Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 006, 33 pages      arXiv:1605.03942      https://doi.org/10.3842/SIGMA.2017.006

Spacetime-Free Approach to Quantum Theory and Effective Spacetime Structure

Matti Raasakka
Näyttelijänkatu 25, 33720 Tampere, Finland

Received May 13, 2016, in final form January 17, 2017; Published online January 24, 2017

Abstract
Motivated by hints of the effective emergent nature of spacetime structure, we formulate a spacetime-free algebraic framework for quantum theory, in which no a priori background geometric structure is required. Such a framework is necessary in order to study the emergence of effective spacetime structure in a consistent manner, without assuming a background geometry from the outset. Instead, the background geometry is conjectured to arise as an effective structure of the algebraic and dynamical relations between observables that are imposed by the background statistics of the system. Namely, we suggest that quantum reference states on an extended observable algebra, the free algebra generated by the observables, may give rise to effective spacetime structures. Accordingly, perturbations of the reference state lead to perturbations of the induced effective spacetime geometry. We initiate the study of these perturbations, and their relation to gravitational phenomena.

Key words: algebraic quantum theory; quantum gravity; emergent spacetime.

pdf (590 kb)   tex (70 kb)

References

  1. Aguilar P., Bonder Y., Chryssomalakos C., Sudarsky D., Operational geometry on de Sitter spacetime, Modern Phys. Lett. A 27 (2012), 1250130, 14 pages, arXiv:1205.0501.
  2. Araki H., Mathematical theory of quantum fields, International Series of Monographs on Physics, Vol. 101, Oxford University Press, New York, 1999.
  3. Avitzour D., Free products of $C^{\ast}$-algebras, Trans. Amer. Math. Soc. 271 (1982), 423-435.
  4. Bannier U., Intrinsic algebraic characterization of space-time structure, Internat. J. Theoret. Phys. 33 (1994), 1797-1809.
  5. Bär C., Fredenhagen K. (Editors), Quantum field theory on curved spacetimes. Concepts and mathematical foundations, Lecture Notes in Phys., Vol. 786, Springer-Verlag, Berlin, 2009.
  6. Bekenstein J.D., Black holes and entropy, Phys. Rev. D 7 (1973), 2333-2346.
  7. Bekenstein J.D., Generalized second law of thermodynamics in black-hole physics, Phys. Rev. D 9 (1974), 3292-3300.
  8. Bekenstein J.D., Statistical black-hole thermodynamics, Phys. Rev. D 12 (1975), 3077-3085.
  9. Bertozzini P., Conti R., Lewkeeratiyutkul W., Non-commutative geometry, categories and quantum physics, East-West J. Math. (2007), special vol., 213-259, arXiv:0801.2826.
  10. Bertozzini P., Conti R., Lewkeeratiyutkul W., Modular theory, non-commutative geometry and quantum gravity, SIGMA 6 (2010), 067, 47 pages, arXiv:1007.4094.
  11. Bianchi E., Myers R.C., On the architecture of spacetime geometry, Classical Quantum Gravity 31 (2014), 214002, 13 pages, arXiv:1212.5183.
  12. Blanco D.D., Casini H., Hung L.Y., Myers R.C., Relative entropy and holography, J. High Energy Phys. 2013 (2013), no. 8, 060, 65 pages, arXiv:1305.3182.
  13. Bombelli L., Koul R.K., Lee J., Sorkin R.D., Quantum source of entropy for black holes, Phys. Rev. D 34 (1986), 373-383.
  14. Borchers H.J., Algebraic aspects of Wightman quantum field theory, in International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975), Lecture Notes in Phys., Vol. 39, Springer, Berlin, 1975, 283-292.
  15. Borchers H.J., On revolutionizing quantum field theory with Tomita's modular theory, J. Math. Phys. 41 (2000), 3604-3673.
  16. Bratteli O., Robinson D.W., Operator algebras and quantum statistical mechanics, Vol. 1, $C^\ast$- and $W^\ast$-algebras, symmetry groups, decomposition of states, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, New York, 1987.
