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Abstract. This article is preface to the SIGMA special issue “Tensor Models, Formalism
and Applications”, http://www.emis.de/journals/SIGMA/Tensor_Models.html. The is-
sue is a collection of eight excellent, up to date reviews on random tensor models. The
reviews combine pedagogical introductions meant for a general audience with presenta-
tions of the most recent developments in the field. This preface aims to give a condensed
panoramic overview of random tensors as the natural generalization of random matrices to
higher dimensions.
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Why random tensors?

General relativity, or classical gravity, is a theory of the ambient space-time geometry. The
electroweak and strong interactions, that is the other three fundamental forces in nature, are
described by perturbatively renormalizable quantum field theory [68, 72, 73, 74, 124, 132, 142,
145] living on this geometric background. The main lesson of general relativity is that the
ambient geometry is dynamical, and the main lesson of quantum field theory is that all the
dynamical fields must be quantized. Thus, classical gravity predicts its own demise: a more
fundamental theory, “quantum gravity”, must come into play at some high energy scale.

While classical general relativity is a field theory, it cannot be quantized the same way the
standard model is: general relativity is not perturbatively renormalizable [70, 143]. The lack of
perturbative renormalizability of general relativity is a clear indicator that “quantum gravity” is
quite different from the classical theory of gravity. This is why minimalistic approaches should
be taken with a grain of salt: gravity is weakly coupled in the infrared, hence strongly coupled
in the ultraviolet. This suggest that the fundamental degrees of freedom of quantum gravity
are quite different from the geometric degrees of freedom perceived by low energy observers. It
is far more likely that the geometric infrared degrees of freedom are just bound states of the
genuine quantum gravity ultraviolet degrees of freedom.

Over the years several candidate quantum gravity theories have been developed, most notably
string theory. While much remains to be learned about the elusive fundamental theory of
quantum gravity, one thing is certain: whatever this theory may be, it must make sense of an
expression like:

∑
topologies

∫
[Dg][dX] e−SEH−SSM−Sother . (1)
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This is how quantum gravity should look like [51]: a path integral over matter fields X and
over geometric degrees of freedom (for instance metrics g and topologies) of the exponential of
the Einstein–Hilbert action plus the standard model action plus possibly other terms, describing
physics yet to be discovered. The sum over topologies in equation (1) can be reduced to a single
topology by fine tuning Sother, but a priori there is no reason to do this: one lesson of quantum
field theory is that whatever can happen will happen, and this includes topology change.

As already hinted, the precise meaning of equation (1) is unclear: the sum over topologies
and metrics is ill defined and the naive attempts to use this equation as the starting point for
a theory of quantum gravity fail. A strategy to make sense of this equation is to replace the
sum over (continuum) geometric degrees of freedom with a sum over triangulations:∑

topologies

∫
[Dg] →

∑
triangulations

,

and to replace the continuum actions by their discretized versions. However, when passing to
a discrete setting, several questions arise, most notably:

• what is the weight (probability distribution) one should use to sum over triangulations?

• how does one go back from discrete to continuum geometries?

The answers to these questions are intertwined. In order to go back from discrete to con-
tinuum geometries one needs some kind of phase transition. The precise features of this phase
transition strongly depend on the probability distribution chosen. In contrast to two or three
dimensions, in dimension four information about the smooth structure is lost when going to
a discretization. Some of this information could perhaps index the available phases of continu-
ous geometry.

Geometry and topology become increasingly complicated when increasing the topological
dimension and it seems reasonable to first address these questions in dimension two, and only
afterwards pass to the more realistic dimensions three or four.

In two dimensions the answers to these questions are provided by the theory of random
matrices [4, 51, 115, 146, 147]. Random matrices are probability distributions for N×N random
variables Mab, which are invariant under the conjugation of M by the unitary group. The
moments and partition function of a random matrix model can be evaluated as sums over
ribbon Feynman graphs, with weights fixed by the Feynman rules. These ribbon graphs are
dual to topological surfaces. As the probability distribution of the surfaces (weights of the
graphs) is fixed by the Feynman rules, random matrices yield a canonical theory of random
two-dimensional topological surfaces and provide an answer to the first question. One still has
some freedom in assigning metrics to the triangulated topological surfaces. The simplest choice
is to consider the triangulations as equilateral.

