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† E. Čech Institute, Mathematical Institute of Charles University,
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Abstract. We investigate (local) automorphisms of parabolic geometries that generalize
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1 Introduction

Symmetric spaces are extremely useful geometric objects on smooth manifolds. There are also
many generalizations of symmetric spaces appearing in several areas of differential geometry
and the theory of Lie groups and algebras. We are interested in generalizations of symmetric
spaces in the setting of parabolic geometries, see [4, Section 3.1]. We consider regular normal
parabolic geometries (G →M,ω) of type (G,P ) on smooth connected manifolds M . We assume
that G is a Lie group with a |k|-graded simple Lie algebra g = ⊕ki=−kgi and P is the parabolic

subgroup of G with the Lie algebra p = ⊕ki=0gi such that the Klein geometry (G,P ) is effective.
We fix the reductive Levi decomposition P = G0 o exp(p+), where p+ := ⊕ki=1gi and G0 is the
Lie group of grading preserving elements of P . We write g− := ⊕−1

i=−kgi.

Regular normal parabolic geometries provide a solution to the equivalence problem for a wide
class of geometric structures. In the first step, so called prolongation, one constructs the P -
bundle G over M and the Cartan connection ω, which is a P -equivariant g-valued absolute
parallelism on G that reproduces the generators of fundamental vector fields of the P -action.
The precise process of the prolongation is not directly related to the results presented in this
article and will not be reviewed. In the second step, one computes the harmonic curvature κH
which is the basic invariant of all normal parabolic geometries that (in principle) solves the
equivalence problem for normal parabolic geometries. We recall that κH is the projection of the
curvature [ω, ω] + dω of the Cartan connection ω viewed as a function κ : G → ∧2(g/p)∗⊗ g into
the cohomology space H2(g−, g) of cochains on g− with values in g.

A (local) automorphism of (G → M,ω) is a (local) P -bundle morphism ϕ on G such that
ϕ∗ω = ω holds. We denote by ϕ the underlying (local) diffeomorphism of ϕ on M . We say
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that a (local) diffeomorphism f on M preserves the parabolic geometry (G → M,ω) if f = ϕ
for some (local) automorphism ϕ of (G →M,ω). Local automorphisms of parabolic geometries
are uniquely determined by the underlying diffeomorphisms under our assumption of effectivity
of the Klein geometry (G,P ). We are interested in a class of (local) diffeomorphisms f on M
for which we know a priori the (local) P -bundle morphisms ϕ on G covering (local) diffeomor-
phisms f and we ask when they preserve the parabolic geometry, see Definition 1.1. Let us
explain that these diffeomorphisms are closely related to geodesic symmetries.

We recall that a normal coordinate system of a linear connection∇ on M given by the frame u

of TxM is given by projections of flows Fl
B(X)
t of the standard horizontal vector fields B(X) for

X ∈ Rn on the first-order frame bundle starting at u, see [16, Section III.8]. Indeed, the projec-

tion of Fl
B(X)
t (u) onto M is the geodesic of∇ going through x in the direction with coordinates X

in the frame u. A geodesic symmetry of ∇ at the point x is the unique diffeomorphism with
coordinates −idRn in all normal coordinate system given by any frame u of TxM .

The pair (M,∇) is an affine locally symmetric space if each geodesic symmetry of ∇ is
an affine transformation. In [14] or [1] the authors studied the theory of symmetric spaces,
where the geodesic symmetries preserve a geometric structure such as Riemannian metric or
quaternionic Kähler structure. The first author classified in [9] all parabolic geometries preserved
by all geodesic symmetries on semisimple symmetric spaces. Typical examples of such parabolic
geometries are provided by the projective class of ∇ of the affine (locally) symmetric space
(M,∇) or the conformal class of the metric on the Riemannian symmetric space or the (para)-
quaternionic geometry given by the (para)-quaternionic Kähler symmetric space.

A normal coordinate system on the parabolic geometry (p : G → M,ω) given by u ∈ G is

given by projections p◦Fl
ω−1(X)
t (u) of flows of the constant vector fields ω−1(X) for coordinates

X ∈ g−. If we consider (local) diffeomorphisms f onM that are linear in some normal coordinate
system of (G → M,ω), then we know a priori the (local) P -bundle morphisms ϕ on G covering
(local) diffeomorphisms f and we ask when they preserve the parabolic geometry. The action
of G0 on G induces a linear change of the normal coordinates, but the change of coordinates
induced by the action of exp(p+) is highly non-linear. Nevertheless, we can consider the class of
(local) automorphisms of parabolic geometries with the property that their underlying (local)
diffeomorphisms on M , analogously to geodesic symmetries, have the same coordinates in all
normal coordinate systems in which the coordinates are linear.

Definition 1.1. For s in the center Z(G0) of G0 and u ∈ G, let su be the (local) P -bundle
morphism of G induced by the formula

su(Fl
ω−1(X)
1 (u)) := Fl

ω−1(X)
1 (us) = Fl

ω−1(Ad(s)(X))
1 (u)s

for all X in a maximal possible neighbourhood of 0 in g− preserved by Ad(s).

1. The (local) P -bundle morphism su is a (local) s-symmetry of the parabolic geometry
(G →M,ω) at x = p(u) if s∗uω = ω.

2. We write su for the underlying (local) diffeomorphism on M of the P -bundle morphism su
which has coordinates Ad(s) ∈ Gl(g−) in the normal coordinate system given by u.

3. All (local) s-symmetries at all x ∈M for all s ∈ Z(G0) together are called (local) genera-
lized symmetries of parabolic geometries.

4. The parabolic geometry is (locally) s-symmetric if there is a (local) s-symmetry at each
point of M .

Remark 1.2. We always assume that s is not the identity element e in Z(G0), because idG is
the unique e-symmetry of each parabolic geometry, and therefore, the results presented in this
article are trivial for e-symmetries.
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Firstly, let us focus on the automorphisms ϕ of parabolic geometries such that ϕ has coordi-
nates −idg− in the normal coordinate system given by u ∈ G. If such an automorphism exists,
then there is m ∈ Z(G0) such that Ad(m) = −idg− . Therefore we will always speak about
(local) m-symmetries in this case.

The bundle morphisms mu (and thus diffeomorphisms mu) are generally different for diffe-
rent u from the fiber Gx over x and each of them can be a (local) m-symmetry. In particular,
there can be infinitely many (local) m-symmetries at x. In fact, this is the case of all mo-
dels G/P of AHS-structures, where the bundle maps mu are m-symmetries for all u ∈ G. On
the other hand, the second author proved in [23, Theorem 2.5] that projective, conformal and
(para)-quaternionic geometries are the only types of parabolic geometries allowing m-symmetries
at a point x with a non-zero Weyl (harmonic) curvature. Moreover, there is at most one m-
symmetry at the point x with a non-zero Weyl curvature.

The second author showed in [23, Theorem 3.2] that if a geodesic symmetry at x for some
linear connection on M is an automorphism of (G → M,ω), then the geodesic symmetry has
coordinates −idg− in the normal coordinate system given by some u ∈ Gx. We prove in this
article that there is the following characterization of non-flat parabolic geometries which are
preserved by all geodesic symmetries on affine (locally) symmetric spaces.

Theorem 1.3. Suppose there is a parabolic geometry on a smooth connected manifold M with
a non-zero harmonic curvature at one point. Then the following claims are equivalent:

1. The parabolic geometry is (locally) m-symmetric, i.e., at each point x of M , there is
a (local) automorphism of the parabolic geometry such that the underlying (local) diffeo-
morphism on M has coordinates −idg− in the normal coordinate system for some u ∈ Gx.

2. The parabolic geometry is preserved by each geodesic symmetry on an affine (locally) sym-
metric space (M,∇).

In particular, if one of the above claims is satisfied, then the parabolic geometry is (locally)
homogeneous, the affine (locally) symmetric space (M,∇) from Claim (2) is unique and ∇ is
a distinguished (Weyl) connection of the parabolic geometry.

Remark 1.4. Let us emphasize that (local) m-symmetries can appear only on |1|-graded
parabolic geometries and only the projective, conformal and (para)-quaternionic geometries
(and their complexifications) can satisfy the assumptions and conditions of Theorem 1.3.

The global version of this statement was proved in [21] for projective geometries and in [24,
Corollary 4.5] for conformal and (para)-quaternionic geometries under the additional assumption
of homogeneity or under the assumption that m-symmetries depend smoothly on the point x.
In [11, Theorem 1], we proved the global version of Theorem 1.3 for conformal geometries. In
this article, we obtain Theorem 1.3 as a special case of Theorem 1.8.

There are many other interesting types of parabolic geometries, e.g., parabolic contact ge-
ometries, where there is no element m ∈ P such that Ad(m) = −idg− . Thus they cannot be
preserved by geodesic symmetries of any affine (locally) symmetric space. On the other hand,
there are generalizations of symmetric spaces appearing in the literature that are nearly related
to contact geometries. In [2] and [15] the authors study sub-Riemannian and CR geometries
preserved by so-called geodesic reflexions on reflexion spaces, see [19]. A geodesic reflexion on
a reflexion space is given by an endomorphism s ∈ Gl(Rn) such that s2 = idRn in a normal
coordinate system of an admissible linear connection on the reflexion space, see [19].

We studied in [7, 10] parabolic geometries on reflexion spaces preserved by geodesic reflexions.
We proved that a geodesic reflexion at x preserving a parabolic geometry (G → M,ω) is given
by an endomorphism Ad(s) ∈ Gl(g−) for some s ∈ G0 such that s2 = id in a normal coordinate
system of the parabolic geometry given by some u ∈ Gx. However, if s ∈ G0 is not contained
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in Z(G0), then we cannot expect the uniqueness of the automorphisms ϕ such that ϕ has
coordinates Ad(s) ∈ Gl(g−) in the normal coordinate system given by some u ∈ Gx. Indeed,
if there is an other automorphism ψ such that ψ has coordinates Ad(g0) ∈ Gl(g−) for some
g0 ∈ G0 in the normal coordinate system given by u ∈ Gx, then ψϕψ−1 is in general a different
automorphism such that ψϕψ−1 has coordinates Ad(s) ∈ Gl(g−) in the normal coordinate
system given by ug0 ∈ Gx. On the other hand, the second author proved in [25, Section 5]
that on some parabolic contact geometries, there is at most one s-symmetry at a point x with
a non-zero harmonic curvature for s ∈ Z(G0) such that Ad(s)|g−1 = −id. We prove in this
article that this holds for all parabolic contact geometries.

We classified in [13] all elements s ∈ Z(G0) that can appear as coordinates of underlying
diffeomorphisms of automorphisms of parabolic geometries in a normal coordinate system at
a point with a non-zero harmonic curvature. For example, we have found out that for complex
|1|-graded parabolic geometries with a harmonic curvature of homogeneity 3, we have to consider
elements s ∈ Z(G0) such that s3 = id. Moreover, we constructed in [12, Proposition 6.1] and
[13, Proposition 7.2] examples of such parabolic geometries on Z3-symmetric spaces, which are
generalizations of symmetric spaces that are studied in [17].

In fact, there are many known examples of (locally) s-symmetric parabolic geometries. Each
locally flat parabolic geometry is locally s-symmetric for each s ∈ Z(G0). We classified in [13]
the elements s ∈ Z(G0) for which all locally s-symmetric parabolic geometries are flat. Further,
we showed in [12, Proposition 6.1] that all submaximally symmetric parabolic geometries con-
structed in [18, Section 4.1] are locally s-symmetric parabolic geometries for elements s ∈ Z(G0)
that do not impose flatness. Let us emphasize that some of these examples carry more than
one s-symmetry at each point and explicit examples can be found in [12, Section 6]. This shows
that the results we obtain in this article do not hold for all types of parabolic geometries. There
are also further examples of (locally) s-symmetric parabolic geometries in [2, 6, 9, 11, 21].

Let us now summarize our main results for (local) s-symmetries and (locally) s-symmetric
parabolic geometries we obtain in this article. The first main result states that there is a large
class of types of parabolic geometries whose algebraic structure enforces uniqueness of (local)
s-symmetries at points with a non-zero harmonic curvature. We characterize these types in
a way that is related to the theory of prolongations of annihilators of the harmonic curvature
and the prolongation rigidity from [18, Section 3.4] as follows.

Definition 1.5. Let µ be a component of the harmonic curvature (irreducible as aG0-submodule
of H2(g−, g)) of regular normal parabolic geometries of type (G,P ).

1. For φ ∈ µ, let us denote by

ann(φ) := {A ∈ g0 : A.φ = 0}

the annihilator of φ in g0. We define the ith prolongation of the annihilator of φ as

pr(φ)i = {Z ∈ gi : ad(X1) · · · ad(Xi)(Z) ∈ ann(φ) for all X1, . . . ,Xi ∈ g−1}.

2. For s ∈ Z(G0), we say that the triple (g, p, µ) is prolongation rigid outside of the 1-eigen-
space of s if for all weights φ ∈ µ, all prolongations of the annihilator of φ in g0 are
contained in the 1-eigenspace of s.

We will see that there are triples (g, p, µ) that are prolongation rigid outside of the 1-
eigenspace of s only for some s ∈ Z(G0). In particular, such triples (g, p, µ) are not prolongation
rigid. Indeed, a triple (g, p, µ) is prolongation rigid if and only if it is prolongation rigid outside
of the 1-eigenspace of s for all s ∈ Z(G0).

In Section 3.2, we show how to classify all triples (g, p, µ) that are prolongation rigid outside
of the 1-eigenspace of s for some s ∈ Z(G0) using the results in [18]. The following Theorem
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shows that for our purposes, it is enough to carry out the classification only for the components µ
that are contained in the 1-eigenspace of s.

Theorem 1.6. Consider a triple (g, p, µ).
If s ∈ Z(G0) is such that µ is not contained in the 1-eigenspace of s, then there is no (local)

s-symmetry of a parabolic geometry of type (G,P ) at each point x with a non-zero component
of the harmonic curvature in µ.

