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Abstract. We present first heavenly equation of Plebański in a two-component evolu-
tionary form and obtain Lagrangian and Hamiltonian representations of this system. We
study all point symmetries of the two-component system and, using the inverse Noether
theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each
variational (Noether) symmetry. We derive two linearly independent recursion operators
for symmetries of this system related by a discrete symmetry of both the two-component
system and its symmetry condition. Acting by these operators on the first Hamiltonian
operator J0 we obtain second and third Hamiltonian operators. However, we were not
able to find Hamiltonian densities corresponding to the latter two operators. Therefore,
we construct two recursion operators, which are either even or odd, respectively, under the
above-mentioned discrete symmetry. Acting with them on J0, we generate another two
Hamiltonian operators J+ and J− and find the corresponding Hamiltonian densities, thus
obtaining second and third Hamiltonian representations for the first heavenly equation in
a two-component form. Using P. Olver’s theory of the functional multi-vectors, we check
that the linear combination of J0, J+ and J− with arbitrary constant coefficients satisfies
Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible
Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first
heavenly equation. Our well-founded conjecture applied here is that P. Olver’s method
works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian
structures crucially depends on the validity of this conjecture.

Key words: first heavenly equation; Lax pair; recursion operator; Hamiltonian operator;
Jacobi identities; variational symmetry
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1 Introduction

Plebański had demonstrated how the Einstein field equations in the complex domain under
(anti-)self-duality condition reduce to a single scalar PDE, which he called the first and the
second heavenly equations [26]. Earlier we had shown that the second heavenly equation is
a bi-Hamiltonian system [19]. We had also obtained bi-Hamiltonian representations for all other
equations of the heavenly type [20, 32, 33, 34] except the first heavenly equation.

Here we show that the first heavenly equation of Plebański

ut̃ỹux̃z̃ − ut̃z̃ux̃ỹ = 1. (1.1)
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presented in the two-component evolutionary form

ut = v,

vt = uxx +
1

ux̃z̃
{(vz̃ + uxz̃)(vx̃ − uxx̃) + 1} ≡ Q, (1.2)

where t = t̃ + ỹ, x = t̃ − ỹ, possesses two linearly independent recursion operators for symme-
tries. (From now on, letter subscripts denote partial derivatives with respect to corresponding
variables.) It should be noted here that recursion operators and Hamiltonian structures can also
be found in the initial, non-evolutionary form of a given PDE by the methods of [10].

In Section 2, we present the Lagrangian for the system (1.2). Lagrangian of this system turns
out to be degenerate and therefore we use the Dirac’s theory of constraints [5]. The Poisson
bracket of Dirac constraints provides us a symplectic operator and symplectic 2-form. The
inverse of the symplectic operator is the first Hamiltonian operator J0 for the two-component
system. We find the corresponding Hamiltonian density and present our system in a Hamiltonian
form.

In Section 3, we obtain all point Lie symmetries of the first heavenly system (FHS) together
with the table of commutators of the basis Lie algebra generators and show how the correspon-
ding Hamiltonians of the variational symmetry flows can be obtained from the inverse Noether
theorem in a Hamiltonian form. These Hamiltonians are integrals of the motion along the first
heavenly flow for all the variational symmetry flows that commute with FHS. Each Hamiltonian
is also conserved along all the symmetry flows that commute with the flow generated by this
Hamiltonian.

In Section 4, we show that the symmetry condition for the first heavenly equation (1.1) in
a one component form can be compactly expressed in terms of Lax operators and have a two
dimensional total divergence form and therefore defines a potential variable. We prove that the
potential of a symmetry is again a symmetry and thereby a recursion relation for symmetries
is derived. These are partner symmetries which we introduced in [15] for the complex Monge–
Ampère equation and later classified heavenly equations possessing partner symmetries in [30],
with particular applications in [19] for the Plebański second heavenly equation and in [33] for
the mixed heavenly and Husain systems. In [16, 31] we have demonstrated how to use partner
symmetries for constructing noninvariant solutions of the complex Monge–Ampère equation and
corresponding (anti-)self-dual Ricci-flat metrics without Killing vectors which are important for
discovering an explicit metric of the gravitational instanton K3.

We have obtained the recursion operator R1 for symmetries in a two-component form. We
also discover a second recursion operator R2 by applying to R1 a discrete symmetry of the
system (1.2) and its symmetry condition. We also construct the recursion operators R+ =
R1 + R2 and R− = R1 − R2 that are even and odd, respectively, under the discrete symmetry.
The idea of constructing recursion operators from the Lax-type representation in the context
of partner symmetries appeared in our paper [15] and later, in a more general context, in the
paper [28]. Here we derive recursion operators using our approach of partner symmetries while
A. Sergyeyev in [28] uses a more general approach for deriving recursion operators which works
even when partner symmetries do not exist (see, e.g., our paper [32]).

In Section 5, acting by these recursion operators on J0 we obtain several alternatives for
the second Hamiltonian operator for the two-component system, J1 = R1J0, J2 = R2J0 and
Jε = RεJ0, where ε = ±. We have failed to find the Hamiltonian densities for J1 and J2 such
that provide bi-Hamiltonian representations of the two-component system. On the contrary,
for the even and odd Hamiltonian operators Jε we have found the appropriate Hamiltonian
densities and obtained two bi-Hamiltonian representations of the first heavenly equation of
Plebański in a two-component form (1.2). Using jointly all three Hamiltonian operators J0, J+
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and J− we obtain tri-Hamiltonian representation of the system (1.2), provided that the Poisson
compatibility of these operators is proved.

In Section 6, we prove that the Jacobi identities are satisfied for an arbitrary linear combina-
tion of the three operators and hereby prove that they are indeed Hamiltonian and compatible.
For this purpose we use P. Olver’s theory of functional multi-vectors [21]. P. Olver’s theory was
formulated for matrix-differential Hamiltonian operators while our operators Jε are nonlocal.
We show how this theory works nicely even for these nonlocal operators, so that the applicability
of P. Olver’s method to nonlocal Hamiltonian operators seems to be a well-founded conjecture
though a rigorous generalization of his theory to nonlocal Hamiltonian operators is still awaited.
Under this conjecture, we have shown that equations (1.2) yield a tri-Hamiltonian completely
integrable system in the sense of Magri [13, 14].