  17. Bratteli O., Robinson D.W., Operator algebras and quantum statistical mechanics, Vol. 2, Equilibrium states. Models in quantum statistical mechanics, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997.
  18. Bronstein M., Quantum theory of weak gravitational fields, Gen. Relativity Gravitation 44 (2012), 267-283, translated from the German original Phys. Z. 9 (1936), 140-157.
  19. Brukner Č., Zeilinger A., Information and fundamental elements of the structure of quantum theory, in Time, Quantum and Information, Springer, Berlin, 2004, 323-354, quant-ph/0212084.
  20. Brunetti R., Fredenhagen K., Verch R., The generally covariant locality principle - a new paradigm for local quantum field theory, Comm. Math. Phys. 237 (2003), 31-68, math-ph/0112041.
  21. Brunetti R., Guido D., Longo R., Modular localization and Wigner particles, Rev. Math. Phys. 14 (2002), 759-785, math-ph/0203021.
  22. Buchholz D., Dreyer O., Florig M., Summers S.J., Geometric modular action and spacetime symmetry groups, Rev. Math. Phys. 12 (2000), 475-560, math-ph/9805026.
  23. Butterfield J., Isham C., Spacetime and the philosophical challenge of quantum gravity, in Physics Meets Philosophy at the Planck Scale, Editors C. Callendar, N. Huggett, Cambridge University Press, Cambridge, 2001, 33-89, gr-qc/9903072.
  24. Cao C.J., Carroll S.M., Michalakis S., Space from Hilbert space: recovering geometry from bulk entanglement, arXiv:1606.08444.
  25. Chirco G., Liberati S., Nonequilibrium thermodynamics of spacetime: the role of gravitational dissipation, Phys. Rev. D 81 (2010), 024016, 13 pages, arXiv:0909.4194.
  26. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  27. Connes A., Rovelli C., Von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories, Classical Quantum Gravity 11 (1994), 2899-2917, gr-qc/9406019.
  28. Cooperman J.H., Luty M.A., Renormalization of entanglement entropy and the gravitational effective action, J. High Energy Phys. 2014 (2014), no. 12, 045, 22 pages, arXiv:1302.1878.
  29. Corichi A., Ryan M.P., Sudarsky D., Quantum geometry as a relational construct, Modern Phys. Lett. A 17 (2002), 555-567, gr-qc/0203072.
  30. Doplicher S., Fredenhagen K., Roberts J.E., The quantum structure of spacetime at the Planck scale and quantum fields, Comm. Math. Phys. 172 (1995), 187-220, hep-th/0303037.
  31. Dreyer O., Emergent general relativity, in Approaches to Quantum Gravity, Editor D. Oriti, Cambridge University Press, Cambridge, 2009, 99-110, gr-qc/0604075.
  32. Dykema K.J., Faithfulness of free product states, J. Funct. Anal. 154 (1998), 323-329, funct-an/9702014.
  33. Dykema K.J., Rørdam M., Projections in free product $C^*$-algebras, Geom. Funct. Anal. 8 (1998), 1-16, funct-an/9702016.
  34. Fewster C.J., Verch R., Dynamical locality and covariance: what makes a physical theory the same in all spacetimes?, Ann. Henri Poincaré 13 (2012), 1613-1674, arXiv:1106.4785.
  35. Fuchs C.A., Mermin N.D., Schack R., An introduction to QBism with an application to the locality of quantum mechanics, Amer. J. Phys. 82 (2014), 749-754, arXiv:1311.5253.
  36. Gambini R., Pullin J., Relational physics with real rods and clocks and the measurement problem of quantum mechanics, Found. Phys. 37 (2007), 1074-1092, quant-ph/0608243.
  37. Giovannetti V., Lloyd S., Maccone L., Quantum-enhanced measurements: beating the standard quantum limit, Science 306 (2004), 1330-1336, quant-ph/0412078.
  38. Haag R., Local quantum physics. Fields, particles, algebras, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996.
  39. Hackl L., Neiman Y., Horizon complementarity in elliptic de Sitter space, Phys. Rev. D 91 (2015), 044016, 13 pages, arXiv:1409.6753.