If s ∈ Z(G0) is such that (g, p, µ) is prolongation rigid outside of the 1-eigenspace of s, then
there is at most one (local) s-symmetry of a parabolic geometry of type (G,P ) at the point x
with a non-zero component of the harmonic curvature in µ.

We proved Theorem 1.6 in [13, Theorem 1.3] under the assumption that the parabolic geom-
etry is homogeneous, but we can also easily construct non-homogeneous (locally) s-symmetric
parabolic geometries of type (G,Q) for certain triples (g, q, µ) that are prolongation rigid outside
of the 1-eigenspace of s. It suffices to consider correspondence spaces for parabolic subgroups
Q ⊂ P ⊂ G over (locally) s-symmetric parabolic geometries of type (G,P ) for (g, p, µ) that is
prolongation rigid outside of the 1-eigenspace of s, see [13, Proposition 6.1]. We prove Theo-
rem 1.6 in Section 3.1.

Let us now focus on (locally) s-symmetric parabolic geometries. We say that a map S that
picks a (local) s-symmetry at each point of M is a system of (local) s-symmetries. In general,
systems of (local) s-symmetries are neither smooth nor unique. The conditions in Theorem 1.6
can be used to prove the uniqueness of a system of (local) s-symmetries.

Our second main result concerns the conditions for the smoothness of a system of (local) s-
symmetries. We consider the following generalization of affine locally symmetric spaces. There
is a class of Weyl connections on each parabolic geometry playing a significant role in the theory
of parabolic geometries, see [4, Chapter 5] and Section 2.1. Each Weyl connection is given by
a reduction of G to G0, i.e., by a smooth G0-equivariant section σ of the projection from G
to G0 := G/ exp(p+). The sections σ are called Weyl structures and we denote by ∇σ the Weyl
connection given by the Weyl structure σ. Each point of σ(G0)x defines a different frame of TxM .
However, the (local) diffeomorphism with coordinates Ad(s) ∈ Gl(g−) in a normal coordinate
system of a Weyl connection ∇σ given by a frame σ(u0) ∈ σ(G0)x is independent of the actual
choice of u0 ∈ (G0)x, see Section 3.2. We denote such a (local) diffeomorphism by sσx.

If we choose a class of Weyl connections satisfying Txs
σ
x = Txs

σ′
x for all Weyl connec-

tions ∇σ, ∇σ′ in the class and all x ∈ M , then the tangent bundle TM has a common de-
composition into smooth subbundles according to the eigenvalues of Txs

σ
x for all ∇σ in the class.

We can further consider a subclass [∇] of such a class of Weyl connections that restrict to the
same partial connection on all smooth subbundles of TM for all eigenvalues of Txs

σ
x different

from 1. Such a subclass [∇] is equivalently characterized by the condition that the 1-forms Υ
measuring the ‘differences’ (see the formula (2.2)) between arbitrary two connections in [∇]
satisfy (sσx)∗Υ(x) = Υ(x) for all x ∈ M and some (and thus all) Weyl connections ∇σ ∈ [∇].
In general, (local) diffeomorphisms sσx are different for different Weyl connections ∇σ ∈ [∇].
Therefore we can consider smooth maps S assigning some of these diffeomorphisms to each
x ∈M . Equivalently we can directly assign to each x ∈M the Weyl structure σ defining sσx.

Definition 1.7. Let [∇] be a maximal subclass of the class of Weyl connections satisfying that

• Txsσx = Txs
σ′
x holds for all Weyl connections ∇σ,∇σ′ ∈ [∇] and all x ∈M ,

• all connections in [∇] restrict to the same partial connection on all smooth subbundles
of TM for all eigenvalues of Txs

σ
x different from 1.

Let S be a smooth map assigning to each x ∈ M the (local) diffeomorphism sσx for some Weyl
connection ∇σ (depending on x) in [∇].
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1. The class [∇] is called S-invariant if S(x)∗∇σ ∈ [∇] and S(x)∗∇σ(x) = ∇σ(x) hold for
some (and thus each) Weyl connection ∇σ ∈ [∇] and all x ∈M .

2. Weyl connections ∇ in the S-invariant class [∇] are called almost S-invariant Weyl con-
nection.

3. The almost S-invariant Weyl connection ∇ is called invariant at x ∈M if S(x)∗∇ = ∇.

4. The almost S-invariant Weyl connection ∇ is called S-invariant if S(x)∗∇ = ∇ holds for
all x ∈M .

We show in Section 4.1 that if there is an almost S-invariant Weyl connection, then each S(x)
preserves (G →M,ω), i.e., S defines a smooth system S of (local) s-symmetries such that S(x)
are the underlying (local) diffeomorphisms of S(x) for all x. Thus the notation S is consistent
with Definition 1.1.

If there is a smooth system S of (local) s-symmetries of (G → M,ω), then we need the
prolongation rigidity outside of the 1-eigenspace of s to show the existence of an S-invariant
class of Weyl connections, see Section 4.2. For all |1|-graded parabolic geometries and s such
that Ad(s) = −idg− , i.e., s = m, we obtain affine (locally) symmetric spaces, because the
class [∇] consists of a single connection. For all parabolic contact geometries and s such that
Ad(s)|g−1 = −id we obtain reflexion spaces, but the S-invariant class [∇] is not the class of
admissible connections from [19].

For triples (g, p, µ) that are prolongation rigid outside of the 1-eigenspace of s, we get the
following existence result, which in particular implies Theorem 1.3.

Theorem 1.8. Suppose s ∈ Z(G0) is such that (g, p, µ) is prolongation rigid outside of the
1-eigenspace of s. Suppose that the parabolic geometry (G → M,ω) of type (G,P ) has every-
where non-zero component of the harmonic curvature in µ. Then the following conditions are
equivalent:

1. The parabolic geometry is (locally) s-symmetric.

2. There is a smooth system S of (local) s-symmetries.

3. There is an S-invariant class [∇] of Weyl connections.

Moreover, the smooth system S is unique and S consists of the underlying diffeomorphisms
of S on M . The equality S(x) ◦ S(y) = S(S(x)(y)) ◦ S(x) holds whenever the compositions are
defined. If Ad(s) ∈ Gl(g−) has no eigenvalue 1, then [∇] consists of a single S-invariant Weyl
connection, which is locally affinely homogeneous.

We prove the claims of Theorem 1.8 except the last one in Section 4. The last claim does not
hold without additional assumptions on the 1-eigenspace. We prove the last claim in Section 5,
where we study additional properties that follow from assumptions on the position and shape
of the 1-eigenspace of s in g−.

Outline of the article. We recall basic facts and formulas for Weyl connections in Section 2.
In particular, we characterize automorphisms of parabolic geometries with their actions on Weyl
structures. We recall the relation between normal coordinates and normal Weyl structures.

In Section 3, we prove Theorem 1.6 and we provide the characterization of the triples (g, p, µ)
that are prolongation rigid outside of the 1-eigenspace of s.

In Section 4, we prove Theorem 1.8. We also obtain further properties of (locally) s-symmetric
parabolic geometries of type (G,P ) that have everywhere non-zero component of the harmonic
curvature in µ for the triples (g, p, µ) that are prolongation rigid outside of the 1-eigenspace of s.

In Section 5, we classify all triples (g, p, µ) that are prolongation rigid outside of the 1-
eigenspace of s such that µ is in the 1-eigenspace of s. The classification is separated in the
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tables according to the common properties of the triples (g, p, µ) and elements s ∈ Z(G0).
The notation for the tables and details on the classification can be found in Section 5.1. We
show in Section 5.2 that there are triples (g, p, µ) for which the S-invariant class [∇] of Weyl
connections consists of a single S-invariant Weyl connection. In particular, such an S-invariant
Weyl connection is always (locally) affinely homogeneous. In Sections 5.3 and 5.5, we show that
there are triples (g, p, µ) for which the (locally) s-symmetric parabolic geometries are locally
correspondence spaces over some other s-symmetric parabolic geometries. In Section 5.4, we
prove that there are triples (g, p, µ) for which the condition of (local) homogeneity is satisfied
for more complicated S-invariant class [∇] of Weyl connections.

In the Appendix A we recall from [12] the construction of (locally) homogeneous s-symmetric
parabolic geometries that we need in Section 5.

2 Automorphisms of parabolic geometries

In this Section, we introduce necessary techniques and establish notation from the theory of
parabolic geometries that we will use in the article, see [4, Section 5.1]. We focus here on
actions of automorphisms on Weyl structures and connections.

2.1 Weyl structures and connections

Consider a parabolic geometry (G → M,ω) of type (G,P ). Many geometric objects on M can
be identified with sections of natural bundles V associated to the P -bundle G for representa-
tions V of P . We can equivalently view the sections of V as P -equivariant functions G → V . In
other words, the points of G are (higher-order) frames and the P -equivariant functions are the
coordinate functions. A crucial tool that allows us to reduce the number and order of the frames
are Weyl structures. A (local) Weyl structure is a (local) G0-equivariant section σ : G0 → G of
the projection π : G → G0, where G0 := G/ exp(p+) and p0 : G0 →M is a G0-bundle over M .

Definition 2.1. Assume σ : G0 → G is a Weyl structure. Then for a section τ of a natural
bundle V, we denote by (τ)σ the G0-equivariant function G0 → V satisfying

(τ)σ := t ◦ σ,

where t : G → V is the P -equivariant function corresponding to τ .

In particular, vector fields ξ and 1-forms Υ on M are sections of bundles G ×P g/p and
G ×P p+, respectively, and there are corresponding G0-equivariant functions (ξ)σ : G0 → g− and
(Υ)σ : G0 → p+.

Weyl structures always exist on parabolic geometries and for each two Weyl structures σ
and σ̂, there exist a 1-form Υ and G0-equivariant functions Υi : G0 → gi for i = 1, . . . , k such
that

σ̂ = σ exp(Υ)σ = σ exp(Υ1) · · · exp(Υk).

The G0-equivariant function (Υ)σ : G0 → p+ is related to the functions Υi via the Baker–
Campbell–Hausdorff (BCH)-formula.

We can decompose the pullback σ∗ω : TG0 → g into G0-equivariant 1-forms ωσi : TG0 → gi
according to the grading gi of g. These forms clearly depend on the choice of the Weyl structu-
re σ. For a Weyl structure σ̂ = σ exp(Υ)σ, there is the following formula describing the change
of the forms

ω
σ exp(Υ)σ
l =

∑
|i|+j=l

(−1)i

i!

(
ad(Υk)

ik ◦ · · · ◦ ad(Υ1)i1
)
◦ ωσj , (2.1)
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where we write i! = i1! · · · ik!, |i| = i1+2i2+· · ·+kik and (−1)i = (−1)i1+···+ik for the multi-index
i = (i1, . . . , ik) with i1, . . . , ik ≥ 0.

The sum ωσ− of the forms ωσi for i < 0 is called the soldering form given by the Weyl structu-
re σ. Suppose (ξ)σ = ξ−k + · · · + ξ−1 holds for the vector field ξ on M and for G0-equivariant
functions ξi : G0 → gi. If (ξ)σ exp(Υ)σ = ξ̂−k + · · · + ξ̂−1 holds for G0-equivariant functions

ξ̂i : G0 → gi and the Weyl structure σ exp(Υ)σ, then

ξ̂l =
∑
|i|+j=l

(−1)i

i!
ad(Υk)

ik ◦ · · · ◦ ad(Υ1)i1 .ξj ,

where . is the algebraic action of the values of functions G0 → p+ on the values of the functions
G0 → g−.

The form ωσ0 is a principal connection form on G0. Suppose that the finite-dimensional
representation of P on V is completely reducible as a representation of G0. Then

1) the form ωσ0 induces a linear connection∇σ on the space of P -equivariant functions G → V ,

2) for each P -equivariant function τ : G → V , the connection ∇σ preserves the decomposition
of (τ)σ into G0-equivariant components.

The induced connections∇σon V are called Weyl connections. The Weyl connection∇σ exp(Υ)σ

on V is related to the Weyl connection ∇σ on V by(
∇σ exp(Υ)σ
ξ τ

)
σ

= (∇σξ τ)σ +
∑
|i|+j=0

(−1)i

i!

(
ad(Υk)

ik ◦ · · · ◦ ad(Υ1)i1(ξj)
)
.(τ)σ, (2.2)

where τ is a section of V and . is the algebraic action of the values of functions G0 → g0 on the
values of the function (τ)σ : G0 → V .

The soldering form ωσ− together with the principal connection form ωσ0 form the Cartan
connection ωσ− ⊕ ωσ0 on G0 of a reductive type. In fact, we can view the first-order frame bund-
le P1M as the bundle G ×Ad Gl(g/p) for the adjoint action Ad of P on g/p. Moreover, each
Weyl structure σ provides a reduction ισ : G0 → P1M over Ad: G0 → Gl(g/p) such that

ι∗σθ = ωσ− and ι∗σγσ = ωσ0

hold for the natural soldering form θ on P1M and the principal connection form γσ on P1M
of the Weyl connection ∇σ. This allows us to describe explicitly geodesics of Weyl connections.
The geodesic of the Weyl connection ∇σ on TM through x in the direction ξ(x) ∈ TxM is the
curve

p0 ◦ Fl
(ωσ−⊕ωσ0 )−1(ξ(x))σ(u0)
t (u0) (2.3)

for arbitrary u0 ∈ G0 in the fiber over x. Indeed, since (ωσ− ⊕ ωσ0 )−1((ξ(x))σ) is contained in
the kernel of the connection form ωσ0 = ι∗σγσ and Tp0 ◦ (ωσ− ⊕ ωσ0 )−1((ξ(x))σ)(x) = ξ(x), the
claimed curve is the projection of a flow of a standard horizontal vector field of γσ and therefore
a geodesic of ∇σ.