It should be noted that there is a number of tri-Hamiltonian systems (and even multi-
Hamiltonian systems) in the literature [1, 2, 3] and [11]. Our results show that a tri-Hamiltonian
system can be found also in the multi-dimensional case.

We also note that the Olver’s method for for checking Jacobi identity is not the only one
that works for nonlocal operators. Many authors use the formula by Gel’fand, Dorfman and
co-workers. Recent examples of (1+1)-dimensional systems treated in this way can be found
in [12].

2 Lagrangian, symplectic and Hamiltonian structures

We obtain a Lagrangian for this two-component system

L =

(
vut −

v2

2

)
ux̃z̃ + ut

(
1

3
uxux̃z̃ +

2

3
uz̃ux̃x

)
− 1

2
u2xux̃z̃ + u, (2.1)

which is degenerate in the following sense. The canonical momenta

Π1 = Πu =
∂L

∂ut
= vux̃z̃ +

1

3
(ux̃ux̃z̃ + 2uz̃ux̃x), Π2 = Πv =

∂L

∂vt
= 0, (2.2)

which satisfy canonical Poisson brackets, cannot be inverted for velocities. Following Dirac’s
theory of constraints [5], we impose (2.2) as constraints

Φ1 = Φu = Πu − vux̃z̃ −
1

3
(ux̃ux̃z̃ + 2uz̃ux̃x) = 0, Φ2 = Φv = Πv = 0, (2.3)

and calculate the Poisson bracket of the left-hand sides of the constraints (2.3)

Kij =
[
Φi(x, x̃, z̃),Φj(x

′, x̃′, z̃′)
]
.

The result is expressed in the matrix-operator form as

K =

(
(vz̃ + uxz̃)Dx̃ + (vx̃ − uxx̃)Dz̃ + vx̃z̃ −ux̃z̃

ux̃z̃ 0

)
, (2.4)

which is obviously skew symmetric. From now on Dξ denotes total derivative operator with
respect to ξ. The corresponding 2-form Ω is obtained by integrating the density

ω =
1

2
{( vz̃ + uxz̃)du ∧ dux̃ + (vx̃ − uxx̃)du ∧ duz̃}+ ux̃z̃dv ∧ du,

which is closed up to a total divergence

dω = dux ∧ dux̃ ∧ duz̃ =
1

3

{
Dx(du ∧ dux̃ ∧ duz̃) +Dx̃(du ∧ dux ∧ duz̃)

+Dz̃(dux ∧ dux̃ ∧ du)
}
,
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so that Ω =
∫∫∫

V ωdV is closed under appropriate boundary conditions and hereby Ω is a sym-
plectic form, while K in (2.4) is a symplectic operator. Taking the inverse of K we obtain
Hamiltonian operator

J0 = K−1 =

 0
1

ux̃z̃

− 1

ux̃z̃

1

ux̃z̃
{(vz̃ + uxz̃)Dx̃ + (vx̃ − uxx̃)Dz̃ + vx̃z̃}

1

ux̃z̃

 , (2.5)

which is obviously skew symmetric, while the Jacobi identities for J0 are satisfied as a conse-
quence of the closure of the symplectic 2-form Ω. The corresponding Hamiltonian density H1 is
found by using (2.1) and (2.2) in the relation H1 = Πuut + Πvvt − L which yields

H1 =
1

2

(
v2 + u2x

)
ux̃z̃ − u. (2.6)

Thus, we present the two-component system (1.2) in the Hamiltonian form(
ut
vt

)
= J0

(
δuH1

δvH1

)
(2.7)

where δu, δv denote Euler–Lagrange operators related to variational derivatives of Hamiltonian
functional [21].

3 Symmetries and integrals of motion

Point Lie symmetries of the system (1.2) are determined by the following basis generators

X1 = ∂z̃, X2 = ∂x̃, X3 = z̃∂z̃ − x̃∂x̃, X4 = t∂t + x∂x + u∂u,

X5 = 2z̃∂z̃ + u∂u + v∂v, Ya = a(x̃)(∂t + ∂x), Zb = b(z̃)(∂x − ∂t),
Vf,g = {f(t+ x, x̃) + g(t− x, z̃)}∂u + {ft(t+ x, x̃) + gt(t− x, z̃)}∂v, (3.1)

where a, b and f , g are arbitrary smooth functions of one and two variables, respectively and
subscripts denote partial derivatives. We note that the obvious translation invariance symmetries
are generated by X1, X2 and also by Ya=1 ±Zb=1. In particular, X = (Zb=1 − Ya=1)/2 = −∂t is
the generator of the first heavenly flow (1.2) itself.

Table 1. Commutators of point symmetries of the first heavenly system.

X1 X2 X3 X4 X5 Ya Zb Vf,g

X1 0 0 X1 0 2X1 0 Zb′ V0,gz̃
X2 0 0 −X2 0 0 Ya′ 0 Vfx̃,0

X3 −X1 X2 0 0 0 −Yx̃a′ Zz̃b′ V−f̃ ,g̃
X4 0 0 0 0 0 0 0 Vf̂ ,ĝ
X5 −2X1 0 0 0 0 0 2Zz̃b′ V−f,2g̃−g

Ya 0 −Ya′ Yx̃a′ 0 0 0 0 V2aft,0

Zb −Zb′ 0 −Zz̃b′ 0 −2Zz̃b′ 0 0 V0,−2bgt
Vf,g V0,−gz̃ V−fx̃,0 Vf̃ ,−g̃ V−f̂ ,−ĝ Vf,g−2g̃ V−2aft,0 V0,2bgt 0

The Lie algebra of point symmetries is determined by the Table 1 of commutators of the
basis generators where the commutator [Xi, Xj ] stands at the intersection of ith row and jth
column. Here we use the following shorthand notation

f̃ = x̃fx̃, g̃ = z̃gz̃, f̂ = (t+ x)ft − f, ĝ = (t− x)gt − g,

and the primes denote derivatives of arbitrary functions a and b of a single variable.
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We need symmetry characteristics determining symmetries in evolutionary form [21] with
the independent variables not being transformed under symmetry transformations. For the
point symmetry generator of the form X = ξi∂xi + ηα∂uα , where the summation over repeated
indices is used, the symmetry characteristics are defined as ϕα = ηα−uαi ξi with the subscripts i
denoting derivatives with respect to xi. In our problem, α = 1, 2, u1 = u, u2 = v, η1 = ηu,

