie invariantive du calcul des variations, Gauthier-Villars, Paris, 1930.
  13. de León M., Rodrigues P.R., Generalized classical mechanics and field theory. A geometrical approach of Lagrangian and Hamiltonian formalisms involving higher order derivatives, North-Holland Mathematics Studies, Vol. 112, North-Holland Publishing Co., Amsterdam, 1985.
  14. Dedecker P., Systèmes différentiels extérieurs, invariants intégraux et suites spectrales, in Convegno Internazionale di Geometria Differenziale (Italia, 1953), Edizioni Cremonese, Roma, 1954, 247-262.
  15. Dedecker P., Quelques applications de la suite spectrale aux intégrales multiples du calcul des variations et aux invariants intégraux. I. Suites spectrales et généralisations, Bull. Soc. Roy. Sci. Liège 24 (1955), 276-295.
  16. Dedecker P., Quelques applications de la suite spectrale aux intégrales multiples du calcul des variations et aux invariants intégraux. II. Espaces de jets locaux et faisceaux, Bull. Soc. Roy. Sci. Liège 25 (1956), 387-399.
  17. Dedecker P., Calcul des variations et topologie algébrique, Mém. Soc. Roy. Sci. Liège 19 (1957), 216 pages.
  18. Dedecker P., On the generalization of symplectic geometry to multiple integrals in the calculus of variations, in Differential Geometrical Methods in Mathematical Physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Math., Vol. 570, Springer, Berlin, 1977, 395-456.
  19. Dedecker P., Tulczyjew W.M., Spectral sequences and the inverse problem of the calculus of variations, in Differential Geometrical Methods in Mathematical Physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math., Vol. 836, Springer, Berlin, 1980, 498-503.
  20. Dickey L.A., On exactness of the variational bicomplex, in Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), Contemp. Math., Vol. 132, Editors M. Gotay, J. Marsden, V. Moncrief, Amer. Math. Soc., Providence, RI, 1992, 307-315.
  21. Ferraris M., Fibered connections and global Poincaré-Cartan forms in higher-order calculus of variations, in Proceedings of the Conference on Differential Geometry and its Applications, Part 2, Editor D. Krupka, J.E. Purkynĕ University, Brno, 1984, 61-91.
  22. Ferraris M., Francaviglia M., On the global structure of Lagrangian and Hamiltonian formalisms in higher order calculus of variations, in Proceedings of the International Meeting on Geometry and Physics (Florence, 1982), Editor M. Modugno, Pitagora, Bologna, 1983, 43-70.
  23. Ferraris M., Francaviglia M., Palese M., Winterroth E., Canonical connections in gauge-natural field theories, Int. J. Geom. Methods Mod. Phys. 5 (2008), 973-988.
  24. Ferraris M., Francaviglia M., Palese M., Winterroth E., Gauge-natural Noether currents and connection fields, Int. J. Geom. Methods Mod. Phys. 8 (2011), 177-185.
  25. Ferraris M., Palese M., Winterroth E., Local variational problems and conservation laws, Differential Geom. Appl. 29 (2011), S80-S85.
  26. Francaviglia M., Palese M., Vitolo R., Symmetries in finite order variational sequences, Czechoslovak Math. J. 52 (2002), 197-213.
  27. Francaviglia M., Palese M., Winterroth E., Locally variational invariant field equations and global currents: Chern-Simons theories, Commun. Math. 20 (2012), 13-22.
  28. Francaviglia M., Palese M., Winterroth E., Variationally equivalent problems and variations of Noether currents, Int. J. Geom. Methods Mod. Phys. 10 (2013), 1220024, 10 pages, arXiv:1512.03176.
  29. García P.L., The Poincaré-Cartan invariant in the calculus of variations, in Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973), Academic Press, London, 1974, 219-246.
  30. García P.L., Mu\ noz J., On the geometrical structure of higher order variational calculus, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117 (1983), suppl. 1, 127-147.
  31. Gel'fand I.M., Dikii L.A., Asymptotic properties of the resolvent of Sturm-Liouville equations, and the algebra of Korteweg-de Vries equations, Russian Math. Surveys 30 (1975), no. 5, 77-113.