  40. Halliwell J.J., A review of the decoherent histories approach to quantum mechanics, in Fundamental Problems in Quantum Theory (Baltimore, MD, 1994), Ann. New York Acad. Sci., Vol. 755, New York Acad. Sci., New York, 1995, 726-740, gr-qc/9407040.
  41. Halvorson H., Mueger M., Algebraic quantum field theory, in Handbook on Philosophy of Physics, North Holland, Amsterdam, 2007, 865-922, math-ph/0602036.
  42. Hawking S.W., Black holes and thermodynamics, Phys. Rev. D 13 (1976), 191-197.
  43. Höhn P.A., Toolbox for reconstructing quantum theory from rules on information acquisition, arXiv:1412.8323.
  44. Höhn P.A., Müller M.P., An operational approach to spacetime symmetries: Lorentz transformations from quantum communication, New J. Phys. 18 (2016), 063026, 31 pages, arXiv:1412.8462.
  45. Höhn P.A., Wever C.S.P., Quantum theory from questions, Phys. Rev. A 95 (2017), 012102, 38 pages, arXiv:1511.01130.
  46. Jacobson T., Thermodynamics of spacetime: the Einstein equation of state, Phys. Rev. Lett. 75 (1995), 1260-1263, gr-qc/9504004.
  47. Jacobson T., Gravitation and vacuum entanglement entropy, Internat. J. Modern Phys. D 21 (2012), 1242006, 7 pages, arXiv:1204.6349.
  48. Jacobson T., Entanglement equilibrium and the Einstein equation, Phys. Rev. Lett. 116 (2016), 201101, 6 pages, arXiv:1505.04753.
  49. Kadison R.V., Ringrose J.R., Fundamentals of the theory of operator algebras, Vol. I, Graduate Studies in Mathematics, Vol. 15, Amer. Math. Soc., Providence, RI, 1997.
  50. Kadison R.V., Ringrose J.R., Fundamentals of the theory of operator algebras, Vol. II, Graduate Studies in Mathematics, Vol. 16, Amer. Math. Soc., Providence, RI, 1997.
  51. Keyl M., How to describe the space-time structure with nets of $C^*$-algebras, Internat. J. Theoret. Phys. 37 (1998), 375-385.
  52. Kliesch M., Gogolin C., Eisert J., Lieb-Robinson bounds and the simulation of time-evolution of local observables in lattice systems, in Many-Electron Approaches in Physics, Chemistry and Mathematics, Editors V. Bach, L.D. Site, Mathematical Physics Studies, Springer, Berlin, 2014, 301-318, arXiv:1306.0716.
  53. Lashkari N., McDermott M.B., Van Raamsdonk M., Gravitational dynamics from entanglement ''thermodynamics'', J. High Energy Phys. 2014 (2014), no. 4, 195, 16 pages, arXiv:1308.3716.
  54. Lieb E.H., Robinson D.W., The finite group velocity of quantum spin systems, Comm. Math. Phys. 28 (1972), 251-257.
  55. Lloyd S., The quantum geometric limit, arXiv:1206.6559.
  56. Müller M.P., Masanes L., Three-dimensionality of space and the quantum bit: an information-theoretic approach, New J. Phys. 15 (2013), 053040, 52 pages, arXiv:1206.0630.
  57. Oriti D. (Editor), Approaches to quantum gravity: toward a new understanding of space, time and matter, Cambridge University Press, Cambridge, 2009.
  58. Oriti D., The microscopic dynamics of quantum space as a group field theory, in Foundations of Space and Time: Reflections on Quantum Gravity, Editors J. Murugan, A. Weltman, G. Ellis, Cambridge University Press, Cambridge, 2012, 257-320, arXiv:1110.5606.
  59. Padmanabhan T., Thermodynamical aspects of gravity: new insights, Rep. Progr. Phys. 73 (2010), 046901, 44 pages, arXiv:0911.5004.
  60. Padmanabhan T., Structural aspects of gravitational dynamics and the emergent perspective of gravity, AIP Conf. Proc. 1483 (2012), 212-238, arXiv:1208.1375.
  61. Peres A., Measurement of time by quantum clocks, Amer. J. Phys. 48 (1980), 552-557.
  62. Rovelli C., The statistical state of the universe, Classical Quantum Gravity 10 (1993), 1567-1578.
  63. Rovelli C., Partial observables, Phys. Rev. D 65 (2002), 124013, 8 pages, gr-qc/0110035.
  64. Sakharov A.D., Vacuum quantum fluctuations in curved space and the theory of gravitation, Gen. Relativity Gravitation 32 (2000), 365-367, translated from Sov. Phys. Dokl. 12 (1968), 1040-1041.