η2 = ηv,
∑

i =
4∑
i=1

, x1 = t, x2 = x, x3 = x̃, x4 = z̃ and ϕ1 = ϕ while ϕ2 = ψ, where ϕ and ψ

determine the transformation of u and v, respectively. We also use ut = v and vt = Q where Q
is the right-hand side of the second of our equations (1.2). Symmetry characteristics have the
form

ϕ = ηu − vξt − uxξx − ux̃ξx̃ − uz̃ξz̃, ψ = ηv −Qξt − vxξx − vx̃ξx̃ − vz̃ξz̃. (3.2)

Applying the formula (3.2) to the generators in (3.1), we obtain characteristics of these sym-
metries

ϕ1 = −uz̃, ψ1 = −vz̃, ϕ2 = −ux̃, ψ2 = −vx̃,
ϕ3 = x̃ux̃ − z̃uz̃, ψ3 = x̃vx̃ − z̃vz̃, ϕ4 = u− tv − xux, ψ4 = −tQ− xvx,
ϕ5 = u− 2z̃uz̃, ψ5 = v − 2z̃vz̃, ϕa = −a(x̃)(v + ux),

ψa = −a(x̃)(Q+ vx), ϕb = b(z̃)(v − ux), ψb = b(z̃)(Q− vx),

ϕf,g = f(t+ x, x̃) + g(t− x, z̃), ψf,g = ft(t+ x, x̃) + gt(t− x, z̃). (3.3)

In accordance with our previous remark that X = (Zb=1 − Ya=1)/2 = −∂t generates the first
heavenly flow, we note that (ϕb=1 − ϕa=1)/2 = v and (ψb=1 − ψa=1)/2 = Q are characteristics
of this symmetry with the group parameter τ = t.

First Hamiltonian structure provides a link between symmetries in evolutionary form and
integrals of motion conserved by the Hamiltonian flow (2.7). Replacing time t by the group
parameter τ in (2.7) and using uτ = ϕ, vτ = ψ for symmetries in the evolutionary form, we
obtain the Hamiltonian form of the Noether theorem for any conserved density H of an integral
of motion(

ϕ
ψ

)
= J0

(
δuH
δvH

)
. (3.4)

To determine the integral H that corresponds to a known symmetry with the characteristic
(ϕ,ψ) we use the inverse Noether theorem(

δuH
δvH

)
= K

(
ϕ
ψ

)
, (3.5)

where operator K = J−10 is defined in (2.4). Here (3.5) is obtained by applying the operator K
to both sides of (3.4).

We now apply the formula (3.5) to determine integrals H i corresponding to all variational
symmetries with characteristics (ϕi, ψi) from the list (3.3). Using the expression (2.4) for K, we
rewrite the formula (3.5) in an explicit form(

δuH
i

δvH
i

)
=

(
K11 −ux̃z̃
ux̃z̃ 0

)(
ϕi
ψi

)
,

which supplies the formulas for determining integrals H i for the known symmetries (ϕi, ψi)

δuH
i = K11ϕi − ux̃z̃ψi, δvH

i = ux̃z̃ϕi. (3.6)
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Here K11 is determined from (2.4) to be K11 = (vz̃ + uxz̃)Dx̃ + (vx̃ − uxx̃)Dz̃ + vx̃z̃. We always
start with solving the second equation in (3.6) in which, due to the fact that ϕi never contain
derivatives of v, δvH

i is reduced to the partial derivative H i
v, so that the equation H i

v = ux̃z̃ϕi
is easily integrated with respect to v with the “constant of integration” hi[u] depending only
on u and its derivatives. Then the operator δu is applied to the resulting H i, which involves the
unknown δuh

i[u], and then it is equated to δuH
i following from the first equation in (3.6) to

determine δuh
i[u]. Finally, we reconstruct hi[u] and hence H i. If we encounter a contradiction,

then this particular symmetry is not a variational one and does not lead to an integral.
This solution algorithm for the symmetries listed in (3.1) with characteristics (3.3) yields

the following results. X5 generates a non-variational symmetry. For all other symmetries the
corresponding integrals read

H1 = −
(
vuz̃ux̃z̃ +

1

2
u2z̃uxx̃

)
, H2 = −

(
vux̃ux̃z̃ +

1

2
u2x̃uxz̃

)
,

H3 = v(x̃ux̃ − z̃uz̃)ux̃z̃ −
1

2

(
x̃u2x̃uxz̃ + z̃u2z̃uxx̃

)
,

H4 =

[
v(u− xux)− t

2

(
v2 + u2x

)]
ux̃z̃ + tu,

Ha = a(x̃)

{
u−

[
vux +

1

2

(
v2 + u2x

)]
ux̃z̃

}
,

Hb = b(z̃)

{[
1

2

(
v2 + u2x

)
− vux

]
ux̃z̃ − u

}
,

Hf,g = vux̃z̃(f + g) +
1

2

[
gz̃uxux̃ − fx̃uxuz̃ + (ft + gt)ux̃uz̃

]
, (3.7)

with arbitrary smooth functions a(x̃), b(z̃), f(t + x, x̃), g(t − x, z̃). According to our previous
remarks, the Hamiltonian H1 of the first heavenly flow, obtained in (2.6), is also contained in
the set (3.7) as a linear combination H1 = (Hb=1 −Ha=1)/2.

Since the symmetry generators X1, X2, X3, Ya, Zb commute with the generator −∂t of the
first heavenly flow, the corresponding Hamiltonian densities H1, H2, H3, Ha, Zb are densities of
integrals of motion for the flow (1.2), subject to suitable boundary conditions. Moreover, eachH i

is the density of the integral of motion along all the symmetry flows with characteristics (3.3)
that commute with the corresponding Xi.

Converting the 2-component first heavenly system back to the first heavenly equation in the
one-component form, one could obtain its integrals as reductions of the integrals for the system.