  32. Goldschmidt H., Sternberg S., The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier (Grenoble) 23 (1973), 203-267.
  33. Gotay M.J., An exterior differential systems approach to the Cartan form, in Symplectic Geometry and Mathematical Physics (Aix-en-Provence, 1990), Progr. Math., Vol. 99, Birkhäuser Boston, Boston, MA, 1991, 160-188.
  34. Gotay M.J., A multisymplectic framework for classical field theory and the calculus of variations. I. Covariant Hamiltonian formalism, in Mechanics, Analysis and Geometry: 200 Years after Lagrange, Editors M. Francaviglia, D.D. Holm, North-Holland Delta Ser., North-Holland, Amsterdam, 1991, 203-235.
  35. Gotô T., Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary conditon of dual resonance model, Progr. Theoret. Phys. 46 (1971), 1560-1569.
  36. Grigore D.R., The variational sequence on finite jet bundle extensions and the Lagrangian formalism, Differential Geom. Appl. 10 (1999), 43-77, dg-ga/9702016.
  37. Grigore D.R., On a generalization of the Poincaré-Cartan form in higher-order field theory, in Variations, Geometry and Physics, Editors O. Krupková, D.J. Saunders, Nova Sci. Publ., New York, 2009, 57-76.
  38. Haková A., Krupková O., Variational first-order partial differential equations, J. Differential Equations 191 (2003), 67-89.
  39. Helmholtz H., Ueber die physikalische Bedeutung des Prinicips der kleinsten Wirkung, J. Reine Angew. Math. 100 (1887), 137-166.
  40. Horák M., Kolář I., On the higher order Poincaré-Cartan forms, Czechoslovak Math. J. 33 (1983), 467-475.
  41. Horndeski G.W., Differential operators associated with the Euler-Lagrange operator, Tensor (N.S.) 28 (1974), 303-318.
  42. Kolář I., A geometrical version of the higher order Hamilton formalism in fibred manifolds, J. Geom. Phys. 1 (1984), 127-137.
  43. Krbek M., The representation of the variational sequence by forms, Ph.D. Thesis, University of Brno, 2002.
  44. Krbek M., Musilová J., Representation of the variational sequence by differential forms, Rep. Math. Phys. 51 (2003), 251-258.
  45. Krbek M., Musilová J., Representation of the variational sequence by differential forms, Acta Appl. Math. 88 (2005), 177-199.
  46. Krupka D., Some geometric aspects of variational problems in fibred manifolds, Folia Fac. Sci. Nat. UJEP Brunensis Physica 14 (1973), 1-65, math-ph/0110005.
  47. Krupka D., A map associated to the Lepagian forms on the calculus of variations in fibred manifolds, Czechoslovak Math. J. 27 (1977), 114-118.
  48. Krupka D., Lepagean forms in higher order variational theory, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117 (1983), suppl. 1, 197-238.
  49. Krupka D., Variational sequences on finite order jet spaces, in Differential Geometry and its Applications (Brno, 1989), Editors J. Janyška, D. Krupka, World Sci. Publ., Teaneck, NJ, 1990, 236-254.
  50. Krupka D., The contact ideal, Differential Geom. Appl. 5 (1995), 257-276.
  51. Krupka D., Variational sequences in mechanics, Calc. Var. Partial Differential Equations 5 (1997), 557-583.
  52. Krupka D., Variational sequences and variational bicomplexes, in Differential Geometry and Applications (Brno, 1998), Editors I. Kolář, O. Kowalski, D. Krupka, J. Slovák, Masaryk University, Brno, 1999, 525-531.
  53. Krupka D., Global variational principles: foundations and current problems, in Global Analysis and Applied Mathematics, AIP Conf. Proc., Vol. 729, Amer. Inst. Phys., Melville, NY, 2004, 3-18.
  54. Krupka D., Global variational theory in fibred spaces, inHandbook of Global Analysis, Elsevier Sci. B. V., Amsterdam, 2008, 773-836.
  55. Krupka D., Introduction to global variational geometry, Atlantis Studies in Variational Geometry, Vol. 1, Atlantis Press, Paris, 2015.
