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This note provides (super) symplectic origins for the quaternion algebra H and for the eight-
fold “Bott periodicity” of Clifford algebras (due originally to Cartan [3]) in terms of quantum
Hamiltonian reduction. Clifford algebras arise in symplectic supergeometry as the Weyl (aka
canonical commutation) algebras of purely-odd symplectic supermanifolds R0|n. As we explain,
Hamiltonian reductions quantize to bimodules, which are often Morita equivalences. In particu-
lar, we will show that the well-known Morita equivalence H ' Cliff(4) is the quantization of the
Hamiltonian reduction R0|4//Spin(3), where Spin(3) = SU(2) acts on R0|4 as the underlying real
module of the defining action of SU(2) on C2, and that the reduction R0|8//Spin(7) coming from
the spin representation quantizes to the “Bott periodicity” Morita equivalence Cliff(8) ' R. We
also show that the Morita equivalence Cliff(7) ' Cliff(−1) arises from the Hamiltonian reduc-
tion R0|7//G2, where G2 ⊆ SO(7) is the exceptional Lie group of automorphisms of the octonion
algebra O.

1 Symplectic supermanifolds and Clifford algebras

A superalgebra is a Z/2-graded associative algebra (meaning, in particular, that the multiplica-
tion adds degree modulo 2); morphisms are grading-preserving. A supermodule is a Z/2-graded
module. If M is a left A-supermodule, the algebra EndA(M) of all A-linear endomorphisms
of M is naturally a superalgebra acting on M from the right (with multiplication fg = g ◦ f).
Two superalgebras A and B are super Morita equivalent if there are Z/2-graded bimodules AMB

and BNA with grading-preserving bimodule isomorphisms M ⊗B N ∼= A and N ⊗AM ∼= B. We
will generally suppress the word “super”: for example, “module” and “Morita equivalence” will
henceforth always be meant in the super sense.

A superalgebra A is commutative if for homogeneous elements x and y (with degrees |x|
and |y|), yx = (−1)|x|·|y|xy. Note in particular that for an odd element x in a commutative
superalgebra, x2 = −x2, and so x2 = 0. By definition, odd n-dimensional space R0|n is the
“spectrum” of the commutative superalgebra O(R0|n) = R[x1, . . . , xn] where the coordinate
functions x1, . . . , xn are odd, and R[. . . ] denotes the free commutative superalgebra on “. . . ”.
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Thus O(R0|n) ∼=
∧•Rn. In general, a supermanifold is a “space” that looks locally like Rm|n =

Rm × R0|n. See [5] for details on superalgebras and supermanifolds.

A symplectic structure on a supermanifold is an even nondegenerate closed de Rham 2-form.
De Rham forms can be defined for commutative superalgebras just like for commutative algebras,
but behave differently in one important way: if x is an odd coordinate, then dx is even, and so
dx∧dx 6= 0, and if x and y are both odd, then dx∧dy = dy∧dx with no sign. A side effect of this
is that symplectic structures on odd manifolds behave somewhat like metrics on even manifolds.

Equip R0|n with the positive-definite symplectic form ω =
∑

i
(dxi)

2

2 . The corresponding Pois-

son structure on R0|n is given by the Poisson brackets {xi, xj} = −2δij . (The sign depends on
an essentially-arbitrary choice of convention for inverse matrices in superalgebra.) The symplec-
tic form ω on R0|n is translation-invariant and so admits a canonical quantization to the Weyl
algebra W(R0|n) = R〈x1, . . . , xn〉/([xi, xj ] = {xi, xj}), where by definition in a superalgebra the
commutator is defined on homogeneous elements by [x, y] = xy − (−1)|x|·|y|yx. Thus W(R0|n)
is the Clifford algebra Cliff(n) = R〈x1, . . . , xn〉/(x2i = −1, xixj = −xjxi for i 6= j) with its
usual Z/2-grading in which all generators xi are odd. The Weyl algebra of R0|n equipped with
symplectic form −ω is Cliff(−n) = R〈x1, . . . , xn〉/(x2i = 1, xixj = −xjxi).