4 Lax pairs and recursion operators

We start with the truncated Lax pair, with the spectral parameter λ = 0, for the first heavenly
equation (1.1) (see [6])

L1 = ut̃z̃Dỹ − ut̃ỹDz̃, L2 = ux̃z̃Dỹ − ux̃ỹDz̃,

which commute on solutions of (1.1). In the new variables t = t̃ + ỹ, x = t̃ − ỹ, used in the
two-component system (1.2), they become

L1 = (utz̃ + uxz̃)(Dt −Dx)− (utt − uxx)Dz̃,

L2 = ux̃z̃(Dt −Dx)− (utx̃ − uxx̃)Dz̃. (4.1)

Let ϕ be a symmetry characteristic [21] of the first heavenly equation (1.1) in a one com-
ponent form, so that the Lie equation reads uτ = ϕ, where τ is the group parameter and
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independent variables do not transform under the group. The equation (1.1), transformed to
the new variables, has the form

(utt − uxx)ux̃z̃ − (utz̃ + uxz̃)(utx̃ − uxx̃) = 1, (4.2)

with the truncated Lax pair for this equation given in (4.1). Symmetry condition for equa-
tion (4.2) reads

ux̃z̃(ϕtt − ϕxx) + (utt − uxx)ϕx̃z̃ − (utx̃ − uxx̃)(ϕtz̃ + ϕxz̃)

− (utz̃ + uxz̃)(ϕtx̃ − ϕxx̃) = 0. (4.3)

It can be expressed in terms of Lax operators (4.1) as

(Dt +Dx)L2ϕ−Dx̃L1ϕ = 0

and hereby have a two-dimensional divergence form. Hence it defines a potential variable ϕ̃ by
the equations

ϕ̃t + ϕ̃x = L1ϕ, ϕ̃x̃ = L2ϕ. (4.4)

It is easy to check that the symmetry condition can also be put in the form

L2(Dt +Dx)ϕ− L1Dx̃ϕ = 0.

This equation is satisfied for the potential ϕ̃. Indeed, using its definition (4.4) we have

L2(Dt +Dx)ϕ̃− L1Dx̃ϕ̃ = [L2, L1]ϕ = 0,

since L1 and L2 commute on solutions of the equation (4.2). Thus, the potential of a symmetry
is again a symmetry and we obtain a recursion relation for symmetries.

In an explicit form the definition (4.4) of the symmetry potential becomes

ϕ̃x̃ = ux̃z̃(ϕt − ϕx)− (vx̃ − uxx̃)ϕz̃, ϕ̃t + ϕ̃x = (vz̃ + uxz̃)(ϕt − ϕx)− Q̃ϕz̃, (4.5)

where v = ut, and using the definition of Q in (1.2), we define

Q̃ = Q− uxx =
1

ux̃z̃
{(vx̃ − uxx̃)(vz̃ + uxz̃) + 1} .

For the two-component form (1.2) of our equation, we introduce the two-component symmetry
characteristic (ϕ,ψ), where ψ = ϕt and the same for the potential of the symmetry (ϕ̃, ψ̃) with
ψ̃ = ϕ̃t, and use this notation in (4.5) with the result

ϕ̃x̃ = ux̃z̃(ψ − ϕx)− (vx̃ − uxx̃)ϕz̃, ψ̃ + ϕ̃x = (vz̃ + uxz̃)(ψ − ϕx)− Q̃ϕz̃. (4.6)

We solve the first equation here for ϕ̃ in the form

ϕ̃ = D−1x̃ {ux̃z̃(ψ − ϕx)− (vx̃ − uxx̃)ϕz̃},

and use this in the second equation in (4.6) to obtain

ψ̃ = −D−1x̃ Dx{ux̃z̃(ψ − ϕx)− (vx̃ − uxx̃)ϕz̃}+ (vz̃ + uxz̃)(ψ − ϕx)− Q̃ϕz̃.

Then we obtain our first recursion operator R1 in 2×2 matrix form which acts on two-component
symmetry characteristics(

ϕ̃

ψ̃

)
= R1

(
ϕ
ψ

)
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with the following explicit form for R1

R1 =

(
−D−1x̃ {ux̃z̃Dx + (vx̃ − uxx̃)Dz̃} D−1x̃ ux̃z̃

R21
1 −D−1x̃ Dxux̃z̃ + vz̃ + uxz̃

)
,

where

R21
1 = D−1x̃ Dx{ux̃z̃Dx + (vx̃ − uxx̃)Dz̃} − (vz̃ + uxz̃)Dx − Q̃Dz̃.

We also discover a second recursion operator by noticing the discrete symmetry possessed
both by the first heavenly equation in the two-component form and its symmetry condition. For
equation (1.1) we choose among its discrete symmetries the symmetry of exchanging x̃ ↔ −z̃
and t̃↔ ỹ, which is inherited by the two-component system (1.2) in the form

x̃↔ −z̃, t↔ t, x↔ −x. (4.7)

We note that this discrete symmetry also leaves invariant the symmetry condition for the first
heavenly equation (4.3). The alternative Lax pair for this equation becomes

L1 = ut̃ỹDx̃ − ux̃ỹDt̃, L2 = ux̃z̃Dt̃ − ut̃z̃Dx̃,

and the symmetry condition is now expressed as

DỹL
2ϕ+Dz̃L

1ϕ = 0 ⇐⇒ L2Dỹϕ+ L1Dz̃ϕ = 0.

Repeating the reasoning that has led us to the first recursion operator, we discover that the
symmetry potential which is determined by the conditions

ϕ̂ = D−1z̃ L2ϕ, ϕ̂ = −D−1ỹ L1ϕ

also satisfies the symmetry condition and hereby is also a symmetry and hence we have obtained
another recursion for symmetries. The second recursion operator in a matrix 2×2 form, obtained
from R1 by the same discrete symmetry transformation, reads

R2 = −
(
D−1z̃ {ux̃z̃Dx − (vz̃ + uxz̃)Dx̃} D−1z̃ ux̃z̃

R21
2 D−1z̃ Dxux̃z̃ + vx̃ − uxx̃

)
, (4.8)

where we have used Dỹ = Dt −Dx for a two-component representation and

R21
2 = D−1z̃ Dx{ux̃z̃Dx − (vz̃ + uxz̃)Dx̃}+ (vx̃ − uxx̃)Dx − Q̃Dx̃.

We have added extra overall minus in R2 to have the action of the discrete symmetry to be
R1 ↔ R2.