As always in quantum field theory, the perturbative Feynman series diverges. However, the
situation is much more subtle in matrix models than in usual quantum field theory. A matrix
model is endowed with a natural small parameter, 1/N (where N is the size of the matrix),
which does not exist in usual quantum field theory, and one can reorganize the perturbative
expansion of a matrix model as a series in 1/N . In his seminal work [141] ’t Hooft showed
that the 1/N series is indexed by the genus. This is the fundamental feature of matrix models:
the 1/N expansion reorganizes the perturbative series into nontrivial but manageable packages
of graphs of fixed genus.

At leading order in 1/N the planar graphs [36, 48] dominate. While planar graphs can
be arbitrarily large (i.e., they can have an arbitrary number of edges), they can be explicitly
enumerated [44, 45, 139] and form an exponentially bounded family. This holds order by order
in 1/N : the family of graphs of any fixed genus is exponentially bounded. Tuning the coupling
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constants of a matrix model to some critical values, infinite graphs with fixed genus will dominate
at any order in 1/N . At this critical point the model undergoes a phase transition to a continuum
theory of random, infinitely refined, surfaces [49, 101]. This answers the second question above.
Assuming an equilateral metric assignment, the infinitely refined random geometry emerging at
criticality, the Brownian map [109, 110, 111], has average Hausdorff dimension 4 and is widely
believed to have average spectral dimension 2.

The behavior of conformal matter coupled to Liouville gravity in two dimensions is very well
captured by matrix models [3, 34, 35, 49, 51, 52, 54, 56, 60, 102, 103, 105, 113]. The double
scaling limit of matrix models [37, 55, 71] corresponds to a continuum gravity theory with finite
renormalized Newton’s constant. Matrix models extend naturally to matrix field theories, which
are intimately related to noncommutative quantum field theories [76, 93], in particular to the
Grosse Wulkenhaar model, which has been shown asymptotically safe at all orders [53] and
solved in the planar sector [77, 78, 79, 80].

Matrix models can be studied using the eigenvalue decomposition or the Schwinger–Dyson
equations [8, 57, 58, 59, 81, 114], avoiding the divergent perturbative expansion. However, the
link with random surfaces must be revisited in this case. In order to obtain a theory of random
surfaces one first performs the perturbative expansion and subsequently reorganizes it in powers
of 1/N . As the perturbative expansion is not summable, it is a non trivial task [100] to establish
the connection between random surfaces and matrix models rigorously. Even more tantalizing,
the critical point where the continuum limit is reached is at negative values of the coupling
constants, in a range of parameters where the models are unstable. This is a feature, not an
accident: the critical point must correspond to a regime where all the surfaces add up, and not
to a point where the sum over surfaces is alternated. The tuning to criticality is meaningful
after restricting to a fixed order in 1/N , but what is the meaning of this tuning to criticality
beyond perturbation theory?

Although many non perturbative questions about random matrices are still open, by and
large, matrix models are a success story. One lesson can be drawn from their example: in two
dimensions, in most cases, minimal choices suffice. The relation between random matrices and
quantum gravity is already apparent if one studies the simplest matrix model and considers the
simplest metric assignment (equilateral) for the triangulations.

The development of matrix models over the past decades is one of the most impressive
achievements of modern theoretical and mathematical physics. This success inspired their gen-
eralization in the 1990s to random tensor models [1, 75, 136, 137, 138] intended to describe
random geometries in higher dimensions. However, for twenty years random tensors essentially
failed to match the success of random matrices because, for a long time, a 1/N expansion for
tensors could not be found.

Random tensors generate Feynman graphs that can be interpreted as topological spaces.
However, the spaces generated in this way are quite nontrivial: one obtains not only all the
manifolds, but also all the pseudo manifolds of a fixed dimension1. Several models [6, 7, 33,
116, 117, 118, 121], mainly under the guise of “Group Field Theories”, which are tensor models
decorated by extra data, have been proposed in the attempt to tackle this problem. Although
different in some important respects, these models did not bring any insight into the problem
of the 1/N expansion.

Starting in 2009 [82, 83, 85], new results and techniques led to the discovery of the 1/N
expansion for tensors [31, 84, 88, 94]. These results form the backbone of the modern theory
of random tensors. In this modern point of view, random tensors are probability distributions
for ND random variables Ta1...aD , which are invariant under the independent action of the

1A further complication arose from the fact that the first models proposed did not generate genuine D-
dimensional complexes, but only 2-complexes.
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unitary group on each tensor index:

Ta1...aD → T′b1...bD =
∑

a1,...aD

U
(1)
b1a1
· · ·U (D)

bDaD
Ta1...aD .