2 Quantum Hamiltonian reduction

A moment map for the action of a super Lie group G on a symplectic supermanifold M is a map
µ : M → g∗ = Lie(G)∗ of Poisson supermanifolds such that the infinitesimal action of an element
a ∈ g is given by the Hamiltonian vector field for the function m 7→ 〈µ(m), a〉, where 〈 , 〉 denotes
the pairing of the vector space g with its dual; such data is equivalent to a Lie algebra map
µ∗ : g → O(M), where the latter is treated as a super Lie algebra with its Poisson bracket.
When certain cohomology groups of M and g vanish, µ exists and is unique. The Hamiltonian
reduction M//G of this data is the quotient space µ−1(0)/G. This can be defined in the super
case via its algebra of functions (O(M)/〈µ∗g〉)G, where 〈µ∗g〉 denotes the ideal generated by
the image of µ∗. As Marsden and Weinstein explained in the even case [7], when 0 is a regular
value of µ and the action of G on µ−1(0) is free and proper, the manifold M//G is naturally
symplectic. The natural maps µ−1(0) ↪→ M and µ−1(0) � M//G are together a Lagrangian
correspondence between M and M//G. Super Hamiltonian reduction can be cleanly expressed
as an example of coisotropic reduction of super Poisson algebras [4, 8].

Suppose that G acts instead on an associative superalgebra A. A comoment map is a Lie alge-
bra map µ∗ : g→ A, where A is treated as a super Lie algebra with its commutator bracket, such
that the infinitesimal action of a ∈ g is given by the inner derivation [µ∗(a),−]. Corresponding
to the zero section µ−1(0) is the quotient module A/〈µ∗g〉, where 〈µ∗g〉 denotes the left ideal
generated by the image of µ∗. Corresponding to the quotient M//G = µ−1(0)/G is the quantum
Hamiltonian reduction A//G = (A/〈µ∗g〉)G. This is naturally an algebra because it is isomor-
phic to EndA(A/〈µ∗g〉). When G is compact, A//G ∼= AG/

(
AG ∩ 〈µ∗g〉

)
, where AG denotes

the G-invariant subalgebra of A. From this perspective, the algebra structure on A//G arises
because, although 〈µ∗g〉 is merely a left ideal in A, its intersection with AG is a two-sided ideal,
as µ∗g is central in AG. The module A/〈µ∗g〉 is by construction a bimodule between A and A//G.

Example 1. Suppose that M is a linear symplectic supermanifold and C ⊆M is a coisotropic
submanifold cut out by linear equations r1 = · · · = rp+q = 0, where r1, . . . , rp are even and
rp+1, . . . , rp+q are odd. The Hamiltonian flows for r1, . . . , rp+q define an action on M of the
abelian Lie supergroup Rp|q. Let C⊥ ⊆ C denote the symplectic orthogonal to C. The Hamil-
tonian reduction M//Rp|q is then canonically linearly symplectomorphic to C/C⊥.

SinceM is linear, it admits a canonical quantization to the Weyl algebraW(M)=T (M∗)/([a,b]
= {a, b}, a, b ∈ M∗). The quotient W(C) = W(M)/〈r1, . . . , rc〉 is the canonical quantization
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of C, andW(M)//Rp|q ∼=W(C/C⊥). In the purely-odd case, which is the only case of concern in
this paper, W(C) is a Morita equivalence betweenW(M) andW(C/C⊥): it suffices to consider

the case M = R0|2 with “split” symplectic form (dx)2

2 − (dy)2

2 and Lagrangian C ∼= R0|1 spanned
by the vector (1, 1); then W(M) ∼= Mat(1|1) is the algebra of 2× 2 matrices in which

(
1 0
0 0

)
and(

0 0
0 1

)
are even and

(
0 1
0 0

)
and

(
0 0
1 0

)
are odd, andW(C) is the defining (1|1)-dimensional module.

(When there are even coordinates, W(C) is not a Morita equivalence. The Stone–von Neu-
mann theorem can be understood as saying that for purely even M , W(C) becomes a Morita
equivalence after appropriate functional analytic completions. The mixed case can be handled
by decomposing M and C into even and odd parts.)

In particular, linear Lagrangians provide Morita equivalences W(M) ' R. This does not
explain why Cliff(8) = W(R0|8) ' R, because the positive-definiteness of the symplectic form
prevents R0|n from admitting Lagrangian sub-supermanifolds, linear or not.

Lemma 1. If the Hamiltonian reduction Cliff(n)//G is not the zero algebra, then Cliff(n)/〈µ∗g〉
is a Morita equivalence between Cliff(n) and Cliff(n)//G.