For future use, we will need the recursion operators either even or odd relative to the discrete
symmetry, i.e., R+ = R1+R2 and R− = R1−R2. Joining both cases we introduce Rε = R1+εR2

with the explicit form

Rε =

(
R11
ε

(
D−1x̃ − εD

−1
z̃

)
ux̃z̃

R21
ε −

(
D−1x̃ + εD−1z̃

)
Dxux̃z̃ + vz̃ + uxz̃ − ε(vx̃ − uxx̃)

)
, (4.9)

where ε = ±,

R11
ε = −

(
D−1x̃ + εD−1z̃

)
ux̃z̃Dx −D−1x̃ (vx̃ − uxx̃)Dz̃ + εD−1z̃ (vz̃ + uxz̃)Dx̃,

R21
ε =

(
D−1x̃ − εD

−1
z̃

)
Dxux̃z̃Dx +Dx

{
D−1x̃ (vx̃ − uxx̃)Dz̃ + εD−1z̃ (vz̃ + uxz̃)Dx̃

}
− {vz̃ + uxz̃ + ε(vx̃ − uxx̃)}Dx − Q̃(Dz̃ − εDx̃).
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5 Bi-Hamiltonian representations of the first heavenly equation
in two-component form

Composing the recursion operator R1 with the first Hamiltonian operator J0 in (2.5) we obtain
a candidate for a second Hamiltonian operator J1 for the two-component system

J1 = R1J0 =

 −D−1x̃ −
{
D−1x̃ Dx −

(vz̃ + uxz̃)
ux̃z̃

}
{
D−1x̃ Dx −

(vz̃ + uxz̃)
ux̃z̃

}
J22
1

 ,

where

J22
1 = D−1x̃ D2

x −
1

ux̃z̃
Dz̃

1

ux̃z̃
− (vz̃ + uxz̃)Dx

1

ux̃z̃
− 1

ux̃z̃
Dx(vz̃ + uxz̃)

+
(vz̃ + uxz̃)

ux̃z̃
Dx̃

(vz̃ + uxz̃)

ux̃z̃
.

The operator J1 is obviously skew symmetric, so the remaining task is to check Jacobi identities
which will be considered in the next section.

Similarly, composing the recursion operator R2 with the Hamiltonian operator J0 we obtain
a candidate for a third Hamiltonian operator J2 for the two-component system, which can be
also obtained directly by applying the discrete symmetry transformation (4.7) to J1

J2 = R2J0 =

 D−1z̃ −
{
D−1z̃ Dx +

(vx̃ − uxx̃)
ux̃z̃

}
{
D−1z̃ Dx +

(vx̃ − uxx̃)
ux̃z̃

}
J22
2

 ,

where

J22
2 = −

{
D−1z̃ D2

x −
1

ux̃z̃
Dx̃

1

ux̃z̃
+ (vx̃ − uxx̃)Dx

1

ux̃z̃
+

1

ux̃z̃
Dx(vx̃ − uxx̃)

+
(vx̃ − uxx̃)

ux̃z̃
Dz̃

(vx̃ − uxx̃)

ux̃z̃

}
.

The operator J2 is also obviously skew symmetric, so it remains only to check the Jacobi iden-
tities.

However, using simple natural ansatzes, we failed to find Hamiltonian functions corresponding
to the operators J1 and J2 such that acting by these operators on the variational derivatives
of the Hamiltonian functions we could generate the two-component flow (1.2). Therefore, we
considered operators J+ and J− generated from J0 by the recursion operators R+ and R−,
respectively, which have the additional property of being either even or odd under the discrete
symmetry transformation (4.7). Using simultaneously both even and odd operators in the form
Jε = RεJ0 = J1 + εJ2, where ε = ± and using the formula (4.9) for Rε, we obtain the following
result

Jε =


−
(
D−1x̃ − εD

−1
z̃

) −
(
D−1x̃ + εD−1z̃

)
Dx

+
{vz̃ + uxz̃ − ε(vx̃ − uxx̃)}

ux̃z̃(
D−1x̃ + εD−1z̃

)
Dx

− {vz̃ + uxz̃ − ε(vx̃ − uxx̃)}
ux̃z̃

J22
ε

 ,
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where

J22
ε =

(
D−1x̃ − εD

−1
z̃

)
D2
x − {vz̃ + uxz̃ + ε(vx̃ − uxx̃)}Dx

1

ux̃z̃

− 1

ux̃z̃
Dx{vz̃ + uxz̃ + ε(vx̃ − uxx̃)} − 1

ux̃z̃
(Dz̃ − εDx̃)

1

ux̃z̃

+
(vz̃ + uxz̃)

ux̃z̃
Dx̃

(vz̃ + uxz̃)

ux̃z̃
− ε(vx̃ − uxx̃)

ux̃z̃
Dz̃

(vx̃ − uxx̃)

ux̃z̃
.

The operator Jε is also obviously skew symmetric. Jacobi identities for Jε and compatibility of
it with J0 and also between J+ and J− are proved in the next section, so that all of them are
mutually compatible Hamiltonian operators.

For the operator Jε we have found the corresponding Hamiltonian densities H0ε using a simple
and natural ansatz of the density to be linear in v and moreover

H0ε = vh1ε[ux̃z̃, ux̃, uz̃, x̃, z̃, x] + h0ε[u],

where h0ε[u] depends only on u and its partial derivatives. Then the coefficient functions h1ε
and h0ε are determined from the requirement that the two-component system (1.2) should admit
two bi-Hamiltonian representations for ε = ± with the Hamiltonian operators Jε(

ut
vt

)
= Jε

(
δuH0ε

δvH0ε

)
=

(
v
Q

)
, (5.1)

where operators δu, δv denote Euler–Lagrange operators of the Hamiltonian density [21] equiv-

alent to variational derivatives of the Hamiltonian functional H =
+∞∫∫∫
−∞

H0dx̃dz̃dx and Q is

defined in (1.2). This requirement completely determines (up to a total divergence) the Hamil-
tonian densities to be

H0ε =
1

2
(εx̃− z̃)vux̃z̃ −

1

4
ux(ux̃ + εuz̃) (5.2)

and the equation (5.1) indeed yields the second and third Hamiltonian representations of the first
heavenly equation in a two-component evolutionary form with the Hamiltonian densities (5.2)
for ε = ±. Together with the original Hamiltonian representation (2.7) of the system (1.2) we
end up with the tri-Hamiltonian representation of this system(

ut
vt

)
= J0

(
δuH1

δvH1

)
= J+

(
δuH0+

δvH0+

)
= J−

(
δuH0−
δvH0−

)
(5.3)

provided that we have proved the Hamiltonian property for the operators J+ and J− and com-
patibility of the Hamiltonian operators J0, J+ and J−. These operators were automatically
Hamiltonian if we would know that the recursion operators R+ and R− are hereditary (Nijen-
huis) [9, 29], but this property of our recursion operators is not known.

