Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 073, 39 pages      arXiv:1603.03570      https://doi.org/10.3842/SIGMA.2016.073
Contribution to the Special Issue on Tensor Models, Formalism and Applications

Large $N$ Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension $d\geq 2$

Valentin Bonzom
LIPN, UMR CNRS 7030, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

Received March 14, 2016, in final form July 20, 2016; Published online July 24, 2016

Abstract
We review an approach which aims at studying discrete (pseudo-)manifolds in dimension $d\geq 2$ and called random tensor models. More specifically, we insist on generalizing the two-dimensional notion of $p$-angulations to higher dimensions. To do so, we consider families of triangulations built out of simplices with colored faces. Those simplices can be glued to form new building blocks, called bubbles which are pseudo-manifolds with boundaries. Bubbles can in turn be glued together to form triangulations. The main challenge is to classify the triangulations built from a given set of bubbles with respect to their numbers of bubbles and simplices of codimension two. While the colored triangulations which maximize the number of simplices of codimension two at fixed number of simplices are series-parallel objects called melonic triangulations, this is not always true anymore when restricting attention to colored triangulations built from specific bubbles. This opens up the possibility of new universality classes of colored triangulations. We present three existing strategies to find those universality classes. The first two strategies consist in building new bubbles from old ones for which the problem can be solved. The third strategy is a bijection between those colored triangulations and stuffed, edge-colored maps, which are some sort of hypermaps whose hyperedges are replaced with edge-colored maps. We then show that the present approach can lead to enumeration results and identification of universality classes, by working out the example of quartic tensor models. They feature a tree-like phase, a planar phase similar to two-dimensional quantum gravity and a phase transition between them which is interpreted as a proliferation of baby universes. While this work is written in the context of random tensors, it is almost exclusively of combinatorial nature and we hope it is accessible to interested readers who are not familiar with random matrices, tensors and quantum field theory.

Key words: colored triangulations; stuffed maps; random tensors; random matrices; large $N$.

pdf (3949 kb)   tex (2651 kb)