Proof. For any superalgebra A, an A-module X is a Morita equivalence between A and
EndA(X) if and only if X is a finitely-generated projective generator of the supercategory
of A-modules. The holomorphic symplectic supermanifold C0|n = R0|n ⊗ C admits a linear
Lagrangian L if n is even and an (n + 1)/2-dimensional linear coisotropic C if n is odd. Via
Example 1, these linear coisotropics provide Morita equivalences Cliff(n)⊗C ' C =W(L/L⊥)
or Cliff(1) ⊗ C = W(C/C⊥). For C and Cliff(1) ⊗ C, any non-zero finitely-generated module
is a projective generator. But “non-zero”, “finitely-generated”, and “projective” are Morita-
invariant notions, so these properties hold also for Cliff(n)⊗ C and hence for Cliff(n). �

3 Cliff(4) and H

Corresponding to the exceptional isomorphism SO(4) ∼= Spin(3)×Z/2Spin(3) are two commuting

actions of Spin(3) on R0|4 by linear symplectic automorphisms. (Odd symplectic groups are
even orthogonal groups; metaplectic groups correspond to spin groups.) Denote the coordinates
on R0|4 by {w, x, y, z} and the bases for two copies of so(3) by {a+, b+, c+} and {a−, b−, c−},
normalized so that their brackets are [a±, b±] = ±2c±, [b±, c±] = ±2a±, [c±, a±] = ±2b±. The
comoment maps for the actions are:

a± 7→ 1
2(wx± yz), b± 7→ 1

2(wy ± zx), c± 7→ 1
2(wz ± xy).

Together these six elements are a basis for the space of homogeneous-quadratic functions on R0|4.
The quadratic Casimir for both so(3)s is θ = ±2a2± = ±2b2± = ±2c2± = wxyz. Completing the
basis for O(R0|4) are the unit 1 and xyz, wyz, wzx, and wxy. Basis vectors 1, a±, b±, c±, and θ
are even, and x, y, z, w, xyz, wyz, wzx, and wxy are odd.

We now consider the quantization Cliff(4) = W(R0|4), for which we can use the same basis
{1, w, x, y, z, a+, b+, c+, a−, b−, c−, xyz, wyz, wzx,wxy, θ} (with the same grading). Note that,
whereas inO(R0|4) we had a2± = b2± = c2± = ±θ/2, in Cliff(4) we have a2± = b2± = c2± = 1

2(±θ−1).

Since the actions of Spin(3) on R0|4 are linear, they lift to Cliff(4), and the same assignments
a+, . . . , c− provide the quantum comoment maps.

Theorem 1. The quantum Hamiltonian reduction of either of the so(3)-actions on R0|4 produces
a Morita equivalence Cliff(4) ' H = R〈i, j, k〉/(i2 = j2 = k2 = ijk = −1) (where the quaternion
algebra H is purely even).

Proof. There is a manifest symmetry interchanging the two so(3)-actions; we will work with
the action of the a−, b−, and c−. It is not hard to see that [a−,−], [b−,−], and [c−,−] preserve
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polynomial degree. We have observed already that the quadratic elements a+, b+, c+ commute
with the generators a−, b−, c− of the action, as well as with θ = wxyz. The subspace of Cliff(4)
spanned by {a−, b−, c−} is a submodule for the action of {a−, b−, c−} isomorphic to the adjoint
action. The subspaces spanned by {w, x, y, z} and {xyz, wyz, wzx,wxy} are each isomorphic to
the underlying real module of the defining module of su(2). Thus a basis for the so(3)-fixed
subalgebra Cliff(4)Spin(3) is given by the five even elements {1, a+, b+, c+, θ}.

The left ideal 〈µ∗so(3)〉 in Cliff(4) generated by {a−, b−, c−} is eight-dimensional with basis
{a−, b−, c−, w− xyz, x+wyz, y +wzx, z +wxy, θ+ 1}. This ideal intersects Cliff(4)Spin(3) only
in the one-dimensional space spanned by θ + 1. It follows that in the quotient Cliff(4)Spin(3)/(
Cliff(4)Spin(3)∩〈µ∗so(3)〉

)
we have a2+ = 1

2(θ−1) ≡ 1
2(−2) = −1, and so the map (a+, b+, c+) 7→

(i, j, k) identifies the quantum Hamiltonian reduction Cliff(4)//Spin(3) with the quaternion
algebra H. Lemma 1 completes the proof. �

Theorem 1 suggests that the “classical limit” of H is the Hamiltonian reduction R0|4//Spin(3).
Since 0 is not a regular value of the classical moment map, R0|4//Spin(3) is not a supermanifold.
It does make sense as an affine super scheme: its algebra of functions is the purely even Poisson
algebra R[a, b, c]/(a2 = b2 = c2 = ab = bc = ca = 0) with Poisson brackets {a, b} = 2c, {b, c} =
2a, and {c, a} = 2b. Thus the “classical limit” of H is the first-order neighborhood of 0 in so(3)∗.