The main building blocks of a random tensor model are the invariants one can build out of the
tensor T and its complex conjugate. While for matrices there is essentially one such invariant at
any degree, Tr[(MM†)p], there are numerous possible choices for tensors. Each of these invariants
(generalized traces) can be represented by a bipartite D-regular edge colored graph, and there
are as many independent invariants at degree 2p as there are non isomorphic such graphs with
2p vertices. This is the source of all the richness of random tensors.

The graphs of the new tensor models always encode genuine D-dimensional cellular complexes
hence D-dimensional topological spaces. The 1/N series [25, 47, 84, 88, 90, 94] is indexed by
a positive integer called the degree, which plays in higher dimensions the same role the genus
played for matrix models. Unlike the genus, however, the degree is not a topological invariant,
but mixes topological and triangulation dependent information. This is not a drawback, but
a quality. Topology is quite complicated in dimensions three and four (or higher): although
topologies are not fully classified in arbitrary dimension, the graphs at fixed degree can be [98].

In the large N limit the graphs of degree zero, called melonic [29, 91, 97], dominate. The
melonic graphs triangulate the D-dimensional sphere in any dimension [84, 88, 94] and are an
exponentially bounded family. Like matrix models, tensor models undergo a phase transition
to a theory of continuous random D-dimensional topological spaces [29, 31] when tuning to
criticality and posses a double scaling limit [32, 46, 98]. In stark contrast to matrix models, for
3 ≤ D ≤ 5, in the double scaling regime only an exponentially bounded family of triangulations
of the sphere contribute. For D ≥ 6 (as for D = 2) the family selected in the double scaling limit
is neither exponentially bounded nor restricted to the spherical topology. The 1/N expansion
of tensor models exhibits very strong universality properties [87, 89, 91] and has been put on
a firm mathematical footing [90] in the sense of constructive field theory [69] by means of the
loop vertex expansion [95, 112, 125, 126]. The ensuing theory of random geometries in higher
dimensions has been extensively studied [11, 12, 15, 17, 22, 24, 26, 28, 30, 40, 41, 61, 86, 87, 89,
96, 99, 106, 131, 144].

Random tensor models generalize random matrix models and provide a framework for the
study of random geometries in any dimension. However, as gravity is quite peculiar in two
dimensions (and it is peculiar in a different way in three dimensions, and it is peculiar in yet
another different way in four), one should keep an open mind for alternatives.

In their simplest form, tensor models can be seen, like matrix models, as generators of
Euclidean dynamical triangulations [2, 50, 92]. There exists a tensor model [29] whose free energy
WTM(λ,N) equals an Einstein–Hilbert gravity partition function discretized on an equilateral
triangulation with edge length a:∑

topologies

∫
[Dg] e

1
16πG

∫
dDx
√
g(R−2Λ) →

∑
Triangulations
edge length a

e−S
discr.
EH (G,Λ;a) = WTM(λ,N),

where the coupling constant λ and the parameter N of the tensor model are related to the edge
length a, the dimensionfull cosmological constant Λ and Newton’s constant G respectively the
dimensionless cosmological constant Λ̃ and Newton’s constant G̃ by the relations:

G̃ =
G

aD−2
= c1

1

lnN
, Λ̃ = Λa2 = c2

G

aD−2
ln

(
1

λ

)
+ c3 = tanαG̃+ c3,

with c1, c2, c3 > 0 some constants of order 1 (and c3 = 0 for D = 2) and tanα = c2 ln
(

1
λ

)
.
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Figure 1. The (G̃, Λ̃) plane.

The (G̃, Λ̃) plane is represented in Fig. 1. The angle α is the slope of the (solid) line Λ̃(G̃) =
tanαG̃+c3 with respect to the vertical axis. The coupling constant λ controls α, while N controls
the height of the dashed line in Fig. 1. The physical constants G̃ and Λ̃ are the coordinates of
the intersection point of the two lines. For λ ∈ (0,∞), α ∈

(
π
2 ,−

π
2

)
and, as N > 1, the two

parameters λ and N allow one to explore the entire upper half plane of the physical constants.
As long as a is kept fixed, the dimensionfull constants are just a finite rescaling of the

dimensionless ones. The correspondence between the various regimes of tensor models and the
physical coupling constants can be read out from this figure, observing that λ → 0 at fixed N
moves the intersection point to the right

(
α→ π

2

)
at constant height, while N →∞ at fixed λ

descends the intersection point along the line Λ̃(G̃) at fixed slope α.

The perturbative expansion. We have a and N fixed, λ → 0. The perturbative expansion is an
expansion at large cosmological constant and fixed Newton’s constant :

G̃ constant (small), α→ π

2
, Λ̃→∞.