For this reason, in section 6 we check that the three operators J0, J+ and J− are mutually
compatible Hamiltonian operators (form a Poisson pencil). For this purpose we use the technique
of the functional multi-vectors from P. Olver’s book [21].

6 Proof of Jacobi identities and compatibility
of Hamiltonian structures

Compatibility of three Hamiltonian structures means that the linear combination of the three
Hamiltonian operators with arbitrary constant coefficients is also a Hamiltonian operator.
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Since J0, J+ and J− are obviously skew symmetric, the remaining problem is to prove the
Jacobi identities for the linear combination J = aJ+ + bJ− + cJ0 of the three Hamiltonian ope-
rators with arbitrary constant coefficients a, b and c. Thus, we check simultaneously that J+
and J− are indeed Hamiltonian operators, at b = c = 0 and a = c = 0 respectively, that the three
Hamiltonian operators J+, J− and J0 are compatible and the system (1.2) in the form (5.3) is
tri-Hamiltonian. Since J+ = J1+J2 and J− = J1−J2, we obviously can equivalently change the
definition of J to J = aJ1 + bJ2 + cJ0 in our analysis of the Jacobi identities for J to simplify
the calculations.

To prove the Jacobi identities for J , we use the technique of P. Olver’s book [21], so below
we give a short summary of the notation and results from this book. Let Al be the vector
space of l-component differential functions that depend on independent and dependent variables
of the problem and also on partial derivatives of the dependent variables up to some fixed
order. A linear operator J : Al → Al is called Hamiltonian if its Poisson bracket {P,Q} =∫
δP · JδQdxdydz is skew-symmetric

{P,Q} = −{Q,P},

and satisfies the Jacobi identity

{{P,Q},R}+ {{R,P},Q}+ {{Q,R},P} = 0 (6.1)

for all functionals P, Q and R, where δ is the variational derivative. However, the direct
verification of the Jacobi identity (6.1) is a hopelessly complicated computational task. For this
reason we will use P. Olver’s theory of the functional multi-vectors, in particular, his criterion:

Theorem 6.1 ([21, Theorem 7.8]). Let D be a skew-adjoint l × l matrix differential operator
and Θ = 1

2

∫
(ωT ∧ Dω)dxdydz the corresponding functional bi-vector. Then D is Hamiltonian

if and only if

prvDω(Θ) = 0, (6.2)

where prvDω is a prolonged evolutionary vector field with the characteristic Dω defined by

prvDω =
∑
i,J

DJ

(∑
j

Dijω
j

)
∂

∂uiJ
, J = 0, x, x̃, z̃, xx̃, xz̃, x̃z̃, . . . . (6.3)

Here ui0 = ui and in our case i, j = 1, 2, while u1 = u and u2 = v, and ω = (ω1, ω2) = (η, θ) is
a functional one-form corresponding to a “uni-vector” with the following property for the action
of total derivatives DJ(ωi) = ωiJ . By the definition of the space of functional multi-vectors, the
integrals of total divergences in both Θ and prvDω(Θ) always vanish, so that we can integrate
by parts terms in the integrands, if needed. We note also that by definition of the prolonged
evolutionary vector field prvDω, it commutes with total derivatives and annihilates uni-vectors

prvDω

(
ωi
)

= 0.

In the following it is convenient to introduce the short-hand notation µ = vz̃+uxz̃, ν = vx̃−uxx̃
and A = ux̃z̃, so that 2Ax = µx̃ − νz̃ and 2vx̃z̃ = µx̃ + νz̃. To check the Jacobi identities for the
operator J = aJ1 + bJ2 + cJ0 we set D = J , where

J =


bD−1z̃ − aD

−1
x̃

−
{(
aD−1x̃ + bD−1z̃

)
Dx

+ 1
A(bν − aµ− c)

}{(
aD−1x̃ + bD−1z̃

)
Dx

+ 1
A(bν − aµ− c)

} J22

 , (6.4)
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where

J22 =
(
aD−1x̃ − bD

−1
z̃

)
D2
x +

1

A

(
bD−1x̃ − aD

−1
z̃

) 1

A
− (aµ+ bν)Dx

1

A

− 1

A
Dx(aµ+ bν) +

µ

A
Dx̃

1

A
(aµ+ c)− ν

A
Dz̃

1

A
(bν − c) +

cvx̃z̃
A2

. (6.5)

The bi-vector Θ in the theorem above has the form

2Θ =

∫
(η, θ) ∧

(
J11 J12

J21 J22

)(
η
θ

)
dx̃dz̃dx

=

∫ {
η ∧

(
bD−1z̃ − aD

−1
x̃

)
η − η ∧

(
aD−1x̃ + bD−1z̃

)
θx

− 2η ∧ 1

A
(bν − aµ− c)θ + θ ∧

(
aD−1x̃ + bD−1z̃

)
ηx

+ θ ∧
(
aD−1x̃ − bD

−1
z̃

)
θxx + θ ∧ 1

A2
(bθx̃ − aθz̃)

− 2θ ∧ 1

A
(aµ+ bν)θx + θ ∧ µ

A2
(aµ+ c)θx̃ − θ ∧

ν

A2
(bν − c)θz̃

}
dx̃dz̃dx. (6.6)

According to P. Olver’s criterion (6.2) with D = J applied to Θ in (6.6), the condition for
Jacobi identities to be satisfied reads

prvJω(Θ) = 0, (6.7)

where prvJω is the prolonged evolutionary vector field with the characteristic Jω which acts on
each term in the integrand of (6.6). We will further skip the integral sign in the condition (6.7),
keeping in mind the possibility of integration by parts while always omitting total divergences,
and leaving out the characteristic Jω in the notation prv for the prolonged vector field in (6.7)
for brevity. The criterion (6.7) becomes

−2η ∧ prv

[
1

A
(bν − aµ− c)

]
∧ θ + bθ ∧ prv

(
1

A2

)
∧ θx̃

− aθ ∧ prv

(
1

A2

)
∧ θz̃ − 2θ ∧ prv

[
(aµ+ bν)

A

]
∧ θx

+ θ ∧ prv

[
µ(aµ+ c)

A2

]
∧ θx̃ − θ ∧ prv

[
ν(bν − c)

A2

]
∧ θz̃ = 0 (mod DIV), (6.8)

where “mod DIV” (skipped in the following) means that the left-hand side of (6.8) equal to
a total divergence is equivalent to zero.