4 Cliff(7) and G2

The 14-dimensional exceptional Lie group G2 is the subgroup of SO(7) preserving the alterna-
ting 3-form ε on R7 defined by identifying R7 with the pure-imaginary octonions and setting
ε(a, b, c) = (ab)c− a(bc) ∈ R [2]. Since SO(7) acts by linear symplectic automorphisms of R0|7,
we get an induced symplectic action of G2.

Theorem 2. The quantum Hamiltonian reduction Cliff(7)//G2 provides the Morita equivalence
Cliff(7) ' Cliff(−1).

Proof. By Lemma 1, it suffices to compute Cliff(7)//G2. As in Theorem 1, the Poincaré–
Birkoff–Witt isomorphismO(R0|7) =

∧•(R7) ∼= Cliff(7) is SO(7)-equivariant by the functoriality
of the Weyl algebra construction. The G2-fixed algebra has as its basis a set of the form
{1, ε, ε̄, θ}, where ε is the cubic 3-form defining G2, ε̄ is its dual quartic, and θ is the generator
of
∧7R7. In Cliff(7), ε̄ = θε and θ2 = 1.

An explicit presentation of the action of Lie(G2) = g2 is given in [1] as follows. Denote the
coordinates on R0|7 by x1, x2, . . . , x7. The cubic function ε is

ε = x1x2x3 + x1x4x5 + x1x6x7 + x2x4x6 + x2x7x5 + x3x7x4 + x3x6x5.

Consider the quadratic functions e1, . . . , e7 defined by ei = ∂
∂xi
ε. For example, e1 = x2x3 +

x4x5 + x6x7. Orthogonal to each ei is a two-dimensional vector space of commuting quadratics
given by the differences of the monomials in ei. For example, orthogonal to e1 are x2x3 − x4x5,
x4x5−x6x7, and their sum x2x3−x6x7. A basis for the image of g2 under µ∗ is given by choosing
for each i = 1, . . . , 7 two quadratics orthogonal to ei. For example:

x2x3 − x4x5, x4x5 − x6x7, x3x1 − x4x6, x4x6 − x7x5, x1x2 − x7x4,
x7x4 − x6x5, x5x1 − x6x2, x6x2 − x3x7, x1x4 − x2x7, x2x7 − x3x6,
x7x1 − x2x4, x2x4 − x5x3, x1x6 − x5x2, x5x2 − x4x3.

We wish to compute EndCliff(7)(Cliff(7)/〈µ∗g2〉) = Cliff(7)G2/(〈µ∗g2〉∩Cliff(7)G2), where 〈µ∗g2〉
is the left ideal generated by these 14 elements.
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Note that x1x4x5x6x7(x2x3 − x4x5) = θ + x1x6x7, where θ = x1x2 · · ·x7 ∈ Cliff(7)G2 . The
numerics of the second summand are: x2x3 − x4x5 was orthogonal to e1; x6x7 is the unused
monomial in e1. Similarly, for each monomial µ in the cubic ε one can find θ + µ ∈ 〈µ∗g2〉, and
summing shows that 7θ + ε ∈ 〈µ∗g2〉 ∩ Cliff(7)G2 ; hence also 7 + ε̄ ∈ 〈µ∗g2〉 ∩ Cliff(7)G2 . It
follows that Cliff(7)G2/(〈µ∗g2〉 ∩ Cliff(7)G2) is a quotient of the copy of Cliff(−1) spanned by
the classes of 1 and θ.