References

  1. Alvarez-Gaumé L., Barbón J.L.F., Crnković Č., A proposal for strings at $D>1$, Nuclear Phys. B 394 (1993), 383-422, hep-th/9208026.
  2. Ambjørn J., Durhuus B., Jónsson T., Three-dimensional simplicial quantum gravity and generalized matrix models, Modern Phys. Lett. A 6 (1991), 1133-1146.
  3. Baratin A., Carrozza S., Oriti D., Ryan J., Smerlak M., Melonic phase transition in group field theory, Lett. Math. Phys. 104 (2014), 1003-1017, arXiv:1307.5026.
  4. Barbón J.L.F., Demeterfi K., Klebanov I.R., Schmidhuber C., Correlation functions in matrix models modified by wormhole terms, Nuclear Phys. B 440 (1995), 189-214, hep-th/9501058.
  5. Ben Geloun J., Two- and four-loop $\beta$-functions of rank-4 renormalizable tensor field theories, Classical Quantum Gravity 29 (2012), 235011, 40 pages, arXiv:1205.5513.
  6. Ben Geloun J., Ramgoolam S., Counting tensor model observables and branched covers of the 2-sphere, Ann. Inst. Henri Poincaré D 1 (2014), 77-138, arXiv:1307.6490.
  7. Ben Geloun J., Rivasseau V., A renormalizable 4-dimensional tensor field theory, Comm. Math. Phys. 318 (2013), 69-109, arXiv:1111.4997.
  8. Bonzom V., New $1/N$ expansions in random tensor models, J. High Energy Phys. 2013 (2013), no. 6, 062, 25 pages, arXiv:1211.1657.
  9. Bonzom V., Revisiting random tensor models at large $N$ via the Schwinger-Dyson equations, J. High Energy Phys. 2013 (2013), no. 3, 160, 25 pages, arXiv:1208.6216.
  10. Bonzom V., Delepouve T., Rivasseau V., Enhancing non-melonic triangulations: a tensor model mixing melonic and planar maps, Nuclear Phys. B 895 (2015), 161-191, arXiv:1502.01365.
  11. Bonzom V., Gurau R., Riello A., Rivasseau V., Critical behavior of colored tensor models in the large $N$ limit, Nuclear Phys. B 853 (2011), 174-195, arXiv:1105.3122.
  12. Bonzom V., Gurau R., Rivasseau V., Random tensor models in the large $N$ limit: uncoloring the colored tensor models, Phys. Rev. D 85 (2012), 084037, 12 pages, arXiv:1202.3637.
  13. Bonzom V., Gurau R., Ryan J.P., Tanasa A., The double scaling limit of random tensor models, J. High Energy Phys. 2014 (2014), no. 9, 051, 49 pages, arXiv:1404.7517.
  14. Bonzom V., Lionni L., Rivasseau V., Colored triangulations of arbitrary dimensions are stuffed Walsh maps, arXiv:1508.03805.
  15. Carrozza S., Oriti D., Rivasseau V., Renormalization of a ${\rm SU}(2)$ tensorial group field theory in three dimensions, Comm. Math. Phys. 330 (2014), 581-637, arXiv:1303.6772.
  16. Carrozza S., Oriti D., Rivasseau V., Renormalization of tensorial group field theories: Abelian ${\rm U}(1)$ models in four dimensions, Comm. Math. Phys. 327 (2014), 603-641, arXiv:1207.6734.
  17. Carrozza S., Tanasa A., ${\rm O}(N)$ random tensor models, arXiv:1512.06718.
  18. Dartois S., A Givental-like formula and bilinear identities for tensor models, J. High Energy Phys. 2015 (2015), no. 8, 129, 19 pages, arXiv:1409.5621.
  19. Das S.R., Dhar A., Sengupta A.M., Wadia S.R., New critical behavior in $d=0$ large-$N$ matrix models, Modern Phys. Lett. A 5 (1990), 1041-1056.
  20. Delepouve T., Gurau R., Rivasseau V., Universality and Borel summability of arbitrary quartic tensor models, Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), 821-848, arXiv:1403.0170.
  21. Di Francesco P., Ginsparg P., Zinn-Justin J., $2$D gravity and random matrices, Phys. Rep. 254 (1995), 133, hep-th/9306153.
  22. Eynard B., Topological expansion for the 1-Hermitian matrix model correlation functions, J. High Energy Phys. 2004 (2004), no. 11, 031, 35 pages, hep-th/0407261.
  23. Ferri M., Gagliardi C., Crystallisation moves, Pacific J. Math. 100 (1982), 85-103.
  24. Flajolet P., Sedgewick R., Analytic combinatorics, Cambridge University Press, Cambridge, 2009.
  25. Goulden I.P., Jackson D.M., Combinatorial enumeration, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.
  26. Gross M., Tensor models and simplicial quantum gravity in $>2-D$, Nuclear Phys. B Proc. Suppl. 25A (1992), 144-149.
  27. Gurau R., Lost in translation: topological singularities in group field theory, Classical Quantum Gravity 27 (2010), 235023, 20 pages, arXiv:1006.0714.
  28. Gurau R., The $1/N$ expansion of colored tensor models, Ann. Henri Poincaré 12 (2011), 829-847, arXiv:1011.2726.
  29. Gurau R., A generalization of the Virasoro algebra to arbitrary dimensions, Nuclear Phys. B 852 (2011), 592-614, arXiv:1105.6072.
  30. Gurau R., Reply to comment on 'Lost in translation: topological singularities in group field theory', Classical Quantum Gravity 28 (2011), 178002, 2 pages, arXiv:1108.4966.
  31. Gurau R., The complete $1/N$ expansion of colored tensor models in arbitrary dimension, Ann. Henri Poincaré 13 (2012), 399-423, arXiv:1102.5759.
  32. Gurau R., The Schwinger-Dyson equations and the algebra of constraints of random tensor models at all orders, Nuclear Phys. B 865 (2012), 133-147, arXiv:1203.4965.
  33. Gurau R., The $1/N$ expansion of tensor models beyond perturbation theory, Comm. Math. Phys. 330 (2014), 973-1019, arXiv:1304.2666.
  34. Gurau R., Universality for random tensors, Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), 1474-1525, arXiv:1111.0519.
  35. Gurau R., Krajewski T., Analyticity results for the cumulants in a random matrix model, Ann. Inst. Henri Poincaré D 2 (2015), 169-228, arXiv:1409.1705.
  36. Gurau R., Rivasseau V., The $1/N$ expansion of colored tensor models in arbitrary dimension, Europhys. Lett. 95 (2011), 50004, 5 pages, arXiv:1101.4182.
  37. Gurau R., Ryan J.P., Colored tensor models - a review, SIGMA 8 (2012), 020, 78 pages, arXiv:1109.4812.
  38. Gurau R., Ryan J.P., Melons are branched polymers, Ann. Henri Poincaré 15 (2014), 2085-2131, arXiv:1302.4386.
  39. Gurau R., Schaeffer G., Regular colored graphs of positive degree, arXiv:1307.5279.
  40. Kaminski W., Oriti D., Ryan J.P., Towards a double-scaling limit for tensor models: probing sub-dominant orders, New J. Phys. 16 (2014), 063048, 36 pages, arXiv:1304.6934.
  41. Klebanov I.R., Hashimoto A., Non-perturbative solution of matrix models modified by trace-squared terms, Nuclear Phys. B 434 (1995), 264-282, hep-th/9409064.
  42. Korchemsky G.P., Loops in the curvature matrix model, Phys. Lett. B 296 (1992), 323-334, hep-th/9206088.
  43. Lahoche V., Oriti D., Rivasseau V., Renormalization of an Abelian tensor group field theory: solution at leading order, J. High Energy Phys. 2015 (2015), no. 4, 095, 41 pages, arXiv:1501.02086.
  44. Lins S., Gems, computers and attractors for $3$-manifolds, Series on Knots and Everything, Vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
  45. Nguyen V.A., Dartois S., Eynard B., An analysis of the intermediate field theory of $T^4$ tensor model, J. High Energy Phys. 2015 (2015), no. 1, 013, 17 pages, arXiv:1409.5751.
  46. Sasakura N., Tensor model for gravity and orientability of manifold, Modern Phys. Lett. A 6 (1991), 2613-2623.
  47. Smerlak M., Comment on 'Lost in translation: topological singularities in group field theory', Classical Quantum Gravity 28 (2011), 178001, 3 pages, arXiv:1102.1844.
  48. Tanasa A., The multi-orientable random tensor model, a review, SIGMA 12 (2016), 056, 23 pages, arXiv:1512.02087.
  49. Walsh T.R.S., Hypermaps versus bipartite maps, J. Combinatorial Theory Ser. B 18 (1975), 155-163.

Previous article  Next article   Contents of Volume 12 (2016)