2.2 The characterization of automorphisms

Let ϕ : G → G be a (local) automorphism of the parabolic geometry and denote by ϕ0 : G0 → G0

the underlying (local) G0-bundle morphism. Then for each Weyl structure σ, there is a 1-
form Υσ,ϕ on M such that

ϕ(σ(u0)) = σ(ϕ0(u0)) exp((Υσ,ϕ)σ(u0)) (2.4)
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holds for all u0 ∈ G0. Consequently, the pullback of a Weyl structure is again a Weyl structure,
i.e.,

ϕ∗σ = ϕ−1 ◦ σ ◦ ϕ0 = σ exp(−(Υσ,ϕ)σ).

Lemma 2.2. Let ϕ : G → G be a (local) automorphism. Then(
Υσ exp(Υ)σ ,ϕ

)
σ exp(Υ)σ

= C(−(Υ)σ ◦ ϕ0, C((Υσ,ϕ)σ, (Υ)σ)) (2.5)

holds for the Weyl structure σ exp(Υ)σ, where C represents the BCH-formula.

Proof. We get immediately from the formula (2.4) that

ϕ(σ(u0)) exp((Υ)σ(u0)) = σ(ϕ0(u0)) exp((Υ)σ(ϕ0(u0))) exp
((

Υσ exp(Υ)σ ,ϕ
)
σ exp(Υ)σ

(u0)
)

holds for all u0 ∈ G. This implies

exp
((

Υσ exp(Υ)σ ,ϕ
)
σ exp(Υ)σ

)
= exp(−(Υ)σ ◦ ϕ0) exp((Υσ,ϕ)σ) exp((Υ)σ),

which gives the formula. �

Therefore if f = ϕ for a (local) automorphism ϕ of the parabolic geometry, then

f∗∇σ = ∇σ exp(−(Υσ,ϕ)σ)

holds for each Weyl connection ∇σ.
There is a unique lift P1f of each (local) diffeomorphism f on M to the (local) Gl(g/p)-

bundle morphism on P1M such that (P1f)∗θ = θ holds. If f∗∇σ = ∇σ′ is satisfied for some
Weyl connections ∇σ and ∇σ′ , then (P1f)∗γσ = γσ′ holds. However, this does not imply
that such f preserves the parabolic geometry. The (local) diffeomorphisms f that preserve the
parabolic geometry also satisfy that

P1f(ισ′(G0)) = ισ(G0)

holds for reductions ισ(G0) and ισ′(G0) of P1M and it turns out that this is the crucial property
that distinguishes the diffeomorphisms preserving the parabolic geometry among all diffeomor-
phisms preserving the set of all Weyl connections.

Proposition 2.3. Let f be a (local) diffeomorphism on M such that for some Weyl structures σ
and σ′ of the parabolic geometry (G →M,ω)

• f∗∇σ = ∇σ′ holds, and

• P1f maps a point of ισ′(G0) into the image ισ(G0).

Then f preserves the parabolic geometry.

Proof. The assumptions imply that ϕ0 := ι−1
σ ◦ P1f ◦ ισ′ is a well-defined (local) G0-bundle

morphism ϕ0 : G0 → G0 satisfying ϕ∗0ω
σ
0 = ωσ

′
0 and ϕ∗0ω

σ
− = ωσ

′
− . The associated graded map

(θ−k, . . . , θ−1) : TG0 → g−k ⊕ · · · ⊕ g−1 corresponding to ωσ− is independent of the choice of the
Weyl structure according to the formula (2.1). In fact, the tuple (p0 : G0 → M, (θ−k, . . . , θ−1))
is a regular infinitesimal flag structure with a (local) automorphism ϕ0, see [4, Section 3.1.6–
3.1.8]. Therefore the claim of theorem follows from [4, Theorem 3.1.14] except for projective and
contact projective geometries. In the case of projective geometries, the claim trivially follows
from the assumption f∗∇σ = ∇σ′ . In the case of contact projective geometries, ϕ0 is a (local)
automorphism of the regular infinitesimal flag structure if and only if f is a contactomorphism
and the claim again follows from f∗∇σ = ∇σ′ , see [4, Section 4.2] for details. �
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2.3 Normal Weyl structures and generalized geodesics

There is a distinguished class of local Weyl structures, so-called normal Weyl structures at
x = p(u), each of which is determined by a choice of u ∈ G. More precisely, we consider local
Weyl structures νu given by

νu
(
π
(
Fl
ω−1(X)
1 (u)

))
:= Fl

ω−1(X)
1 (u)

for X in some neighbourhood of 0 in g−. The Weyl structures νu for all u ∈ Gx exhaust all
normal Weyl structures at x, see [4, Section 5.1.12]. These Weyl structures are distinguished by
the fact that

ϕ
(
Fl
ω−1(X)
1 (u)

)
= Fl

ω−1(X)
1 (ϕ(u)) (2.6)

holds for all (local) automorphisms ϕ of the parabolic geometry and all X in some neighbourhood
of 0 in g. This particularly means that

ϕ∗νu = νϕ−1(u)

holds for all (local) automorphisms ϕ of parabolic geometries.
The curves of the form

p ◦ Fl
ω−1(X)
t (u)

for X ∈ g− and u ∈ G are called generalized geodesics. They always provide the normal
coordinate system given by u. The crucial observation is that the set of generalized geodesics
going through x coincides with the set of geodesics of normal Weyl connections ∇νu for all u.
Therefore there is the following description of automorphisms of parabolic geometries.

Proposition 2.4. Let ϕ be a (local) P -bundle morphism on G and let f = ϕ be its underlying
(local) diffeomorphism of M . If ϕ is a (local) automorphism of the parabolic geometry, then the
equality f∗∇νu = ∇νϕ−1(u) holds for all u ∈ G and f maps the set of generalized geodesics going
through x onto the set of generalized geodesics going through f(x).

Moreover, if f has coordinates Ad(g0) ∈ Gl(g−) for g0 ∈ G0 in the normal coordinate system
given by u ∈ G, then ϕ is a (local) automorphism of the parabolic geometry if and only if
f∗∇νu = ∇νu holds.

Proof. Since f∗∇σ = ∇ϕ∗σ holds for all Weyl structures σ and all (local) automorphisms ϕ
of the parabolic geometry, the first claim follows from the formula (2.3). If f has coordinates
Ad(g0) ∈ Gl(g−) in the normal coordinate system given by u ∈ G, then the second assumption
of Proposition 2.3 is satisfied. Then the second claim is a consequence of the first claim and

Proposition 2.3, because ∇νu = ∇
ν
ug−1

0 holds. �

3 The uniqueness of s-symmetries and the prolongation rigidity

In this section, we prove Theorem 1.6. We also characterize all triples (g, p, µ) that are prolon-
gation rigid outside of the 1-eigenspace of s.

3.1 Consequences of the existence of more s-symmetries at one point

Let us recall that if V is an irreducible G0-module, then the element s ∈ Z(G0) acts on V by
a single eigenvalue. In particular, we can decompose each completely reducible G0-module V
into G0-submodules

V s(a) := {X ∈ V : s(X) = aX}
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according to the eigenvalues of the action of s ∈ Z(G0). In particular, we will often consider the
1-eigenspaces gs−(1), gsi (1) and ps+(1) in g−, gi and p+, respectively.

The following proposition is a crucial technical result for the proof of Theorem 1.6.

Proposition 3.1. Let su be a (local) s-symmetry at x for some u ∈ Gx. Then for each Weyl
structure σ, there is a 1-form Υσ,su on M satisfying

1) s∗uσ = σ exp(−(Υσ,su)σ),

2) (Υσ,su)σ(π(u)) = C(−Ad(s)−1(Y ), Y ) for some Y ∈ p+, where C represents the BCH-
formula on the nilpotent Lie algebra p+, and

3) if (Υσ,su)σ(π(u)) = Zi + · · · + Zk holds for Zj ∈ gj, then the component of Zi contained
in gsi (1) is trivial, where i is the smallest index j such that (Υσ,su)σ(π(u)) has a non-zero
component in gi.

Moreover, if sv is a (local) s-symmetry at x for some v ∈ Gx, then su = sv if and only if
Υσ,su(x) = Υσ,sv(x) holds.

Proof. The normal Weyl structure νu always satisfies νu(π(u)) = u and therefore the set of
all Weyl structures σ satisfying σ(π(u)) = u is non-empty. Let su be a (local) s-symmetry
at x and consider arbitrary Weyl structure σ satisfying σ(π(u)) = u. Then (Υσ,su)σ(π(u)) = 0
holds and the Lemma 2.2 implies that (Υσ,su)σ has the claimed properties (1) and (2) for
arbitrary Weyl structure. The claimed property (3) holds, because the BCH-formula implies
that C(−Ad(s)−1(Y ), Y )i = −Ad(s)−1(Yi) + Yi = Zi holds.

If sv is a (local) s-symmetry at x for some v ∈ Gx, then su = sv if and only if us =
su(u) = sv(u) holds. Thus we need to show that if Υσ,su(x) = Υσ,sv(x) holds, then su = sv. We
can assume σ(π(u)) = u for the Weyl structure σ, because the equality Υσ,su(x) = Υσ,sv(x)
is preserved if we change the Weyl structure σ. Suppose g0 ∈ G0 and Y ∈ p+ are such
that v = ug0 exp(Y ) holds. If σ̂ is a Weyl structure such that σ̂(π(u)) = ug0 exp(Y ), then
Υσ,su(x) = 0, Υσ̂,sv(x) = 0 and (Υσ,sv)σ(π(u)) = C(−Ad(s)−1(Ad(g0)(Y )),Ad(g0)(Y )) hold.
Since C(−Ad(s)−1(Ad(g0)(Y )),Ad(g0)(Y )) = 0 if and only if Ad(s)(Y ) = Y , the element s
commutes with g0 exp(Y ) and su = sv holds. �

The harmonic curvature κH is preserved by each (local) automorphism of the parabolic
geometry. Since κH is a section of an associated vector bundle to G for a representation of P
which is trivial on exp(p+), the function (κH)σ does not depend on the choice of the Weyl
structure σ and we will write κH(u) instead of (κH)σ(π(u)). Consequently, κH(p(u)) = 0 if and
only if κH(u) = 0.

If su is a (local) s-symmetry at p(u), then s∗uκH = κH . Thus s.κH(u) = κH(u) trivially
follows, where we denote by . the tensorial action of g0 on κH . This proves the first claim of
Theorem 1.6.

The second claim of Theorem 1.6 is a consequence of the following proposition and Defini-
tion 1.5 of the prolongation rigidity.

Proposition 3.2. Assume there are (local) s-symmetries su and sv at x for some u, v ∈ Gx.
Suppose that (Υσ,sv)σ(π(u)) = 0 and (Υσ,su)σ(π(u)) = Zi+ · · ·+Zk hold for some Weyl structu-
re σ. Then Zi ∈ pr(κH(u))i.

Proof. We show that ad(X1) · · · ad(Xi)(Zi).κH(u) = 0 holds for all X1, . . . , Xi ∈ g−1. Consider
an arbitrary Weyl structure σ and consider the iterated covariant derivative (∇σ)j

ξ1,...,ξj
for vector

fields ξ1, . . . , ξj such that(
ξb
)
σ

= ξb−1 : G0 → g−1,
(
ξb
)
σ
(π(u)) = Xb
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hold for some Xb ∈ gs−1( 1
ab

) for some ab for all 1 ≤ b ≤ j. We assume j ≤ i unless we state
otherwise.

We compute

(s∗u∇σ)j
ξ1,...,ξj

κH(u) = s∗u(∇σ)j
(su)∗ξ1,...,(su)∗ξj

(su)∗κH(u) = (∇σ)j
(su)∗ξ1,...,(su)∗ξj

κH(u).

Since we assume Xb ∈ gs−1( 1
ab

), we get(
(su)∗ξ

b
)
σ exp(Υσ,su )σ

(π(u)) =
(
(su)∗ξ

b
)
σ
(π(u)) =

(
ξb
)
σ
(π(u)s)

= Ad(s)−1
(
ξb
)
σ
(π(u)) = abX

b.

Thus

(s∗u∇σ)j
ξ1,...,ξj

κH(u) = a1 · · · aj(∇σ)j
ξ1,...,ξj

κH(u). (3.1)

If (Υσ,su)σ(π(u)) = Zi + · · · + Zk holds for the Weyl structure σ, then the formula (2.2)
together with Proposition 3.1 imply

(s∗u∇σ)ξbκH(u) = ∇σ exp(−(Υσ,su )σ)

ξb
κH(u) = ∇σξ κH(u) + ad(Zi)

(
Xb
)
.κH(u).

In particular, if i > 1, then

(s∗u∇σ)ξbκH(u) = ∇σ exp(−(Υσ,su )σ)

ξb
κH(u) = ∇σξ κH(u).

If we apply the above formulas onto the first connection in (s∗u∇σ)j
ξ1,...,ξj

κH(u), then we obtain

(s∗u(∇σ)j)ξ1,...,ξjκH(u) = ∇σξ1(s∗u∇σ)j−1
ξ2,...,ξj

κH(u).

In the next step, the same formulas for the second connection lead to the formula

(s∗u∇σ)j
ξ1,...,ξj

κH(u) = (∇σ)2
ξ1,ξ2(s∗u∇σ)j−2

ξ3,...,ξj
κH(u)

− ad(X2)((∇σ)ξ1(Υσ,su)σ).(s∗u∇σ)j−2
ξ1,...,ξl−j

κH(u).

Thus before we consider the next step, we need to characterize the components of (∇σ
ξb

Υσ,su)σ(π(u))

in g1 ⊕ · · · ⊕ gj for j < i. Firstly, let us view (Υσ,su)σ as a section of the adjoint tractor bundle
G ×P g. Observe that the covariant derivative ∇σ

ξb
coincides with the fundamental derivative on

the components in g−⊕g0⊕g1⊕· · ·⊕gj according to the formula from [4, Proposition 5.1.10]. We
know that (Υσ,su)σ has its values in p+ and the components of (∇σ

ξb
Υσ,su)σ(π(u)) in g1⊕ · · · ⊕ gj

for j < i are tensorial both in ξb and Υσ,su . Then, using the formula from [4, Corollary 1.5.8]
and the P -equivariancy of ω, we get the following equality on the restriction to g1⊕ · · · ⊕ gj for
j < i (

∇σξbΥ
σ,su
)
σ(π(u))

= ω(σ(π(u)))
([
ω−1

(
ξb
)
, ω−1(Zi)

])
= −ad

(
Xb
)
(Zi).