Finally, for any basis element α ∈ µ∗g2, we have α(θ − ε) = 0, from which it follows that
1 6∈ 〈µ∗g2〉. The ideal cannot mix even and odd terms without setting both to 0, and so we find
Cliff(7)G2/(〈µ∗g2〉 ∩ Cliff(7)G2) ∼= Cliff(−1). �

5 Spin(7) and Bott periodicity

We conclude by providing a Hamiltonian reduction whose quantization is the famous “Bott
periodicity” equivalence Cliff(8) ' R. The irreducible real spin representations of all four
groups Spin(5), Spin(6), Spin(7), and Spin(8) are eight-real-dimensional. The reduction
Cliff(8)//Spin(8) vanishes since the image of the comoment map consists of all quadratic ele-
ments of Cliff(8), including some which are invertible, and so the Spin(8)-action does not induce
a Morita equivalence. The reader is invited to compute Cliff(8)//Spin(5) and Cliff(8)//Spin(6).
We will show:

Theorem 3. Cliff(8)//Spin(7) ∼= R.

By Lemma 1, Theorem 3 establishes that the cyclic module Cliff(8)/〈µ∗so(7)〉 is a Morita
equivalence between Cliff(8) and R.

Proof. The following construction of Spin(7), and its eight-dimensional spin representation,
are developed in [6]. Consider the octonion algebra O and the 4-form φ ∈

∧4O∗ defined
by φ(a, b, c, d) = 〈a, b × c × d〉, where the triple cross product is by definition b × c × d =
1
2

(
b(c̄d)− d(c̄b)

)
and c̄ is the octonionic conjugate of c. Then Spin(7) is precisely the subgroup

of SO(8) fixing φ. In terms of coordinates x1, x2, . . . , x8 on R0|8, φ corresponds to the function

φ = x1234 + x1256 + x1278 + x1357 − x1368 − x1458 − x1467
+ x5678 + x3478 + x3456 + x2468 − x2457 − x2367 − x2358,

where we have abbreviated xij...k=xixj · · ·xk. Let θ=x12345678. The fixed algebra Cliff(8)Spin(7)

has basis {1, φ, θ} and multiplication θ2 = 1, θφ = φθ = φ, and φ2 = 14θ + 14− 12φ.
The image µ∗so(7) ⊆

∧2R8 ⊆ Cliff(8) of the comoment map is spanned by quadratic ele-
ments of the form α = xij±xkl such that −1

2α
2−1 = ∓xijkl is (with the given sign) a monomial

in φ. (There are 3 ·14 such αs; given {i, j}, there are three αs that include the monomial xij and
three that are disjoint from {i, j}, and these six span a three-dimensional space; this counts cor-
rectly the 21-dimensional space so(7).) It follows that φ+14, being a sum of 14 terms of the form
−1

2α
2, is in the ideal 〈µ∗so(7)〉, and so Cliff(8)//Spin(7) is a quotient of R{1, φ, θ}/〈φ+14〉 ∼= R.

Each α = xij ±xkl ∈ µ∗so(7) determines a splitting φ = xijkl(1 + θ) +κ+λ where κ is a sum
of four quartic monomials each of which has indices containing either {i, j} or {k, l} but not
both, and λ is a sum of eight quartic monomials each of which has indices intersecting the sets
{i, j} and {k, l} at one element each. For example, when α = x13 − x57, we have

φ = x1357 + x2468︸ ︷︷ ︸
xijkl(1+θ)

+x1234 − x1368 + x5678 − x2457︸ ︷︷ ︸
κ

+ x1256 + x1278 − x1458 − x1467 + x3478 + x3456 − x2367 − x2358︸ ︷︷ ︸
λ

.
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We see that [α, xijkl(1 + θ)] = 0 and [α, κ] = 0. Since we know that [α, φ] = 0, we find [α, λ] = 0
as well. Suppose β is a quadratic monomial and ν a quartic monomial such that the indices in β
and ν overlap at one element. Then βν = 1

2 [β, ν], from which it follows that αλ = 1
2 [α, λ] = 0.

It’s also clear that ακ = 0, since κ factors as (xij∓xkl)(. . . ) where α = xij±xkl and (. . . ) is a sum
of two quadratic monomials that have no overlap with α. Finally, αxijkl(1 + θ) = α(−1 − θ).
All together, we find:

α(φ+ 1 + θ) = α
(
xijkl(1 + θ) + κ+ λ+ (1 + θ)

)
= α(−1− θ) + 0 + 0 + α(1 + θ) = 0.

It follows that 1 6∈ 〈µ∗so(7)〉, and so Cliff(8)//Spin(7) 6∼= 0, completing the proof. �
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