  56. Krupka D., Krupková O., Contact symmetries and variational PDE's, Acta Appl. Math. 101 (2008), 163-176.
  57. Krupka D., Krupková O., Prince G., Sarlet W., Contact symmetries and variational sequences, in Differential Geometry and its Applications, Matfyzpress, Prague, 2005, 605-615.
  58. Krupka D., Krupková O., Prince G., Sarlet W., Contact symmetries of the Helmholtz form, Differential Geom. Appl. 25 (2007), 518-542.
  59. Krupka D., Krupková O., Saunders D., The Cartan form and its generalizations in the calculus of variations, Int. J. Geom. Methods Mod. Phys. 7 (2010), 631-654.
  60. Krupka D., Krupková O., Saunders D., Cartan-Lepage forms in geometric mechanics, Internat. J. Non-Linear Mech. 47 (2012), 1154-1160.
  61. Krupka D., Šedĕnková J., Variational sequences and Lepage forms, in Differential Geometry and its Applications, Editors J. Bureš, O. Kowalski, D. Krupka, J. Slovák, Matfyzpress, Prague, 2005, 617-627.
  62. Krupka D., Trautman A., General invariance of Lagrangian structures, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 207-211.
  63. Krupka D., Urban Z., Volná J., Variational projectors in fibred manifolds, Miskolc Math. Notes 14 (2013), 503-516.
  64. Krupková O., Lepagean $2$-forms in higher order Hamiltonian mechanics. I. Regularity, Arch. Math. (Brno) 22 (1986), 97-120.
  65. Krupková O., The geometry of ordinary variational equations, Lecture Notes in Math., Vol. 1678, Springer-Verlag, Berlin, 1997.
  66. Krupková O., Hamiltonian field theory, J. Geom. Phys. 43 (2002), 93-132.
  67. Krupková O., Lepage forms in the calculus of variations, in Variations, Geometry and Physics, Nova Sci. Publ., New York, 2009, 27-55.
  68. Krupková O., Variational equations on manifolds, in Advances in Mathematics Research, Adv. Math. Res., Vol. 9, Nova Sci. Publ., New York, 2009, 201-274.
  69. Krupková O., Malíková R., Helmholtz conditions and their generalizations, Balkan J. Geom. Appl. 15 (2010), 80-89.
  70. Krupková O., Prince G.E., Lepagean forms, closed 2-forms, and second-order ordinary differential equations, Russian Math. 51 (2007), no. 12, 1-16.
  71. Krupková O., Prince G.E., Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations, in Handbook of Global Analysis, Elsevier Sci. B. V., Amsterdam, 2008, 837-904.
  72. Krupková O., Smetanová D., Lepage equivalents of second-order Euler-Lagrange forms and the inverse problem of the calculus of variations, J. Nonlinear Math. Phys. 16 (2009), 235-250.
  73. Lepage Th.H.J., Sur les champ geodesiques du calcul de variations. I, Bull. Acad. Roy. Belg. Cl. Sci. 22 (1936), 716-729.
  74. Lepage Th.H.J., Sur les champ geodesiques du calcul de variations. II, Bull. Acad. Roy. Belg. Cl. Sci. 22 (1936), 1036-1046.
  75. Malíková R., On a generalization of Helmholtz conditions, Acta Math. Univ. Ostrav. 17 (2009), 11-21.
  76. Musilová J., Lenc M., Lepage forms in variational theories: from Lepage's idea to the variational sequence, in Variations, Geometry and Physics, Nova Sci. Publ., New York, 2009, 3-26.
  77. Noether E., Invariante Variationsprobleme, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. (1918), 235-257.
  78. Olver P.J., Equivalence and the Cartan form, Acta Appl. Math. 31 (1993), 99-136.
  79. Olver P.J., Shakiban C., A resolution of the Euler operator. I, Proc. Amer. Math. Soc. 69 (1978), 223-229.
  80. Palese M., Vitolo R., On a class of polynomial Lagrangians, Rend. Circ. Mat. Palermo (2001), suppl. 66, 147-159, math-ph/0111019.