Therefore

(s∗u∇σ)j
ξ1,...,ξj

κH(u) = (∇σ)2
ξ1,ξ2(s∗u∇σ)j−2

ξ3,...,ξj
κH(u).

If we iterate the computation of (∇σ
ξb

Υσ,su)σ(π(u)) for j < i, then we obtain by the same
arguments(

(∇σ)j
ξ1,...,ξj

Υσ,su
)
σ(π(u))

= (−1)jad
(
Xj
)
· · · ad

(
X1
)
(Zi)
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for the component in g1 ⊕ · · · ⊕ gi−j . Thus for j < i, we obtain

(s∗u∇σ)j
ξ1,...,ξj

κH(u) = (∇σ)j
ξ1,...,ξj

κH(u)− ad(Xj)((∇σ)j−1
ξ1,...,ξj−1(Υσ,su)σ).κH(u)

= (∇σ)j
ξ1,...,ξj

κH(u)

and for j = i, we obtain

(s∗u∇σ)iξ1,...,ξiκH(u) = (∇σ)iξ1,...,ξiκH(u) + (−1)iad
(
Xi
)
· · · ad

(
X1
)
(Zi).κH(u). (3.2)

If we compare the formulas (3.1) and (3.2) for (s∗u∇σ)j
ξ1,...,ξj

κH(u), we obtain

(−1)j(a1 · · · aj − 1)(∇σ)j
ξ1,...,ξj

κH(u) = ad
(
Xj
)
· · · ad

(
X1
)
(Zi).κH(u) (3.3)

for all j ≤ i.
If the Weyl structure σ satisfies (Υσ,sv)σ(π(u)) = 0, then we simultaneously have

(a1 · · · aj − 1)(∇σ)j
ξ1,...,ξj

κH(u) = 0

for all j ≤ i if we follow the proof for sv instead of su. Thus if a1 · · · aj − 1 6= 0, then
ad(Xi) · · · ad(X1)(Zi).κH(u) = 0. But since Zi has a trivial component in gsi (1), we know
that ad(Xi) · · · ad(X1)(Zi) 6= 0 implies a1 · · · aj − 1 6= 0 and the claim of the proposition holds
due to the linearity. �

If we follow the computations from the proof of Proposition 3.2 for a Weyl structure σ
satisfying Υσ,su(x) = 0, then most of the assumptions on the vector fields ξb are vacuous and
(s∗u∇σ)ξκH(u) = ∇σξ κH(u) holds for arbitrary vector field ξ. Therefore we obtain the following
corollary using the formula (3.1) for ξ from particular eigenspaces of Txsu.

Corollary 3.3. Let su be a (local) s-symmetry at x = p(u) on a parabolic geometry and assume
Υσ,su(x) = 0. Then we get

∇σξ κH(x) = ∇σξfixκH(x),

where ξfix ∈ TxM is the component of ξ ∈ TxM such that (ξfix)σ(π(u)) ∈ gs−(1). In particular,
if gs−(1) = 0, then ∇σξ κH(x) = 0 holds for all ξ ∈ TxM .

Remark 3.4. The authors showed in [22] and [5] that there are projective and conformal
geometries satisfying ∇σκH(x) = 0 for all x ∈ M for a suitable Weyl connection ∇σ, but
(M,∇σ) are not an affine locally symmetric spaces. Therefore Theorem 1.3 implies that the
condition ∇σκH = 0 is necessarily satisfied on (locally) m-symmetric parabolic geometries,
but is not sufficient to distinguish the (locally) m-symmetric parabolic geometries among the
geometries satisfying ∇σκH = 0.

3.2 The characterization of triples that are prolongation rigid
outside of the 1-eigenspace of s

We can estimate the dimension of pr(κH(u))i in the following way: The result of [18, Proposi-
tion 3.1.1] states that the dimension of ann(κH(u)) is bounded by the dimension of the annihi-
lator a0 := ∩φ0 ann(φ0) of all minus lowest weights φ0 in (the complexification of) all irreducible
g0-modules in which κH(u) has a non-zero component. Moreover, the dimension of pr(κH(u))i
is bounded by the dimension of the prolongation ai := ∩φ0 pr(φ0)i of a0. The main result of
[18, Theorem 3.3.3 and Recipe 7] states that there is a semisimple Lie subalgebra ḡ of g and
a parabolic subalgebra p̄ of ḡ such that ai = ḡi for i > 0.

Let us prove that these estimates are compatible with the decomposition of gi into g0-
submodules, which allows us to characterize the triples (g, p, µ) that are prolongation rigid
outside of the 1-eigenspace of s.
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Proposition 3.5. Suppose Z ∈ pr(κH(u))i decomposes as Z = Za + Zb for Za, Zb in different
g0-submodules of gi. Then Za ∈ pr(κH(u))i and Zb ∈ pr(κH(u))i.

Therefore the triple (g, p, µ) is prolongation rigid outside of the 1-eigenspace of s if and only
if ai corresponding to µ is a subspace of gsi (1) for all i.

Proof. Let (α1, . . . , αj) be an ordering of simple positive roots of g such that the root space gαr
satisfies gαr ∈ g1. Then we can uniquely assign a j-tuple (a1, . . . , aj) to each irreducible g0-
component of gi, where a` is the height of all root spaces in the g0-component with respect to α`.
This defines a multigrading of g and the Lie bracket in g is multigraded.

Let us decompose the element Z ∈ pr(κH(u))i as the sum of the elements
∑
Z(b1,...,bj) over all

possible j-tuples with respect to this multigrading. Similarly, let us decompose the module⊗ig−1

as the sum of modules ⊕n(a1,...,aj) over all possible j-tuples with respect to this multigrading.
The multigrading of g0 is of the form (0, . . . , 0), and therefore,

adi(X)(Z) =
∑

adi(X(a1,...,aj))
(∑

Z(b1,...,bj)

)
=
∑

adi(X(−b1,...,−bj))(Z(b1,...,bj))

holds for all X =
∑
X(a1,...,aj) ∈ ⊕n(a1,...,aj). Thus we get that

adi
(
X(−b1,...,−bj)

)(
Z(b1,...,bj)

)
∈ ann(κH(u))

holds for all X = X(−b1,...,−bj) ∈ n(−b1,...,−bj). Thus Z(b1,...,bj) ∈ pr(κH(u))i follows from the
linearity for all components Z(b1,...,bj) of Z.

The first claim implies that the proof of [18, Proposition 3.1.1] can be carried separately for
each component of pr(κH(u))i in g0-submodule in gi and thus the second claim follows from [18,
Theorem 3.3.3]. �

One can find in [13, Appendix C] tables containing the classification of the triples (g, p, µ)
such that µ is contained in the 1-eigenspace of s for some s ∈ Z(G0) (different from identity),
the classification of the modules ai and the classification of the 1-eigenspaces of s in p+. This
allows us to classify all triples (g, p, µ) that are prolongation rigid outside of the 1-eigenspace
of s such that µ is contained in the 1-eigenspace of s.

We would like to present the classification together with additional properties of the corre-
sponding (locally) s-symmetric parabolic geometries. Therefore we postpone the classification
to Section 5.1 and continue by looking on geometric properties of generic (locally) s-symmetric
parabolic geometries.

4 Geometric properties of parabolic geometries of general types

We present here geometric properties that are common for (locally) s-symmetric parabolic ge-
ometries for triples (g, p, µ) that are prolongation rigid outside of the 1-eigenspace of s. In
particular, we prove Theorem 1.8. In order to prove that Claim (3) implies Claim (2), we dis-
cuss in Section 4.1 when a geodesic transformation sσx of a Weyl connection ∇σ preserves the
parabolic geometry. Claim (1) follows trivially from Claim (2) and we discuss the remaining
implication in Section 4.2.

4.1 Automorphisms and normal coordinate systems of Weyl connections

Let us describe the (local) diffeomorphisms sσx in detail. We know from the formula (2.3) that
the (local) diffeomorphism sσx of M defined by the formula

sσx
(
p0 ◦ Fl

(ωσ−⊕ωσ0 )−1(ξ(x))σ(u0)

1 (u0)
)

:= p0 ◦ Fl
(ωσ−⊕ωσ0 )−1Ad(s)(ξ(x))σ(u0)

1 (u0)

= p0 ◦ Fl
(ωσ−⊕ωσ0 )−1(ξ(x))σ(u0)

1 (u0s) (4.1)
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for some u0 ∈ (G0)x does not depend on the choice of u0 ∈ (G0)x. So sσx is the unique (local)
diffeomorphism with coordinates Ad(s) ∈ Gl(g−) for s ∈ Z(G0) in the normal coordinate system
for the Weyl connection ∇σ given by some u0 ∈ G0.

We also know from Proposition 2.4 that for a normal Weyl structure νu for u ∈ Gx, the
equality

sνux = su

holds. Thus sνux preserves the parabolic geometry (and therefore su is a (local) automorphism
of the parabolic geometry) if and only if (sνux )∗∇νu = ∇νu holds.

The situation is different for a general Weyl structure σ and the following proposition gives
a sufficient condition for sσx to be a (local) s-symmetry.

Proposition 4.1. Assume the (local) diffeomorphism sσx satisfies

• (sσx)∗∇σ = ∇σ exp(Υ)σ for some 1-form Υ on M , and

• Υ(x) = 0.

Then sσ(u0) is a (local) s-symmetry at x for all u0 in the fiber over x such that Υσ,sσ(u0) = −Υ,
and sσ(u0) = sσx, i.e., sσx preserves the parabolic geometry.

Proof. Suppose (sσx)∗∇σ = ∇σ exp(Υ)σ holds for Υ such that Υ(x) = 0. Then the inclusions ισ
and ισ exp(Υ)σ of G0 into P1M coincide in the fiber over x by the assumption Υ(x) = 0. Thus the
formula (4.1) implies that P1sσx maps the frames ισ(u0) = ισ exp(Υ)σ(u0) in the fiber over x onto
frames ισ(u0s) = ισ exp(Υ)σ(u0s). Therefore the conditions of Proposition 2.3 are satisfied and
sσx preserves the parabolic geometry. Since Υ(x) = 0, it follows from Proposition 3.1 that the
covering of sσx maps σ(u0) onto σ(u0)s and thus coincides with sσ(u0) due to the formula (2.6). �

In particular, if there is an S-invariant class of Weyl connections, then all (local) diffeomor-
phisms S(x) for all x ∈ M satisfy the conditions of Proposition 4.1 and therefore Claim (3) of
Theorem 1.8 implies Claim (2) of Theorem 1.8.

A consequence of Propositions 4.1 and 3.1 is that the condition Υσ,su(p(u)) = 0 is necessary
for the equality su = sσp(u) to hold for s-symmetry su at p(u). On the other hand, it is clear that

the condition Υσ,su(p(u)) = 0 is far from being sufficient. There is the following consequence of
the fact that the affine maps are determined by the image of a single point in ισ(G0) ⊂ P1M .

Corollary 4.2. Let su be a (local) s-symmetry at x and assume Υσ,su ≡ 0 holds for some Weyl
structure σ. Then su = sσx.

4.2 The prolongation rigidity for s-symmetric parabolic geometries

Let (g, p, µ) be prolongation rigid outside of the 1-eigenspace of s. Let U ⊂ M be the open
subset of M consisting of points x such that κH(x) has a non-zero component in the g0-module
given by µ. If the parabolic geometry is (locally) s-symmetric, then there is a unique (local) s-
symmetry su at each point of U , i.e., there is the unique system S of (local) s-symmetries on U .
This means that if there is an almost S-invariant Weyl connection on U , then the system S
coincides (due to uniqueness) with the system of (local) diffeomorphisms su. We call a Weyl
structure σ (almost) S-invariant (at x) if ∇σ is (almost) S-invariant Weyl connection (at x).

The uniqueness of s-symmetries on U has the following consequences in the case U = M .

Proposition 4.3. Assume (g, p, µ) is prolongation rigid outside of the 1-eigenspace of s and
κH(x) has a non-zero component in the g0-module given by µ at all x ∈M . Let S be the unique
system of (local) s-symmetries on the (locally) s-symmetric parabolic geometry (G → M,ω) of
type (G,P ). Then:
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1. There exists an almost S-invariant Weyl structure σ and the map S is smooth.

2. If σ is an almost S-invariant Weyl structure, then σ exp(Υ)σ is an almost S-invariant
Weyl structure if and only if (Υ)σ has its values in ps+(1).

3. For each x ∈ M , there is a local almost S-invariant Weyl structure σ, which is invariant
at x, and S(x) = sσx holds.

4. The equality S(p0(u0)) = sσ(u0) holds for each almost S-invariant Weyl structure σ for all
u0 ∈ G0.

5. The equality S(x)◦S(y)◦S(x)−1 = S(S(x)(y)) holds for x, y ∈M , where the compositions
are defined.

6. For each eigenvalue a, the union of the a-eigenspaces TxM
s(a) of TxS(x) in TxM over all

x ∈ M defines a distribution TM s(a) on M that is preserved by all (local) s-symmetries
for each a.

7. The equality TM s(a) = Tp0 ◦ (ωσ−+ωσ0 )−1(gs−(a)) holds for each almost S-invariant Weyl
structure σ.

8. The decomposition TM = ⊕aTM s(a) is preserved by all almost S-invariant Weyl connec-
tions ∇σ.

9. All almost S-invariant Weyl connections restrict to the same partial linear connection
on TM corresponding to the distribution ⊕a6=1TM

s(a).

We show that Claim (1) of Theorem 1.8 implies Claim (3) of Theorem 1.8 and simultaneously
obtain all the claims of the proposition.