The action of the vector field prvJω involved in (6.8) is defined in terms of the matrix
elements of the operator J in (6.4), (6.5) according to the following rules (with u = u1, v = u2

and the letter subscripts denoting partial derivatives)

prvJω(A) = prvJω(ux̃z̃) = Dx̃Dz̃

{
J11η + J12θ

}
= Dx̃Dz̃

{(
bD−1z̃ − aD

−1
x̃

)
η −

(
aD−1x̃ + bD−1z̃

)
θx −

1

A
(bν − aµ− c)θ

}
= bηx̃ − aηz̃ − aθxz̃ − bθxx̃ +

[
(aµ− bν + c)

A
θ

]
x̃z̃

,

prvJω(µ) = prvJω(vz̃ + uxz̃) = Dz̃

{
J21η + J22θ +Dx

(
J11η + J12θ

)}
= 2bηx +

[
(bν − aµ− c)

A
η

]
z̃

− 2bθxx +

[
bθx̃ − aθz̃

A2

]
z̃

−
[

(bAx̃ − aAz̃)
A3

θ

]
z̃
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−
[

(aµ+ 3bν − c)
A

θx

]
z̃

−
{[

aµ+ bν

A

]
x

θ

}
z̃

+

{
µ

A

[
(aµ+ c)

A
θ

]
x̃

}
z̃

−
{
ν

A

[
(bν − c)

A
θ

]
z̃

}
z̃

+

{[
aµ− bν + c

A

]
x

θ

}
z̃

+ c
(vx̃z̃
A2

θ
)
z̃
,

prvJω(ν) = prvJω(vx̃ − uxx̃) = Dx̃

{
J21η + J22θ −Dx

(
J11η + J12θ

)}
= 2aηx +

[
(bν − aµ− c)

A
η

]
x̃

+ 2aθxx +

[
bθx̃ − aθz̃

A2

]
x̃

−
[

(bAx̃ − aAz̃)
A3

θ

]
x̃

−
[

(3aµ+ bν + c)

A
θx

]
x̃

−
{[

aµ+ bν

A

]
x

θ

}
x̃

+

{
µ

A

[
(aµ+ c)

A
θ

]
x̃

}
x̃

−
{
ν

A

[
(bν − c)

A
θ

]
z̃

}
x̃

−
{[

aµ− bν + c

A

]
x

θ

}
x̃

+ c
(vx̃z̃
A2

θ
)
x̃
.

With these prolongation formulas plugged in the criterion (6.8), three groups of terms, bilinear
in η and its derivatives, linear in η and without η, should separately either vanish or be reducible
to a total divergence form using integration by parts when necessary. The operator J = aJ1 +
bJ2 + cJ0 should satisfy the Jacobi identities for arbitrary parameters a, b and c and hence
vanishing of terms, up to a total divergence, should occur separately in each subgroup with
distinct bilinear dependence on the coefficients a, b and c. Moreover, each subgroup is further
divided into subgroups of terms with the trilinear, bilinear, linear dependence on µ, ν and its
derivatives or terms without µ and ν and each such subgroup also should separately vanish or
be reducible to a total divergence. Sometimes such cancelations of terms will occur only on
account of the identities 2Ax = µx̃ − νz̃ and 2vx̃z̃ = µx̃ + νz̃ following from definitions of µ, ν
and A given before the formula (6.4).

It is easy to check that all terms bilinear in η and its derivatives are canceled. For terms
linear in η we consider separately groups containing a2, b2, c2, ac, bc and ab. For example, terms
with a2 without µ (there are no terms with ν in this group) are combined into the single term
(we set a = 1 here)

−2

(
η ∧ θz̃

A3

)
z̃

∧ θ = −2

(
η ∧ θz̃

A3
∧ θ
)
z̃

,

which is a total divergence. Terms linear in µ combine to

− 2

A

(
η ∧ µ

A
θx

)
z̃
∧ θ +

2

A

( µ
A
η ∧ θx

)
z̃
∧ θ = 0.

Terms quadratic in µ are

2

A
η ∧

{(
µ2

A2
θx̃

)
z̃

+
µ

A

( µ
A

)
x̃
θz̃

}
∧ θ − 2µ

A2
η ∧

{( µ
A
θz̃

)
x̃

+
( µ
A

)
z̃
θx̃

}
∧ θ

− 2µ

A2
θ ∧

( µ
A
η
)
z̃
∧ θx̃ +

2µ2

A3
θ ∧ ηz̃ ∧ θx̃ = 0,

where the cancelations are obvious after expanding all derivatives of the products.

As another example, we consider terms linear in η containing ab. Terms without µ and ν do
not cancel completely, the remainder being (we skip ab in the following)

−8Ax
A2

η ∧ θx ∧ θ = − 4

A2
(µx̃ − νz̃)η ∧ θx ∧ θ,
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which should be joined with the terms linear in µ and ν. All such terms finally combine to the
following expressions

4
( µ
A2
η ∧ θx̃

)
x
∧ θ + 4

( µ
A2
η ∧ θx

)
x̃
∧ θ − 4

( ν

A2
η ∧ θz̃

)
x
∧ θ

− 4
( ν

A2
η ∧ θx

)
z̃
∧ θ +

4Ax
A3

η ∧ (µθx̃ − νθz̃) ∧ θ

= −4
µ

A2
η ∧ θx̃ ∧ θx − 4

µ

A2
η ∧ θx ∧ θx̃ + 4

ν

A2
η ∧ θz̃ ∧ θx + 4

ν

A2
η ∧ θx ∧ θz̃

+
4Ax
A3

η ∧ (µθx̃ − νθz̃) ∧ θ =
2µ(µx̃ − νz̃)