This is an expansion around the zero volume state corresponding to Λ̃ =∞.

The 1/N expansion. We have a and λ fixed, N → ∞. For D ≥ 3, the 1/N expansion is an
expansion at finite cosmological constant, small Newton’s constant and constant slope:

G̃→ 0, α constant, Λ̃→ c3.

This is an expansion around geometries of maximal positive curvature at fixed volume.
The situation is different in D = 2. In that case the 1/N expansion is an expansion at
small cosmological constant and small Newton’s constant with constant slope.

The large N limit. We have a, λ fixed, N = ∞. In this limit one has a finite cosmological
constant and zero Newton’s constant, but this regime is approached along a line with fixed
slope:

G̃ = 0, α constant, Λ̃ = c3.

The large N limit projects onto geometries with maximal positive curvature at fixed
volume. Among these geometries, one has a second expansion governed by the slope α
around the zero volume state. That is, once projected onto geometries with maximal
positive curvature, the slope α plays the role of an effective cosmological constant which
is large and positive.

The critical regime. We have a fixed, λ → λc, N = ∞. One still has a finite cosmological
constant and zero Newton’s constant, but the slope approaches a critical value:

G̃ = 0, α→ αc, Λ̃ = c3.
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We represented the line with critical slope αc in red in Fig. 1. The critical value αc
corresponds to a divergent number ofD-simplices hence, as a is kept fixed, these geometries
have infinite volume.

The continuum limit. We have a → 0, λ → λc, a
D(λc − λ)−1 fixed, N = ∞. The number

of D-simplices diverges but the physical volume is kept fixed by sending a to zero while
keeping aD(λc−λ)−1 fixed. The dimensionless and dimensionfull constants have a different
behavior:

G̃ = 0, α→ αc, Λ̃ = c3

∣∣∣ G = 0, Λ =∞.

The double scaling regime. We have a fixed, λ→ λc, N →∞, ND−2(λc−λ) fixed. This regime
corresponds to a well defined trajectory in the plane of physical coupling constants:

G̃→ 0, α→ αc, Λ̃→ c3.

The continuum double scaling limit. We have a→ 0, λ→ λc, N →∞, with ND−2(λc−λ) fixed
and aD(λc − λ)−1 fixed. In this regime we have:

G̃→ 0, α→ αc, Λ̃→ c3

∣∣∣ G→ 0, Λ→∞.

The analytically accessible regimes of this tensor model explore regions with small positive
(or zero) Newton constant and large (or very large) positive cosmological constant. Care should
be taken when interpreting these values. This theory is supposed to describe the ultraviolet
behavior of gravity, therefore the cosmological and Newton’s constant we are discussing here
are the ultraviolet ones. In order to obtain the infrared coupling constants one needs to follow
a renormalization group flow, and both Λ and G will vary substantially as they are dimensionfull
in D ≥ 3.

The geometries of maximal positive curvature at fixed volume are rather simple and fall
into the universality class of the continuous random tree (branched polymers). On the one
hand this is good news, as one can treat analytically statistical systems in random geometry
[22, 24, 27, 28, 30], hence the coupling of gravity with matter fields. On the other, one can only
do so much with branched polymers and it is important to find regimes in which the emergent
geometries are richer.

The double scaling limit is one attempt to go beyond branched polymers. In this limit larger
families of graphs are included and, more importantly, below D = 6 it seems likely that the
double scaling regime can be followed by a triple scaling regime, revealing an even larger family
of graphs. The strategy one employs in this context is to keep the metric interpretation of
a graph as dual to an equilateral triangulation, and to extend (in a controlled manner) the
family of graphs included in the statistical ensemble.

A second option is to encode metric degrees of freedom in additional data associated to Feyn-
man graphs. This strategy is sometimes called group field theory (GFT) [5, 6, 7, 33, 104, 116,
117, 118, 121] and has proven quite successful. In GFT one considers tensors over some Lie group
that are furthermore invariant under the diagonal action of the group. With minimal adaptations
the 1/N expansion holds for GFTs [84, 88]. Due to the diagonal gauge invariance, the ampli-
tude of a GFT graph is the discretized BF action on the dual triangulation. At least in three
dimensions, this is exactly the gravity partition function on the dual triangulation (in higher
dimensions the BF action must be supplemented by constraints). The tantalizing fact is that,
choosing for instance the group SU(2) in three dimensions, the melonic triangulations (which
still dominate) are endowed with a flat connection. This, most definitely, is not a branched
polymer geometry. However, the reader should be aware of the following fact. While a metric
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on a (pseudo) manifold is uniquely encoded in the holonomies around all the closed loops in that
(pseudo) manifold, when discretizing one loses a local conformal factor. While the fact that mel-
onic geometries have a flat connection is very encouraging, before fixing this conformal factor
issue one cannot control the emerging random geometry in GFTs. Be that as it may, GFT has
successfully been applied to quantum cosmology [62, 63, 64, 65, 66, 67, 119, 120, 122, 123, 140],
in what is the most relevant phenomenological application of tensor models to date.