Proof. Let us pick an arbitrary Weyl structure σ̂ and consider the G0-equivariant function
(S)σ̂ : G0 → {C(−Ad(s)−1(Y ), Y ), Y ∈ p+} defined by

S(p0(u0))∗σ̂(u0) = σ̂(u0) exp(−(S)σ̂(u0))

for all u0 ∈ G0. We show that (S)σ̂ is smooth.
We decompose

(S)σ̂ =
∑
a

τi(a) + · · ·+
∑
a

τk(a)

according to the grading and the eigenvalues a of Ad(s). It follows from Claim (3) of Proposi-
tion 3.1 that τi(1) ≡ 0. Thus the formula (3.3) from the proof of Proposition 3.2 that holds
under our assumptions at each point of M implies that each τi(a) is smooth.

The formula (2.5) from the Lemma 2.2 gives

(S)σ̂ exp(Υ)σ̂ = C
(
−Ad(s)−1(Υ)σ̂, C((S)σ̂, (Υ)σ̂)

)
.

If we take Υ = rτi(a) for arbitrary r ∈ R, then

C
(
−Ad(s)−1(rτi(a)), C((S)σ̂, rτi(a))

)
i
(a) = C

(
−r
a
τi(a), C(τi(a), rτi(a))

)
i
(a)

=
r(1− a) + a

a
τi(a)

holds for the component of the BCH-formula in gi(a), while the components of the BCH-formula
in gi(b) for the other eigenvalues b 6= a of Ad(s) remain τi(b). Consequently, if we take

Υi :=
∑
a6=1

a

a− 1
τi(a)
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and consider the Weyl structure σ̂ exp(Υi) instead of σ̂, then we get

(S)σ̂ exp(Υi) =
∑
a

τ̃i+1(a) + · · ·+
∑
a

τ̃k(a).

By induction, we obtain in finitely many steps a Weyl structure σ such that (S)σ ≡ 0 holds.
Since (S)σ ≡ 0 and all the changes we made are smooth, the function (S)σ̂ and the Weyl
structure σ = σ̂ exp(Υi) · · · exp(Υk) are smooth. Let [∇σ] be the class consisting of all Weyl
connections for Weyl structures σ constructed for all Weyl structures σ̂. We complete the proof
by showing that [∇σ] is an S-invariant class of Weyl connections and thus Claim (1) holds.

It is clear from the construction of σ that if we start with σ̂ exp(Υ)σ for (Υ)σ with values
in ps+(1), then we get σ exp(Υ)σ. Thus the class [∇σ] satisfies Claim (2) and Claims (6), (7), (8)
and (9) are then consequences of Claim (2) and the formulas for the change of Weyl structures
and connections. In particular, the class [∇σ] is a maximal subclass of the class of Weyl connec-
tions that satisfy Txs

σ
x = Txs

σ′
x for all Weyl connections ∇σ,∇σ′ ∈ [∇σ] and all x ∈M , and that

all connections in [∇σ] restrict to the same partial connection on all smooth subbundles of TM
for all eigenvalues of Txs

σ
x different from 1.

If σ̂ = νu is the normal Weyl structure for u ∈ Gx satisfying S(x)(u) = us, then

σ exp
(
−
(
Υσ,S(x)

)
σ

)
= νu exp(S(x)∗Υi) · · · exp(S(x)∗Υk)

= σ exp(−Υk) · · · exp(C(−Υi, S(x)∗Υi)) · · · exp(S(x)∗Υk).

Since the component of C(−Υi, S(x)∗Υi) contained in gi has a trivial component in ps+(1)
and (Υσ,S(x))σ has its values in ps+(1), the equality Υi = S(x)∗Υi holds. Thus we get 0 =
C(−Υi, S(x)∗Υi). Therefore σ exp(−(Υσ,S(x))σ) = σ follows by induction, and thus S(x)∗σ = σ.
Corollary 4.2 and the last claim of Proposition 3.1 implies that

S(x) = su = sνu exp(Υi)··· exp(Υk)
x = sσ(π(u))

holds for all x ∈M , all u ∈ Gx satisfying S(x)(u) = us and arbitrary σ such that ∇σ ∈ [∇σ]. In
particular, S and S are smooth, because σ is smooth. Therefore Claims (3) and (4) hold.

Since

S(x) ◦ S(y) ◦ S(x)−1(S(x)(σ(u0))) = S(x)(σ(u0))s

holds for u0 in the fiber over x, the composition S(x) ◦ S(y) ◦ S(x)−1 is an s-symmetry at the
point S(x)(y). The equality S(x)◦S(y)◦S(x)−1 = S(S(x)(y)) then follows from the uniqueness
of s-symmetries. Therefore Claim (5) holds.

In particular, S(x) ◦ S(y)(y) = S(S(x)(y)) ◦ S(x)(y) holds. This implies that

σ′(v0) exp
((

Υσ′,S(x)
)
σ′

(v0s)
)

= (S(x) ◦ S(y))∗σ′(v0) = (S(S(x)(y)) ◦ S(x))∗σ′(v0)

= σ′(v0) exp((Υσ′,S(x))σ′(v0))

holds for v0 in the fiber over y for arbitrary σ′ such that ∇σ′ ∈ [∇σ]. Thus

Ad(s)
(
Υσ,S(x)

)
σ
(v0) =

(
Υσ,S(x)

)
σ
(v0)

holds and thus [∇σ] is an S-invariant class of Weyl connections. �

5 Geometric properties of parabolic geometries
of distinguished types and classif ication

In this section, we study properties of (locally) s-symmetric parabolic geometries of particular
types (G,P ) for triples (g, p, µ) that are prolongation rigid outside of the 1-eigenspace of s for µ
in the 1-eigenspace of s. The properties follow from the position and shape of gs−(1) inside of g−.
We classify all triples (g, p, µ) where gs−(1) has such a position and shape for generic s.
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5.1 Classif ication results and notation

Let us use the characterization from Section 3.2 for the classification of the triples (g, p, µ) that
are prolongation rigid outside of the 1-eigenspace of s ∈ Z(G0) such that µ is in the 1-eigenspace
of s. We separate the classification into the series of Tables 1–13. The main reason for such a
separation is that parabolic geometries from different tables have different geometric properties
and we divide the tables according to these properties.

Theorem 5.1. Let (g, p, µ) be a triple obtained from one of Tables 1–13 in the following way:

• The Lie algebra g is a simple Lie algebra of the (complex) rank n that is at least A4, B4,
C4, D5 or some explicit Lie algebra of lower rank from the column g.

• The parabolic subalgebra p is the parabolic algebra from [4, Section 3.2.9] for the set Σ in
the column Σ.

• The component of the harmonic curvature µ is specified by an ordered pair of simple roots
of g from the column µ that provides the highest weight of µ by the affine action of corre-
sponding elements of the Weyl group, see [4, Theorem 3.3.5].

• The component µ is contained in the 1-eigenspace of s for the elements s ∈ Z(G0) that
have the eigenvalues jia from the columns jia on the irreducible g0-components that are
determined by the iath element of the set Σ.

Then (g, p, µ) is prolongation rigid outside of the 1-eigenspace of s if the eigenvalues jia of s
satisfy the condition in the column PR.

Tables 1–13 contain the complete classification of triples (g, p, µ) that are prolongation rigid
outside of the 1-eigenspace of s for µ in the 1-eigenspace of s (except the cases that are conjugated
by an outer automorphism of g to one of the listed entries).

The remaining notation we will use in the tables is the following:
We characterize the real form of g by a number q and a field {R,C,H}.
The set Σ characterizes the set of crossed nodes in the Dynkin or Satake diagram that

provides the parabolic subalgebra p. We use the ordering of nodes which is consistent with [4,
Appendix B] and we will not add the conjugated crossed nodes to Σ in the case of complex Lie
algebras, su(q, n+ 1− q) and so(3, 5). We distinguish the complex conjugated simple roots by ′.

If the column for the eigenvalue jia is blank, then the value of jia is generic. If the eigenvalue
jia /∈ R and ln(jia) = ria + iφia , then either ria = 0 or φia = 0 and we specify only the non-zero
one in the table.

If the column PR is missing or the condition is blank, then the triple (g, p, µ) is either
prolongation rigid or the condition that µ is contained in the 1-eigenspace of s is sufficient for ai
corresponding to µ to be a subspace of gsi (1) for all i.

The classification tables are presented in the following subsections and the triples (g, p, µ)
are obtained from the tables according to Theorem 5.1.

5.2 Parabolic geometries with gs
−(1) = 0

Table 1 contains all triples (g, p, µ) with the property that if s ∈ Z(G0) is such that (g, p, µ) is pro-
longation rigid outside of the 1-eigenspace of s, then gs−(1) = 0. In particular, all AHS-structures
that have a component of the harmonic curvature in the 1-eigenspaces of some s ∈ Z(G0) are
prolongation rigid outside of the 1-eigenspace of s and thus are contained in this table.

Example 5.2. Before we formulate the general result, let us demonstrate how the results for
(locally) symmetric conformal geometries that we presented in [11] can be obtained from Table 1
and Theorem 5.3:
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Table 1. Theorem 5.3

g Σ ji1 µ

sl(3,C) {1} φ1 (α1, α1′)

sl(3,C) {1} 3
√

1 (α1′ , α2′)

sl(4, {R,C}) {1}
√

1 (α1, α2)

sl(4,C) {1} φ1 (α1, α1′)

sl(4,C) {1} 3
√

1 (α1′ , α2′)

sl(n+ 1, {R,C}) {1}
√

1 (α1, α2)

sl(n+ 1,C) {1} φ1 (α1, α1′)

sl(n+ 1, {R,C,H}) {2}
√

1 (α2, α1)

sl(n+ 1,C) {p} 3
√

1 (αp′ , αp+1′)

so(1, 5), so(2, 4), so(3, 3), so(6,C),

so(1, 6), so(2, 5), so(3, 4), so(7,C) , {1}
√

1 (α1, α2)
so(1, 7), so(2, 6), so(3, 5), so(4, 4), so(8,C)

so(6,C), so(7,C), so(8,C) {1} 3
√

1 (α1′ , α2′)

so(7,C) {3} 3
√

1 (α3, α2)

so(q, n− q), so(n,C) {1}
√

1 (α1, α2)

so(n,C) {1} 3
√

1 (α1′ , α2′)

so(2n,C) {n} 3
√

1 (αn′ , αn−2′)

so(2n+ 1,C) {n} 5
√

1 (αn′ , αn−1′)

sp(4,C) {1} 3
√

1 (α1, α2)

sp(4,C) {1} 3
√

1 (α1′ , α2′)

sp(4,C) {2} 3
√

1 (α2′ , α1′)

sp(6,C) {2} 5
√

1 (α2′ , α3′)

sp(6,C) {3} 3
√

1 (α3′ , α2′)

sp(2n,C) {n− 1} 5
√

1 (αn−1′ , αn′)

sp(2n,C) {n} 3
√

1 (αn′ , αn−1′)

e6(C) {1} 3
√

1 (α1′ , α2′)

e7(C) {1} 3
√

1 (α1′ , α2′)

There are rows with g = so(q, n − q) and Σ = {1} in Table 1 and the triples (so(q, n − q),
p{1}, µ(α1,α2)) are prolongation rigid outside of the 1-eigenspace of s for n > 5 and q > 0. We

read of the corresponding line that the eigenvalue ji1 =
√

1. Thus s = m and the m-symmetries
in question are the symmetries of conformal geometries presented in [11]. We get immediately
from Theorem 5.3 that Theorem 1.3 holds for conformal geometries.

In the following theorem, we summarize geometric properties of geometries from Table 1 and
prove the last claim of Theorem 1.8.

Theorem 5.3. Assume (g, p, µ) is prolongation rigid outside of the 1-eigenspace of s for s ∈
Z(G0) such that gs−(1) = 0 holds. If the harmonic curvature κH of the (locally) s-symmetric
parabolic geometry (G →M,ω) of type (G,P ) has a non-zero component in µ at some x, then:

1. The parabolic geometry is (locally) homogeneous, κH(x) 6= 0 at all x ∈ M and there is
a unique smooth system of (local) s-symmetries S on M .

2. There is a unique distinguished Weyl structure σ which is uniquely characterized by one
of the following equivalent properties:

(a) The equalities ∇σT σ = 0, s.(T σ)σ = (T σ)σ, ∇σRσ = 0 and s.(Rσ)σ = (Rσ)σ hold for
the torsion and the curvature of the Weyl connection ∇σ.
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(b) The Weyl connection ∇σ is S-invariant.

(c) All (local) automorphisms of the parabolic geometry cover affine transformations
of ∇σ.

(d) All (local) diffeomorphisms sσx are affine transformations of ∇σ.

(e) All (local) P -bundle morphisms sσ(u0) are (local) s-symmetries.

3. The pseudo-group generated by all local s-symmetries is transitive on M and its connected
component of identity is generated by the flows of the Lie algebra l, which is the vector
subspace of g−⊕g0, generated by g− by the bracket (T σ+Rσ)σ on ∧2g∗−⊗ l and the natural
bracket on the rest of l.

4. The equalities

S(x) = sσ(u0) = sσx

hold for the Weyl structure σ from Claim (2). In particular,

• the maps S(x) can be extended to a larger neighbourhood of x as long as the corre-
sponding geodesic transformations of ∇σ are defined,

• S(x) ◦ S(y) ◦ S(x)−1(z) = S(S(x)(y))(z) holds for (x, y, z) in some neighbourhood of
the diagonal in M ×M ×M , and

• for each eigenvalue a, the distribution TM s(a) is preserved by all (local) automor-
phisms of the parabolic geometry.

Proof. Let U ⊂ M be the set of points x such that κH(x) has a non-zero component in µ.
Then there is a unique system of (local) s-symmetries on U due to the prolongation rigidity of
the triple (g, p, µ) outside of the 1-eigenspace of s. It suffices to prove the theorem under the
assumption U = M , because if we prove Claim (3) on U , then the equality U = M follows from
the (local) homogeneity, i.e., Claim (1) follows from Claim (3). Then Claim (4) follows from
Claim (2) due to Claims (5) and (7) of Proposition 4.3.