A3
η ∧ θx̃ ∧ θ −

2ν(µx̃ − νz̃)
A3

η ∧ θz̃ ∧ θ,

where we have used integration by parts skipping total divergencies and, at the large step, the
relation 2Ax = µx̃ − νz̃. The remaining term is bilinear in µ and ν and it should be joined to
other bilinear terms, linear in η and containing ab, which jointly yield

−
(

2µ2

A3
η ∧ θx̃

)
x̃

∧ θ −
(

2ν2

A3
η ∧ θz̃

)
z̃

∧ θ +

(
2µν

A3
η ∧ θx̃

)
z̃

∧ θ +

(
2µν

A3
η ∧ θz̃

)
x̃

∧ θ = 0,

which either vanish or cancel after integrating by parts.
In a similar way, we check the cancelation of linear in η terms proportional to b2, c2, ac

and bc and also distinct cancelation of groups of terms without η that contain each of bilinear
combinations of the coefficients a, b and c. Each such group is subdivided into subgroups with
different powers of µ, ν and their derivatives. The calculations are straightforward but much
too lengthy to be presented here, especially for the groups of terms without η.

Thus, the Jacobi identities are satisfied for the linear combination J = aJ1 + bJ2 + cJ0
and equivalently for J = aJ+ + bJ− + cJ0 with arbitrary constant coefficients which proves
that all the three operators J+, J− and J0 are Hamiltonian and mutually compatible as soon
as P. Olver’s criterion is applicable. However, P. Olver’s criterion is formulated for matrix-
differential operators, while our operators J+ and J− are nonlocal. An extensive literature
exists on the theory of nonlocal Hamiltonian operators in 1 + 1 dimensions, e.g., [4, 7, 8, 18, 27].
However, to the authors’ knowledge, no effective methods exist for checking the Jacobi identities
in the multi-dimensional case except O. Mokhov’s method in [17] whose efficiency depends on
the level of complexity of the nonlocality. As a hint to the applicability of P. Olver’s method for
nonlocal Hamiltonian operators, we can regard the papers [22, 25], where the Jacobi identities for
nonlocal symmetries were shown to be correct if nonlocal variables are included in symmetries’
characteristics, which imply “ghost” terms in the commutators. Since according to P. Olver’s
method nonlocal terms are automatically included in the characteristic of the evolutionary vector
field prvJω, with nonlocal J , and all such terms are canceled in the process of application of
the criterion, we believe that the criterion works correctly in this more general case, which we
consider as a well-founded conjecture. Thus, under this conjecture we have shown that the
first heavenly equation in the two component evolutionary form (1.2), being converted to the
form (5.3), is indeed a tri-Hamiltonian system.

Of course, a rigorous formulation of this method for checking the Jacobi identities for nonlocal
Hamiltonian operators is still awaited and could be a very worthwhile project [24].

7 Conclusion

We have converted the first heavenly equation into a two-component evolutionary form. Using
two different Lax pairs derived for the one-component form of this equation, we have constructed
two independent recursion operators R1 and R2 for symmetries of the first heavenly system
(FHS) from the Lax operators. They are related by a discrete symmetry of both the FHS and
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its symmetry condition. We have obtained a Lagrangian for the two-component FHS. Applying
to this degenerate Lagrangian the Dirac’s theory of constraints, we have obtained a symplectic
operator and its inverse, the latter being a Hamiltonian operator J0. We have found the corre-
sponding Hamiltonian density, thus presenting the first heavenly system in a Hamiltonian form.

We have determined all local Lie point symmetries of the FHS system and, using the inverse
Noether theorem in Hamiltonian form, we obtained Hamiltonians generating all the variational
(Noether) point symmetries. These Hamiltonians are integrals of the motion along the first
heavenly flow if the symmetry flows generated by them commute with the FHS flow. Each
Hamiltonian generating a variational point symmetry flow is conserved along each point sym-
metry flow that commutes with the flow generated by the Hamiltonian under study. Converting
the FH system back to the first heavenly equation in the one-component form, one could obtain
its integrals as reductions of the integrals for the system.

Composing each of the recursion operators with J0, we have obtained candidates for two
more Hamiltonian operators J1 = R1J0 and J2 = R2J0 which are related by the discrete sym-
metry transformation between the recursion operators. However, using some simple and natural
ansatzes for densities we failed to find the Hamiltonian densities corresponding to J1 and J2,
so that these operators cannot be used to convert the first heavenly flow in new Hamiltonian
forms. Therefore, we introduced operators J+ = J1 + J2 and J− = J1 − J2, even and odd
with respect to the discrete symmetry, respectively. For these operators we have succeeded
to find corresponding Hamiltonian densities H0+ and H0− by using a simple natural ansatz
and hence we have obtained two more Hamiltonian representations for the first heavenly flow,
provided that we prove that J+ and J− are indeed Hamiltonian operators. These operators
were automatically Hamiltonian if we would know that the recursion operators are hereditary
(Nijenhuis), but this property of our recursion operators is not known. Therefore, since opera-
tors J0, J+ and J− are obviously skew-symmetric, the remaining problem is to check directly
the Jacobi identities for these operators and prove the compatibility of the three Hamiltonian
operators J0, J+ and J−. For this purpose we checked the Jacobi identities for the linear com-
bination of these operators with arbitrary constant coefficients. To prove the Jacobi identities
directly appears to be “a hopelessly complicated computational task” [21]. Therefore, we have
applied P. Olver’s theory of functional multi-vectors from his book [21]. In this way, under the
well-founded conjecture of applicability of the Olver’s method to nonlocal Hamiltonian opera-
tors, we have proved that all three operators are Hamiltonian (which has been already proved
independently for J0) and that all these operators are compatible. Hence, our main result is that
the first heavenly equation in an evolutionary two-component form is a tri-Hamiltonian system.
Earlier examples of tri-Hamiltonian systems, bidirectional Boussinesq system and three mutually
compatible Hamiltonian structures associated with the Korteweg–de Vries and Camassa–Holm
bi-Hamiltonian flows, are mentioned in P. Olver’s talk [23]. There are also many other well-
known and famous multi-Hamiltonian systems (see, e.g., [1, 2, 3, 11]). The work on symmetries
and conservation laws following from these Hamiltonian properties is now in progress.
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