  65. Salecker H., Wigner E.P., Quantum limitations of the measurement of space-time distances, Phys. Rev. 109 (1958), 571-577.
  66. Salehi H., Problems of dynamics in generally covariant quantum field theory, Internat. J. Theoret. Phys. 36 (1997), 143-155.
  67. Schmüdgen K., Unbounded operator algebras and representation theory, Operator Theory: Advances and Applications, Vol. 37, Birkhäuser Verlag, Basel, 1990.
  68. Scorpan A., The wild world of 4-manifolds, Amer. Math. Soc., Providence, RI, 2005.
  69. Sindoni L., Emergent models for gravity: an overview of microscopic models, SIGMA 8 (2012), 027, 45 pages, arXiv:1110.0686.
  70. Solodukhin S.N., Entanglement entropy of black holes, Living Rev. Relativity 14 (2011), 8, 96 pages, arXiv:1104.3712.
  71. Solveen C., Local thermal equilibrium and KMS states in curved spacetime, Classical Quantum Gravity 29 (2012), 245015, 11 pages, arXiv:1211.0431.
  72. Speicher R., Free probability theory, in The Oxford Handbook of Random Matrix Theory, Editors G. Akemann, J. Baik, P. Di Francesco, Oxford University Press, Oxford, 2011, 452-470, arXiv:0911.0087.
  73. Srednicki M., Entropy and area, Phys. Rev. Lett. 71 (1993), 666-669, hep-th/9303048.
  74. Strocchi F., An introduction to the mathematical structure of quantum mechanics. A short course for mathematicians, Advanced Series in Mathematical Physics, Vol. 28, 2nd ed., World Sci. Publ., Hackensack, NJ, 2008.
  75. Sudarsky D., Unspeakables and the epistemological path toward quantum gravity, Internat. J. Modern Phys. D 17 (2008), 425-443, arXiv:0712.3242.
  76. Summers S.J., Tomita-Takesaki modular theory, in Encyclopedia of Mathematical Physics, Editors J.P. Françoise, G. Naber, T.S. Tsun, Academic Press, New York, 2006, 251-257, math-ph/0511034.
  77. Summers S.J., Subsystems and independence in relativistic microscopic physics, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 40 (2009), 133-141, arXiv:0812.1517.
  78. Summers S.J., White R.K., On deriving space-time from quantum observables and states, Comm. Math. Phys. 237 (2003), 203-220, hep-th/0304179.
  79. Swingle B., Van Raamsdonk M., Universality of gravity from entanglement, arXiv:1405.2933.
  80. Takesaki M., Theory of operator algebras. I, Springer-Verlag, Berlin, 1979.
  81. Takesaki M., Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, Vol. 125, Springer-Verlag, Berlin, 2003.
  82. Takesaki M., Theory of operator algebras. III, Encyclopaedia of Mathematical Sciences, Vol. 127, Springer-Verlag, Berlin, 2003.
  83. Tralle I., Pellonpää J.-P., Notes on the theory of quantum clock, Concepts of Phys. 2 (2005), 113-133.
  84. Unruh W.G., Notes on black-hole evaporation, Phys. Rev. D 14 (1976), 870-892.
  85. Várilly J.C., An introduction to noncommutative geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006.
  86. Visser M., Sakharov's induced gravity: a modern perspective, Modern Phys. Lett. A 17 (2002), 977-991, gr-qc/0204062.
  87. Voiculescu D.V., Dykema K.J., Nica A., Free random variables. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups, CRM Monograph Series, Vol. 1, Amer. Math. Soc., Providence, RI, 1992.
  88. von Weizsäcker C.F., The structure of physics, Fundamental Theories of Physics, Vol. 155, Springer, Dordrecht, 2006.
  89. Wald R.M., General relativity, University of Chicago Press, Chicago, IL, 1984.
  90. Wald R.M., Quantum field theory in curved spacetime and black hole thermodynamics, Chicago Lectures in Physics, University of Chicago Press, Chicago, IL, 1994.
  91. White R.K., An algebraic characterization of Minkowski space, Ph.D. Thesis, University of Florida, 2001.

Previous article  Next article   Contents of Volume 13 (2017)