Therefore, it suffices to prove Claims (2) and (3) under the assumption U = M to complete
the proof. If gs−(1) = 0, then ps+(1) = 0 and Proposition 4.3 implies that there is a unique
S-invariant Weyl structure σ. It follows from Propositions 3.1 and 4.1 that the Weyl structure σ
satisfies (2b) if and only if it satisfies (2e). Further, Proposition 4.1 and Corollary 4.2 imply
that the Weyl structure σ satisfies (2e) if and only if it satisfies (2d).

We show now that (2b) implies (2a). The torsion and the curvature of S-invariant Weyl
connection ∇σ are S-invariant. In particular,

s.(T σ)σ(u0) = (S(p0(u0))∗T σ(p0(u0)))σ(u0) = (T σ)σ(u0)

and

s.(Rσ)σ(u0) = (S(p0(u0))∗Rσ(p0(u0)))σ(u0) = (Rσ)σ(u0)

hold for all u0 ∈ G0 for the natural action . of G0 on the values of (T σ)σ and (Rσ)σ. Since the
same arguments can be applied on ∇σT σ and ∇σRσ, it follows that (∇σξT σ)σ = s.(∇σξT σ)σ =
a(∇σξT σ)σ and (∇σξRσ)σ = s.(∇σξRσ)σ = a(∇σξRσ)σ hold for any vector field ξ on M such that

(ξ)σ(u0) ∈ gs−(a−1) for all u0 ∈ G0. Thus (2b) implies (2a), because gs−(1) = 0.

Claim (2a) implies that ∇σ is a locally affinely homogeneous connection. Therefore, ac-
cording to [7, Section 1.5], the affine geometry (M,∇σ) can be encoded as a locally homoge-
neous Cartan geometry of type (g− o Gl(g−),Gl(g−)) on the first-order frame bundle P1M .
Moreover, the assumptions of [12, Lemma 2.2] are satisfied, because (T σ + Rσ)σ(ισ(u0)) is
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the bracket of the infinitesimal affine transformation at ισ(u0) ∈ ισ(G0) ⊂ P1M . Thus there
is a (local) affine transformation A of ∇σ such that (A)σ(u0) = s. Therefore Claim (2d)
follows from Claim (2a) and Proposition 4.1 due to the uniqueness of s-symmetries. In par-
ticular, if we consider a (local) one-parameter subgroup exp(tξ) for an infinitesimal affine
transformation ξ, then exp(tξ)S(x) exp(−tξ) is the (local) s-symmetry at exp(tξ)(x) and the
map d

dt |t=0 exp(tξ)S(x) exp(−tξ)S(x)−1 maps ξ into l. If (P1ξ)σ(u0) = X, then the element
X − Ad(s)(X) is contained in l. Thus g− ⊂ l as a vector subspace. Thus the flows of the
Lie algebra l generate a sub-pseudo-group, which is the connected component of identity of the
pseudo-group generated by local s-symmetries. Since Ad(s) preserves l, Claim (3) follows.

We can use the results from [13, Theorem 1.3] due to the local homogeneity and (2c) follows
from (2a). Clearly (2c) implies (2d), which completes the proof. �

5.3 Parabolic geometries with distinguished parabolic subalgebras gs
−(1) + p

There are triples (g, p, µ) that are prolongation rigid outside of the 1-eigenspace of s which admit
1-eigenspace in g− for some s such that q := gs−(1) + p is a parabolic subalgebra of g such that
the harmonic curvature in µ vanishes on insertions of elements of q/p at all points of M . These
are listed in Tables 2, 3 and 4 due to [13, Propositions 6.2 and A.2].

Example 5.4. To demonstrate our results, let us look in Table 2 on the row g = sl(n + 1,R)
and Σ = {1, 2} which corresponds to generalized path-geometries (for systems of second-order
ODEs), see [4, Sections 4.4.3–4.4.5]. These parabolic geometries generally have two harmonic
curvatures, one torsion κ(α1,α2) and one curvature κ(α2,α1). However, they fall in Table 2 only
when the torsion κ(α1,α2) vanishes and the harmonic curvature consists only of the curvatu-
re κ(α2,α1) corresponding to µ(α2,α1). There are many s ∈ Z(G0) that act trivially on µ(α2,α1),
but the triple (sl(n+ 1,R), p{1,2}, µ(α2,α1)) is prolongation rigid outside of the 1-eigenspace of s
only for s ∈ Z(G0) with eigenvalues j1 = 1, j2 = −1. In such case, q = p{2} is the parabolic
subalgebra of g corresponding to Σ = {2}.

The torsion-freeness of generalized path-geometries implies that the space of local solutions
of the corresponding ODEs carries a Grassmanian structure, which is a parabolic geometry
on the local leaf space of type (G,Q) from Theorem 5.5. Therefore if (G → M,ω) is a (lo-
cally) s-symmetric torsion-free generalized path-geometry with a non-zero harmonic curvature,
then we conclude from Theorem 5.5 that the space of local solutions N is a locally symmet-
ric space (N,S), while M together with the system of (local) s-symmetries S is a reflexion
space (M,S) over (N,S), see [8]. Let us emphasize that due to dimensional reasons and the
formula [4, Theorem 5.2.9], the pseudo-group generated by all local s-symmetries is locally tran-
sitive at x ∈M if and only if the Rho-tensor Pσ(n(x)) of the S-invariant Weyl structure σ on N
does not vanish on Tn(x)N .

We summarize geometric properties of geometries from Tables 2, 3 and 4 in the following
theorem.

Theorem 5.5. Assume (g, p, µ) is prolongation rigid outside of the 1-eigenspace of s for s ∈
Z(G0) such that q = gs−(1) + p is a parabolic subalgebra of g and q/p inserts trivially into the
harmonic curvature κH of the (locally) s-symmetric parabolic geometry (G → M,ω) of type
(G,P ). If κH has a non-zero component in µ at some x, then:

1. The inequality κH 6= 0 holds in an open dense subset of M , and there is a unique smooth
system of (local) s-symmetries S on M .

2. There are

• a parabolic subgroup Q of G with the Lie algebra q such that P ⊂ Q,
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Table 2. Theorem 5.5, part with |Σ| = 2.

g Σ ji1 ji2 µ PR

sl(3,C) {1, 2} 2r1 (α1, α1′)

sl(3,C) {1, 2} −2
3φ2 (α1′ , α2′) r2 = 0, φ2 = 2π

sl(3,C) {1, 2} −2
3φ1 (α2′ , α1′) r1 = 0, φ1 = 2π

sl(4, {R,C}) {1, 2} j−2
2 (α2, α1) j2 = −1

sl(4,R) {1, 2} j2
2 (α2, α3)

sl(4,C) {1, 2} 2r1 (α1, α1′)

sl(4,C) {1, 2} −2
3φ2 (α1′ , α2′) r2 = 0, φ2 = 2π

sl(4,C) {1, 2} −2
3φ1 (α2′ , α1′) r1 = 0, φ1 = 2π

sl(4,R) {1, 3} j2
1 (α1, α2)

sl(4,C) {1, 3} 2r1 (α1, α1′)

sl(n+ 1, {R,C}) {1, 2} j−2
2 (α2, α1) j2 = −1

sl(n+ 1,C) {1, 2} 2r1 (α1, α1′)

sl(n+ 1,R) {1, 3} j2
1 (α1, α2)

sl(n+ 1,C) {1, p} 2r1 (α1, α1′) r1 = 0
2 < p < n

sl(n+ 1, {R,C}) {1, p} j2
1 (α1, α2) j1 = −1

3 < p < n

sl(n+ 1,R) {1, n} j2
1 (α1, α2)

sl(n+ 1,C) {1, n} 2r1 (α1, α1′)

sl(n+ 1,R) {2, 3} j2
2 (α2, α1)

sl(n+ 1, {R,C,H}) {2, p} j2
2 (α2, α1) j2 = −1

3 < p < n

sl(n+ 1, {R,H}) {2, n} j2
2 (α2, α1)

sl(n+ 1,C) {p, p+ 1} −2
3φp (αp+1′ , αp′) rp = 0, φp = 2π

so(2, 5), so(3, 4), so(7,C),

so(2, 6), so(3, 5), {1, 2}
√

1 (α1, α2) j2 = 1
so(4, 4), so(8,C)

so(4, 4) {1, 4} j2
1 (α1, α2)

so(q, n− q), so(n,C) {1, 2}
√

1 (α1, α2) j2 = 1

so(n, n), so(2n,C) {1, n} j2
1 (α1, α2) j1 = −1

Table 3. Theorem 5.5, part with |Σ| = 3.

g Σ ji1 ji2 ji3 µ PR

sl(4,R) {1, 2, 3} j1j
2
2 (α2, α1) j1 = 1

sl(n+ 1,R) {1, 2, 3} j1j
2
2 (α2, α1) j1 = 1

sl(n+ 1, {R,C}) {1, 2, p} j1j
2
2 (α2, α1) j1 = 1, j2 = −1

3 < p < n

sl(n+ 1,R) {1, 2, n} j1j
2
2 (α2, α1) j1 = 1

so(4, 4) {1, 2, 4} j2
1 (α1, α2) j2 = 1

so(n, n), so(4n,C) {1, 2, n} j2
1 (α1, α2) j1 = −1, j2 = 1

• a neighbourhood Ux of each x ∈ M with the local leaf space n : Ux → N for the
foliation given by the integrable distribution Tp ◦ ω−1(q), and

• a (locally) s-symmetric parabolic geometry (G′ → N,ω′) of type (G,Q) satisfying the
assumptions of Theorem 5.3,
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Table 4. Theorem 5.5, part with |Σ| = 4.

g Σ eigenvalues µ PR

sl(n+ 1,R) {1, 2, 3, p} jp = j1j
2
2j
−1
3 (α2, α1) j1 = 1, j3 = j2

2

3 < p < n

sl(n+ 1, {R,C}) {1, 2, p, q} jq = j1j
2
2j
−1
p (α2, α1) j1 = 1, j2 = −1, jp = 1

3 < p, q < n

sl(n+ 1,R) {1, 2, p, n} jn = j1j
2
2j
−1
p (α2, α1) j1 = 1, jp = 1

3 < p < n

such that (G|Ux → Ux, ω|Ux) is isomorphic to an open subset of (G′ → G′/P, ω′) for each x.
In particular, there is a unique s-symmetry S(n(y)) on (G′ → N,ω′) at each n(y) ∈ N
such that n ◦ S(y) = S(n(y)) ◦ n holds for all y ∈ Ux in the fiber over n(y).

3. The connected component of identity of the pseudo-group generated by all local s-symmet-
ries is generated by the flows of the Lie algebra l, which is the vector subspace of qop,
generated by qop

+ by the bracket (T σ(n(x)) + Rσ(n(x)))σ on ∧2(qop
+ )∗ ⊗ l and the natural

bracket on the rest of l for the S-invariant Weyl structure σ on (G′ → N,ω′), where qop is
the opposite parabolic subalgebra of g to q.

The pseudo-group generated by all local s-symmetries is locally transitive at x if and only
if q/p ⊂ l/(l ∩ p), i.e., if and only if (Rσ(n(x)))σ spans the whole q/p.

4. There is a bijection between

• the almost S-invariant Weyl structures on Ux, and

• the reductions of the image in G′ of the (unique) S-invariant Weyl structure σ on N
(that exists due to Theorem 5.3) to exp(gs−(1)) oG0 ⊂ Q0.

A reduction corresponds to an S-invariant Weyl structure on Ux if and only if it is a holon-
omy reduction of ∇σ.

5. In particular,

• the maps S(x) can be extended to a larger neighbourhood of x as long as the corre-
sponding geodesic transformations of ∇σ on N are defined,

• S(x) ◦ S(y) ◦ S(x)−1(z) = S(S(x)(y))(z) holds for (x, y, z) in some neighbourhood of
the diagonal in M ×M ×M ,

• the distribution TM s(1) is the vertical distribution of the local leaf space n : Ux → N ,

• for each eigenvalue a, Tn(TxM
s(a)) is the a-eigenspace of Tn(x)S(n(x)) in Tn(x)N ,

and

• for each eigenvalue a, the distribution TM s(a) is preserved by all (local) automor-
phisms of the parabolic geometry.

Proof. Claim (1) is a direct consequence of Claims (2) and (3), because κH 6= 0 holds for the
harmonic curvature of (G′ → N,ω′) and thus κH = 0 can hold only in the subset of the fiber
corresponding to a (Zariski) closed subset of Q. Claim (2) follows from [3, Theorem 3.3] and
the fact that (qop

+ )s(1) = 0. Then Claim (3) is a clear consequence of Theorem 5.3. Claim (4)
follows from the comparison of images in G′ of the S-invariant Weyl structure on N and the
almost S-invariant Weyl structures on Ux, because they intersect precisely in a reduction to
exp(gs−(1))oG0 ⊂ Q0, i.e., in a subbundle with the structure group exp(gs−(1))oG0. Claim (5)
is a consequence of Claim (4) of Theorem 5.3 and Claim (2). �
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5.4 Parabolic geometries with gs
−1(1) = 0

There are triples (g, p, µ) that are prolongation rigid outside of the 1-eigenspace of s which admit
a 1-eigenspace in g− for some s such that gs−1(1) = 0 holds, but which do not generically satisfy
gs−(1) = 0. These are contained in Tables 5 and 6.