  81. Palese M., Winterroth E., Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles, Arch. Math. (Brno) 41 (2005), 289-310, math-ph/0311003.
  82. Palese M., Winterroth E., On the relation between the Jacobi morphism and the Hessian in gauge-natural field theories, Theoret. and Math. Phys. 152 (2007), 1191-1200.
  83. Palese M., Winterroth E., Lagrangian reductive structures on gauge-natural bundles, Rep. Math. Phys. 62 (2008), 229-239, arXiv:0712.0925.
  84. Palese M., Winterroth E., A variational perspective on classical Higgs fields in gauge-natural theories, Theoret. and Math. Phys. 168 (2011), 1002-1008, arXiv:1110.5426.
  85. Palese M., Winterroth E., Symmetries of Helmholtz forms and globally variational dynamical forms, J. Phys. Conf. Ser. 343 (2012), 012129, 4 pages, arXiv:1110.5764.
  86. Palese M., Winterroth E., Higgs fields on spinor gauge-natural bundles, J. Phys. Conf. Ser. 411 (2013), 012025, 5 pages.
  87. Palese M., Winterroth E., Generalized symmetries generating Noether currents and canonical conserved quantities, J. Phys. Conf. Ser. 563 (2014), 012023, 4 pages.
  88. Palese M., Winterroth E., Topological obstructions in Lagrangian field theories (with an application to Chern-Simons gauge theories), in preparation.
  89. Palese M., Winterroth E., Garrone E., Second variational derivative of local variational problems and conservation laws, Arch. Math. (Brno) 47 (2011), 395-403.
  90. Rund H., A Cartan form for the field theory of Carathéodory in the calculus of variations of multiple integrals, in Differential Geometry, Calculus of Variations, and their Applications, Lecture Notes in Pure and Appl. Math., Vol. 100, Dekker, New York, 1985, 455-469.
  91. Saunders D.J., The geometry of jet bundles, London Mathematical Society Lecture Note Series, Vol. 142, Cambridge University Press, Cambridge, 1989.
  92. Saunders D.J., The Cartan form, 20 years on, in Differential Geometry and its Applications, Editors O. Kowalski, D. Krupka, O. Krupková, J. Slovák, World Sci. Publ., Hackensack, NJ, 2008, 527-537.
  93. Takens F., A global version of the inverse problem of the calculus of variations, J. Differential Geom. 14 (1979), 543-562.
  94. Tonti E., Variational formulation of nonlinear differential equations. I, Acad. Roy. Belg. Bull. Cl. Sci. 55 (1969), 137-165.
  95. Tonti E., Variational formulation of nonlinear differential equations. II, Acad. Roy. Belg. Bull. Cl. Sci. 55 (1969), 262-278.
  96. Tulczyjew W.M., The Lagrange complex, Bull. Soc. Math. France 105 (1977), 419-431.
  97. Tulczyjew W.M., The Euler-Lagrange resolution, in Differential Geometrical Methods in Mathematical Physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math., Vol. 836, Springer, Berlin, 1980, 22-48.
  98. Tulczyjew W.M., Cohomology of the Lagrange complex, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 217-227.
  99. Vinogradov A.M., On the algebro-geometric foundations of Lagrangian field theory, Soviet Math. Dokl. 18 (1977), 1200-1204.
  100. Vinogradov A.M., The ${\cal C}$-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory, J. Math. Anal. Appl. 100 (1984), 1-40.
  101. Vinogradov A.M., The ${\cal C}$-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory, J. Math. Anal. Appl. 100 (1984), 41-129.
  102. Vitolo R., Variational sequences, in Handbook of Global Analysis, Elsevier Sci. B. V., Amsterdam, 2008, 1115-1163.
  103. Volná J., Urban Z., The interior Euler-Lagrange operator in field theory, Math. Slovaca 65 (2015), 1427-1444.
  104. Wells Jr. R.O., Differential analysis on complex manifolds, Graduate Texts in Mathematics, Vol. 65, 2nd ed., Springer-Verlag, New York - Berlin, 1980.

Previous article  Next article   Contents of Volume 12 (2016)