A third option is to extend the framework of tensor models to tensor field theories. As
matrix models extend naturally to matrix field theories, tensor models extend naturally to
tensor field theories (TFT) [127, 128, 130] by breaking the unitary invariance of the Gaussian
part of the measure. The covariance of such models possesses a nontrivial spectrum, which
in turn is naturally divided into scales. The integration of the high scales leads to a genuine
renormalization group flow [9, 18, 19] and the TFTs explore the tensor theory space [129]
spanned by all the unitary invariant polynomial interactions. One can combine both tensors
with a diagonal gauge invariance and a nontrivial covariance in what could be called tensor group
field theory. Such models are also perturbatively renormalizable (which is highly nontrivial in
this case, and relies crucially on the ultraviolet dominance of the melonic graphs), and exhibit
a very rich phase portrait. While much remains to be done, one could hope that this class of
models can fix the local conformal factor problem of the usual GFTs.

The TFTs are examples of renormalizable, nonlocal field theories. A regime parallel to the
large N limit of tensor models is reached in TFTs via a genuine renormalization group flow
[9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 38, 39, 42, 43, 107, 108, 133, 134, 135], and not by
sending the parameter N to infinity. The large N behavior of tensor models corresponds to the
ultraviolet limit of TFTs. Typically the couplings grow in the infrared which suggests that TFTs
develop bound states at low energy. This low energy behavior remains largely to be explored
either by analytic [38, 39] or by numeric [21] methods. We emphasize that the natural metric
assignment for the triangulations dual to graphs in TFTs is not yet understood. However, the
fact that TFTs develop bound states in the infrared is an encouraging sign and establish them
as potential ultraviolet completions of gravity.

Random tensors are the straightforward generalization of random matrices in higher dimen-
sions. It should however be stressed that the D = 2 case of matrices is very special. Indeed,
random tensors behave by and large quite differently from random matrices. This is due to the
fact that the melonic family, which dominates in tensor models, is very different from (and in
fact much more restricted than) the planar family dominating matrix models.
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Henri Poincaré D 2 (2015), 169–228, arXiv:1409.1705.

[101] Kazakov V.A., Bilocal regularization of models of random surfaces, Phys. Lett. B 150 (1985), 282–284.

[102] Kazakov V.A., Ising model on a dynamical planar random lattice: exact solution, Phys. Lett. A 119 (1986),
140–144.

[103] Kazakov V.A., The appearance of matter fields from quantum fluctuations of 2D-gravity, Modern Phys.
Lett. A 4 (1989), 2125–2139.

[104] Kegeles A., Oriti D., Continuous point symmetries in group field theories, arXiv:1608.00296.

[105] Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B., Fractal structure of 2D-quantum gravity, Modern
Phys. Lett. A 3 (1988), 819–826.

[106] Krajewski T., Schwinger–Dyson equations in group field theories of quantum gravity, in Symmetries and
Groups in Contemporary Physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., Vol. 11, World Sci. Publ.,
Hackensack, NJ, 2013, 373–378, arXiv:1211.1244.

[107] Lahoche V., Oriti D., Renormalization of a tensorial field theory on the homogeneous space SU(2)/U(1),
arXiv:1506.08393.

[108] Lahoche V., Samary D.O., Functional renormalisation group for the U(1)−T 6
5 TGFT with closure constraint,

arXiv:1608.00379.

[109] Le Gall J.F., The topological structure of scaling limits of large planar maps, Invent. Math. 169 (2007),
621–670, math.PR/0607567.

[110] Le Gall J.F., Geodesics in large planar maps and in the Brownian map, Acta Math. 205 (2010), 287–360,
arXiv:0804.3012.

[111] Le Gall J.F., Uniqueness and universality of the Brownian map, Ann. Probab. 41 (2013), 2880–2960,
arXiv:1105.4842.

[112] Magnen J., Rivasseau V., Constructive φ4 field theory without tears, Ann. Henri Poincaré 9 (2008), 403–
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