Table 5. Theorem 5.7, part with |Σ| = 1.

g Σ ji1 µ

su(1, 2) {1} 4
√

1 (α1, α2)

su(1, 3), su(2, 2) {1} φ1 (α1, α3)

su(1, 3), su(2, 2) {1} 3
√

1 (α1, α2)

su(q, n+ 1− q) {1} φ1 (α1, αn)

su(q, n+ 1− q) {1} 3
√

1 (α1, α2)

su(q, n+ 1− q) {2} 3
√

1 (α2, α1)

so(3, 5) {3} 3
√

1 (α3, α2)

sp(4,C) {1} φ1 (α1, α1′)

sp(6, {R,C}) {1}
√

1 (α1, α2)

sp(6,C) {1} φ1 (α1, α
′
1)

sp(1, 2), sp(6, {R,C}) {2}
√

1 (α2, α1)

sp(2n, {R,C}) {1}
√

1 (α1, α2)

sp(2n,C) {1} φ1 (α1, α
′
1)

sp(q, n− q), sp(2n, {R,C}) {2}
√

1 (α2, α1)

g2({2,C}) {1} 4
√

1 (α1, α2)

Table 6. Theorem 5.7, part with |Σ| = 2.

g Σ ji1 ji2 µ

sl(3, {R,C}) {1, 2} 4
√

1 4
√

1
3

(α1, α2)

sl(3,C) {1, 2} 5
√

1 5
√

1
3

(α1, α2)

sl(4, {R,C}) {1, 3} j−1
1 (α1, α3)

sl(n+ 1, {R,C}) {1, n} j−1
1 (α1, αn)

so(2, 3), so(5,C) {1, 2} 4
√

1 4
√

1
3

(α1, α2)

so(5,C) {1, 2} j5
1 = 1 or j7

1 = 1 j3
1 (α1, α2)

so(3, 4) {1, 3} j3
3 (α3, α2)

Example 5.6. We see that partially integrable almost CR-structures of hypersurface type are
contained in Table 5, i.e., g = su(q, n + 1 − q), q > 0, n > 1 and Σ = {1}. With the exception
of the case n = 2, there are two possible components of the harmonic curvature such that
the triple (su(q, n + 1 − q), p{1}, µ) is prolongation rigid outside of the 1-eigenspace of s for
s ∈ Z(G0) with the specified eigenvalue. Moreover, gs−(1) = g−2 holds in all the cases when
(su(q, n+ 1− q), p{1}, µ) is prolongation rigid outside of the 1-eigenspace of s. Let us emphasize
that the possibility s3 = id is available for both components of the harmonic curvature. Since
gs−(1) = g−2, we need some additional assumptions in Theorem 5.7 to show that (M,S) is
(locally, under these assumptions) either a (locally) homogeneous one-dimensional fiber bundle
over (reduced) S1-space, or a Z3-space or a symmetric space (due to [13, Proposition 7.3],
see also [20]) that carries some S-invariant Weyl connection on TM . In particular, all such
parabolic geometries can be classified using [7, Theorem 5.1.4] and Theorem 5.7, if one knows
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the classification of S1-spaces, Z3-spaces and symmetric spaces. Let us emphasize that a part
of the classification is done in [6].

As mentioned in the example, we need an additional assumption on where the local s-
symmetries are defined for parabolic geometries in question.

Theorem 5.7. Let (g, p, µ) be prolongation rigid outside of the 1-eigenspace of s for s ∈ Z(G0)
such that gs−1(1) = 0 holds. Assume that for the (locally) s-symmetric parabolic geometry (G →
M,ω) of type (G,P ), the open subset U of M containing the points at which κH has a non-
zero component in µ is non-trivial, and the maps S(x)(y) and S(x) ◦ S(y)−1(z) are defined
on neighbourhoods of diagonals in U × U and U × U × U for the unique system S of (local)
s-symmetries on U . Then:

1. The parabolic geometry is (locally) homogeneous and U = M , i.e., κH(x) 6= 0 at all x ∈M
and there is a unique smooth system of (local) s-symmetries S on M .

2. There is a class of distinguished Weyl structures characterized by one of the following
equivalent properties for each Weyl structure σ in the class:

(a) The equalities ∇σT σ = 0, s.(T σ)σ = (T σ)σ, ∇σRσ = 0 and s.(Rσ)σ = (Rσ)σ hold for
the torsion and the curvature of the Weyl connection ∇σ.

(b) The Weyl connection ∇σ is S-invariant.

(c) All (local) automorphisms of the parabolic geometry cover affine transformations
of ∇σ.

(d) All (local) diffeomorphisms sσx are affine transformations of ∇σ.

Two Weyl structures σ and σ exp(Υ)σ from the class differ by a G0-equivariant function
(Υ)σ : G0 → ps+(1) which is invariant with respect to all (local) automorphisms of the
parabolic geometry and is provided by an invariant element of ps+(1).

3. The pseudo-group generated by all local s-symmetries is transitive on M and its connected
component of identity is generated by the flows of the Lie algebra l, which is the vector
subspace of g−⊕g0, generated by g− by the bracket (T σ+Rσ)σ on ∧2g∗−⊗ l and the natural
bracket on the rest of l.

4. The equalities

S(x) = sσ(u0) = sσx

hold for any Weyl structure σ from (2). In particular,

• the maps S(x) can be extended to a larger neighbourhood of x as long as the corre-
sponding geodesic transformations of ∇σ are defined,

• for each eigenvalue a, the distribution TM s(a) is preserved by all (local) automor-
phisms of the parabolic geometry.

5. The distribution TM s(1) is integrable and for each x ∈ M , the leaf Fx of the foliation F
of TM s(1) through x is a totally geodesic submanifold for arbitrary Weyl structure.

Let n : Ux → N be a sufficiently small local leaf space of TM s(1).

(a) There is a unique local diffeomorphism S(n(y)) of the local leaf space N at each
n(y) ∈ N such that S(n(y)) ◦ n = n ◦ S(x) holds for all y ∈ Ux, and

(b) for each eigenvalue a, Tyn(TyM
s(a)) is the a-eigenspace of Tn(y)S(n(x)) in Tn(y)N

for all y ∈ Ux.
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Proof. The proof is similar to the proof of Theorem 5.3. However, we need a different method
to prove the local homogeneity in Claim (3), because the existence of some S-invariant Weyl
structure does not follow from Proposition 4.3 anymore. Therefore we need an additional as-
sumption on the system S on U in order to apply the following lemma. Nevertheless, the fact
from Proposition 4.3 that S(x) = sσ(u0) holds for any almost S-invariant Weyl structure σ
implies that the system S is smooth on U .

Lemma 5.8. Suppose the smooth system of (local) s-symmetries S on M satisfies that the
maps S(x)(y) and S(x) ◦ S(y)−1(z) are defined on neighbourhoods of diagonals in M ×M and
M ×M ×M .

• If c(t) is a curve in M such that c(0) = x and ξ := d
dt |t=0c(t), then the vector field

Lξ(y) :=
d

dt

∣∣∣
t=0

S(c(t)) ◦ S(x)−1(y)

is defined for y in some neighbourhood of x in M .

• Then Lξ(y) is an infinitesimal automorphism of the parabolic geometry.

• If ξ is contained in the a-eigenspace of TxS(x), then Lξ(x) = (1− a)ξ.

• The map ξ 7→ Lξ for ξ ∈ TxM is a linear map onto the Lie algebra of local infinitesimal
automorphisms of the parabolic geometry. Its kernel consists of the 1-eigenspace of TxS(x)
in TxM , and it is injective on the sum of the remaining eigenspaces in TxM .

Proof of Lemma 5.8. Since S(c(0))◦S(x)−1 = idG , there is a natural lift of Lξ(y) onto the P -
invariant vector field d

dt |t=0S(c(t))◦S(x)−1(u) for u ∈ G in the fiber over y. Since S(c(t))◦S(x)−1

is an automorphism, the vector field is P -invariant and d
dt |t=0(S(c(t)) ◦ S(x)−1)∗ω = 0. Thus

Lξ(y) is an infinitesimal automorphism.

Since S(c(t))(c(t)) = c(t), we conclude that Lξ(x) + (S(x))∗(ξ) = ξ. Thus Lξ(x) = ξ −
(S(x))∗(ξ) and the claim follows due to the linearity of TxS(x). �

Let us continue in the proof of Theorem 5.7. Since the map ξ 7→ Lξ from Lemma 5.8 is injec-
tive on the bracket generating distribution given by g−1 due to the assumption gs−1(1) = 0, the
local homogeneity follows from the regularity of the parabolic geometry. This implies Claim (1).
Then Claim (4) follows again from Claim (2).

Since we are on a (locally) homogeneous (locally) s-symmetric parabolic geometry, the
parabolic geometry can be described as in Theorem A.1. It follows from [13, Theorem 1.3]
that there is a K-invariant Weyl connection ∇ on the K-homogeneous parabolic geometry de-
scribed Theorem A.1 such that all local automorphisms of the parabolic geometry are affine
transformations of ∇. Therefore it follows from the last claim of Theorem A.1 that the pullback
of ∇ to M does not depend on the local isomorphism with the K-homogeneous parabolic geo-
metry. Therefore we obtain a Weyl structure σ that satisfies (2c), which implies the remaining
parts (2a), (2b) and (2d). It is clear that the K-invariant Weyl connection ∇ from [13, Theo-
rem 1.3] is not unique and the difference between two such Weyl structures is the claimed Υ
provided by a K-invariant element of ps+(1).

Proposition 4.1 implies that the Weyl structure σ satisfies (2b) if and only if it satisfies (2d).
Again, results in [13, Theorem 1.3] imply that (2b) implies (2c) and the same arguments as in
the proof of Theorem 5.3 show that (2b) implies (2a) and (2a) implies (2d).

To prove Claim (5), we use the fact that s.(T σ(x))σ = (T σ(x))σ holds for the torsion of
the S-invariant Weyl connection ∇σ. Thus TM s(1) is involutive, because each (almost) S-
invariant Weyl connection ∇σ preserves TM s(1). Moreover, the formula for the difference
between ∇σ and arbitrary Weyl connection implies that the difference in the parallel transport
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is an element of TM s(1) at each point of Fx. Thus Fx is a totally geodesic submanifold for any
Weyl connection.

We know that S(x) = sσx and this implies S(x)|Fx = sσx|Fx = idFx . If v = Fl
ω−1(X)
1 (u) for

X ∈ gs−(1), then S(x)v = vs holds and y = p ◦ Fl
ω−1(X)
1 (u) ∈ Fx, because Fx is a totally

geodesic submanifold. Thus S(x) is covered by the s-symmetry at y and S(x) = S(y) holds in
some neighbourhood of x due to the uniqueness of s-symmetries. Consequently, Claim (5a) holds
on a sufficiently small local leaf space and Claim (5b) is a clear consequence of Claim (4). �

5.5 Parabolic geometries with gs
−1(1) + p

in a distinguished parabolic subalgebra

There are triples (g, p, µ) that are prolongation rigid outside of the 1-eigenspace of s that admit
a 1-eigenspace in g− for some s such that gs−1(1) + p ⊂ q ⊂ gs−(1) + p holds for some parabolic
subalgebra q of g such that the harmonic curvature vanishes on insertions of elements of q/p at
all points of M . These are listed in Tables 7, 8 and 9, due to [13, Propositions 6.2 and A.2].

Table 7. Theorem 5.10, part with |Σ| = 2.

g Σ ji1 ji2 µ PR

sl(4,C) {1, 2} j2
2 (α2, α3)

sl(4,C) {1, 3} j2
1 (α1, α2)

su(2, 2) {1, 2} 2r1 (α1, α3) r1 = 0

sl(n+ 1,C) {1, 3} j2
1 (α1, α2)

sl(n+ 1,C) {2, 3} j2
2 (α2, α1)

sl(n+ 1,C) {1, n} j2
1 (α1, α2)

sl(n+ 1,C) {2, n} j2
2 (α2, α1)

su(n, n) {1, n} 2r1 (α1, α2n−1) r1 = 0

so(7,C) {1, 3} j3
3 (α3, α2)

so(8,C) {1, 3} j2
1 (α1, α2)

sp(4,C) {1, 2} 2r1 (α1, α1′) r1 = 0

sp(6, {R,C}) {1, 2} j−2
2 (α2, α1) j2 = −1

sp(6, {R,C}) {1, 2} j2
1 (α1, α2)

sp(6, {R,C}) {1, 3} j2
1 (α1, α2)

sp(6,C) {1, 3} 2r1 (α1, α1′) r1 = 0

sp(6, {R,C}) {2, 3} j2
2 (α2, α1)

sp(2n, {R,C}) {1, 2} j−2
2 (α2, α1) j2 = −1

sp(2n, {R,C}) {1, n} j2
1 (α1, α2) j1 = −1

sp(n2 ,
n
2 ), sp(2n, {R,C}) {2, n} j2

2 (α2, α1) j2 = −1

sp(2n, {R,C}) {1, 2} j2
1 (α1, α2)

sp(2n,C) {1, n} 2r1 (α1, α1′) r1 = 0

Example 5.9. Let us focus on Lagrangean complex contact geometries, i.e., g = sl(n + 1,C)
and Σ = {1, n}. If we consider the triple (sl(n + 1,C), p{1,n}, µ(α1,α2)) from Table 7 that is
prolongation rigid outside of the 1-eigenspace of s, then different situations arise depending on
the choice of s ∈ Z(G0). If j1 = −1, then q = gs−(1) + p is a parabolic subalgebra satisfying
the assumptions of Theorem 5.5. If j1 = 3

√
1, then gs−(1) = g−2 and we need the assumptions of

Theorem 5.7 to state the results. We can apply Theorem 5.3 for the other values j1.

In general, q can be a proper subspace of gs−(1) + p and we can (locally) apply the general
result for parabolic geometries from [3] to obtain the following theorem.
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Table 8. Theorem 5.10, part with |Σ| = 3.

g Σ ji1 ji2 ji3 µ PR

sl(4,C) {1, 2, 3} j1j
2
2 (α2, α1) j1 = 1

sl(n+ 1,C) {1, 2, 3} j1j
2
2 (α2, α1) j1 = 1

sl(n+ 1,C) {1, 2, n} j1j
2
2 (α2, α1) j1 = 1

sl(n+ 1, {R,C}) {1, p, n}, p > 2 j1jn (α1, αn) j1 = j−1
n

so(8,C) {1, 2, 4} j2
1 (α1, α2) j2 = 1

sp(6, {R,C}) {1, 2, 3} j1j
2
2 (α2, α1) j1 = 1

sp(2n, {R,C}) {1, 2, p}, p < n
√
j1j2

2 (α2, α1) j1 = 1, j2 = −1, jp = 1

sp(2n, {R,C}) {1, 2, n} j1j
2
2 (α2, α1) j1 = 1, j2 = −1

Table 9. Theorem 5.10, part with |Σ| = 4.

g Σ eigenvalues µ PR

sl(n+ 1,C) {1, 2, 3, q}, q < n jq = j1j
2
2j
−1
p (α2, α1) j1 = 1, jp = j2

2

sl(n+ 1,C) {1, 2, p, n}, 3 < p jn = j1j
2
2j
−1
p (α2, α1) j1 = 1, jp = 1

Theorem 5.10. Assume (g, p, µ) is prolongation rigid outside of the 1-eigenspace of s for s ∈
Z(G0) such that q is a maximal parabolic subalgebra of g such that gs−1(1)+p ⊂ q ⊂ gs−(1)+p and
q/p inserts trivially into the harmonic curvature of the (locally) s-symmetric parabolic geometry
(G → M,ω) of type (G,P ). Assume the open subset U of M containing all points at which κH
has a non-zero component in µ is non-trivial, and the maps S(x)(y) and S(x) ◦ S(y)−1(z) are
defined on neighbourhoods of diagonals in U × U and U × U × U for the unique system S of
(local) s-symmetries on U . Then:

1. The set U is an open dense subset of M and there is a unique smooth system of (local)
s-symmetries S on M .

2. There are

• a parabolic subgroup Q of G with the Lie algebra q such that P ⊂ Q,

• a neighbourhood Ux of each x ∈M with a local leaf space n : Ux → N for the foliation
given by the integrable distribution Tp ◦ ω−1(q), and

• a (locally) s-symmetric parabolic geometry (G′ → N,ω′) of type (G,Q) satisfying the
assumptions of Theorem 5.7,

such that (G|Ux → Ux, ω|Ux) is isomorphic to an open subset of (G′ → G′/P, ω′) for each x.
In particular, there is a unique s-symmetry S(n(y)) of (G′ → N,ω′) at each n(y) ∈ N such
that n ◦ S(y) = S(n(y)) ◦ n holds for all y ∈ Ux in the fiber over n(y).

3. The connected component of identity of the pseudo-group generated by all local s-symmet-
ries is generated by the flows of the Lie algebra l, which is the vector subspace of qop,
generated by qop

+ by the bracket (T σ(n(x)) + Rσ(n(x)))σ on ∧2(qop
+ )∗ ⊗ l and the natural

bracket on the rest of l for arbitrary S-invariant Weyl structure σ on (G′ → N,ω′).

The pseudo-group generated by all local s-symmetries is locally transitive at x if and only
if q/p ⊂ l/(l ∩ p), i.e., if and only if (Rσ(n(x)))σ spans the whole q/p.

4. There is a class of almost S-invariant Weyl structures on Ux given by reductions of the
images in G′ of the S-invariant Weyl structures on N (that exist due to Theorem 5.7) to
exp(gs−(1)) o G0 ⊂ Q0. A reduction corresponds to an S-invariant Weyl structure on Ux
if and only if it is a holonomy reduction.
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5. We get that

• the maps S(x) can be extended to a larger neighbourhood of x as long as the corre-
sponding geodesic transformations of ∇σ on N are defined,

• the space TM s(1) is integrable, it contains the vertical space of the local leaf space
n : Ux → N , and Tn(TxM

s(a)) is the a-eigenspace of Tn(x)S(n(x)) in Tn(x)N ,

• for each eigenvalue a, the distribution TM s(a) is preserved by all (local) automor-
phisms of the parabolic geometry, and

• all almost S-invariant Weyl connections from Claim (4) restrict to the same par-
tial linear connection on TM corresponding to the distribution G0 ×G0 q

op
+ , which is

preserved by S(x) for all x ∈M .

Proof. Claim (1) is a direct consequence of Claims (2) and (3). Claim (2) follows from [3]
and the fact that (qop

1 )s(1) = 0 holds. Then Claim (3) is a clear consequence of Theorem 5.7.
Claim (4) follows from the comparison of images in G′ of the S-invariant Weyl structure on N and
the almost S-invariant Weyl structures on Ux, because they intersect precisely in the reduction
to exp(gs−(1)) o G0 ⊂ Q0. Claim (5) is a consequence of Claim (5) of Theorem 5.7 and the
properties of Weyl structures from Claim (4). �

5.6 Parabolic geometries with gs
−1(1) that inserts non-trivially

into the harmonic curvature

There are also some remaining parabolic geometries, which can have a part of gs−1(1) that inserts
non-trivially into the harmonic curvature. These are contained in Tables 10, 11 and 12.

Example 5.11. Let us continue in the discussion of generalized path geometries from Examp-
le 5.4. The case when the harmonic curvature κ(α2,α1) vanishes and the harmonic torsion κ(α1,α2)

does not vanish can be found in Table 10. There are several possible situations depending on
the eigenvalues of s ∈ Z(G0).

If j1 = 1, then we are precisely in the situation which is not covered by any of the previous
theorems and we can apply only the results of Propositions 4.3 and 5.12.

If j1 = −1 and j2 = 1, then we can apply Theorem 5.5 and we are in the situation of
a generalized path geometry on the projectivized cotangent space of an affine locally symmetric
space.

If j1 = −1 and j2 = −1, then gs−(1) = g−2 and we need the assumptions of Theorem 5.7 to
show that we are in the situation of a generalized path geometry on a (locally) homogeneous
(n− 1)-dimensional fiber bundle over an affine locally symmetric space.

Finally, if j1 = −1 and j2 6=
√

1, then we can apply Theorem 5.3.

The properties of these geometries are as follows.

Proposition 5.12. Assume (g, p, µ) is prolongation rigid outside of the 1-eigenspace of s for
some s ∈ Z(G0). Assume the harmonic curvature κH of a (locally) s-symmetric parabolic geo-
metry (G → M,ω) of type (G,P ) has a non-zero component in µ at all x ∈ M and S is the
unique system of (local) s-symmetries on M . Then the distribution TM s(1) is integrable and for
each x ∈M , the leaf Fx of the foliation F of TM s(1) through x is a totally geodesic submanifold
for arbitrary Weyl connection.

Let n : Ux → N be a sufficiently small local leaf space of TM s(1).

• There is a unique local diffeomorphism S(n(y)) of the local leaf space N at each n(y) ∈ N
such that S(n(y)) ◦ n = n ◦ S(x) holds for all y ∈ Ux, and

• for each eigenvalue a, Tyn(TyM
s(a)) is the a-eigenspace of Tn(y)S(n(y)) for all y ∈ Ux.
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Table 10. Theorem 5.12, part with |Σ| = 2.

g Σ ji1 ji2 µ

sl(3,C) {1, 2} 2φ2 (α1, α2′)

sl(4, {R,C}) {1, 2}
√

1 (α1, α2)

sl(4,C) {1, 2} 2φ2 (α1, α2′)

sl(4,C) {1, 3} 2φ3 (α1, α3′)

su(2, 2) {1, 2} r1

√
1 (α2, α1)

su(2, 2) {1, 2} 3
√

1 (α1, α2)

sl(n+ 1, {R,C}) {1, 2}
√

1 (α1, α2)

sl(n+ 1, {R,C}) {1, p}, 2 < p < n 1 (α1, αp)

sl(n+ 1,C) {1, p} 2φp (α1, αp′)

su(q, n− q + 1) {1, 2} −2
3φ1 (α2, α1)

so(3, 4), so(7,C) {2, 3} 3
√

1 (α3, α2)

so(2, 5), so(3, 4), so(7,C)
so(2, 6), so(3, 5), {1, 2} 1 (α2, α1)
so(4, 4), so(7,C)

so(3, 5) {2, 3} 3
√

1 (α3, α2)

so(q, n− q), so(n,C) {1, 2} 1 (α2, α1)

sp(4, {R,C}) {1, 2} 3
√

1 (α1, α2)

sp(4,C) {1, 2} 2φ2 (α1, α2′)

sp(4,C) {1, 2} −2
5φ2 (α1′ , α2′)

sp(6, {R,C}) {1, 3} 1 (α1, α3)

sp(6, {R,C}) {2, 3} 1 (α2, α3)

sp(6,C) {1, 3} 2φ3 (α1, α3′)

sp(6,C) {2, 3} −2
5φ3 (α2′ , α3′)

sp(2n, {R,C}) {1, n} 1 (α1, αn)

sp(2n, {R,C}) {n− 1, n} 1 (αn−1, αn)

sp(2n,C) {1, n} 2φn (α1, αn′)

sp(2n,C) {n− 1, n} −2
5φn (αn−1′ , αn′)

g2({2,C}) {1, 2} 4
√

1 (α1, α2)

Table 11. Theorem 5.12, part with |Σ| = 3.

g Σ ji1 ji2 ji3 µ PR

sl(4, {R,C}) {1, 2, 3} j2
1 (α1, α2)

sl(n+ 1, {R,C}) {1, 2, 3} j2
1 (α1, α2)

sl(n+ 1, {R,C}) {1, 2, p}, 3 < p < n j2
1 (α1, α2) j1 =

√
1

sl(n+ 1, {R,C}) {1, 2, n} j2
1 (α1, α2)

sl(n+ 1, {R,C}) {1, 2, n} j1jn (α1, αn)

so(3, 4), so(7,C) {1, 2, 3} j3
3 (α3, α2)

Table 12. Theorem 5.12, part with |Σ| = 4.

g Σ ji1 ji2 ji3 ji4 µ PR

sl(n+ 1, {R,C}) {1, 2, 3, n} j1j
2
2j
−1
p (α2, α1) j1 = 1

Proof. The proof is analogous to the proof of Claim (6) of Theorem 5.7, but, instead of an S-
invariant Weyl structure σ, we need to consider some almost S-invariant Weyl structure invariant
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at x from Claim (3) of Proposition 4.3 for each x ∈M . �

5.7 Parabolic geometries that do not admit non-flat examples

There are triples (g, p, µ) that are prolongation rigid outside of the 1-eigenspace of s for some
s ∈ Z(G0), but they admit only flat (locally) s-symmetric parabolic geometries due to the
structure of the harmonic curvature and [12, Lemma 2.2]. These are contained in Table 13.

Table 13. Flat geometries.

g Σ ji1 ji2 µ

sl(3,C) {1} 3
√

1 1 (α1, α2)

sl(3, {R,C}) {1, 2} j4
1 6= 1, j5

1 6= 1 j3
1 (α1, α2)

so(5,C) {1} 3
√

1 1 (α1, α2)

so(2, 3), so(5,C) {1, 2} j4
1 6= 1, j5

1 6= 1, j7
1 6= 1 j3

1 (α1, α2)

5.8 Parabolic geometries with more non-zero components
of the harmonic curvature

Let us also look at the parabolic geometries that allow a harmonic curvature κH with several
non-zero components µi such that for each µi the triple (g, p, µi) is not prolongation rigid outside
of the 1-eigenspace of s. In Table 14, we present the complete classification of all triples (g, p, µi)
that are not prolongation rigid outside of the 1-eigenspace of s for the same s ∈ Z(G0), but for
which ai in Proposition 3.5 is contained in the 1-eigenspaces of s when the harmonic curvature
has non-zero component in each µi. Geometric properties of the geometries from Table 14 can be
deduced from the previous sections depending on the position and shape of gs−(1) inside of g−.

Table 14. More non-zero components of the harmonic curvature.

g Σ eigenvalues µ

sl(4,C) {1, 2} j1 = 4
√

1
2
, j2 = 4

√
1 (α2, α3), (α2, α1)

sl(n+ 1,C) {1, n− 1} j1 = 3
√

1, jn−1 = 3
√

1
2

(α1, α2), (αn−1, αn)

sl(n+ 1,C) {2, n− 1} j2 = 3
√

1, jn−1
3
√

1
2

(α2, α1), (αn−1, αn)

sl(4,C) {1, 2, 3} j2 = 4
√

1, j3 = j1( 4
√

1)2 (α2, α1), (α2, α3)

sl(n+ 1, {R,C}) {1, 2, n− 1, n} jn−1 = j−1
2 , jn = j1j

3
2 (α2, α1), (αn−1, αn)

5.9 Remaining parabolic geometries with µ in the 1-eigenspace of s

For the sake of completeness, let us remark that there are triples (g, p, µ) that are not prolon-
gation rigid outside of the 1-eigenspace of s for any s such that µ is in the 1-eigenspace of s.
These are contained in Table 15.

Table 15. Remaining parabolic geometries with µ in the 1-eigenspace of s.

g Σ ji1 ji2 µ

sl(n+ 1, {R,C}) {p, p+ 1}, n− 1 > p > 1 1 (αp+1, αp)

so(q, n− q), so(n,C) {2, 3} 1 (α3, α2)
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A A construction of locally homogeneous locally s-symmetric
parabolic geometries

It is proved in [12, Section 2] how to algebraically construct and classify all homogeneous s-
symmetric parabolic geometries. Part of the classification is done in [6, 9] using the clas-
sification of semisimple symmetric spaces. There is the result from [7, Section 1.3] and [12,
Lemma 2.2] stating that for the construction and the classification of locally homogeneous lo-
cally s-symmetric parabolic geometries, it is sufficient to find the following data:

• an extension (α, i) of the Klein geometry (K,H) to (G,P ) such that the action of s
preserves α(k) ⊂ g, and s acts trivially on the tensor [·, ·]−α([α−1(·), α−1(·)]) in ∧2g/p∗⊗g,
and

• the subset A of P consisting of elements g ∈ P , which act as local automorphisms on the
parabolic geometry (K ×i P → K/H,ωα) of type (G,P ) given by the extension (α, i).

If U and V are open subsets of K/H such that there are k ∈ K, g ∈ A and a maximal open
subset W of U such that kg(W ) ⊂ V , then we can glue K ×i P |U → U with K ×i P |V → V
by identifying w ∈ W ⊂ U with kg(w) ∈ V , and glue the Cartan connection ωα|U with the
pullback connection (kg)∗ωα|V = ωα|(kg)∗(V ). Of course, we can without loss of generality assume
that U , V and W are simply connected, because we can always choose coverings of our manifolds
by open sets satisfying this condition. Therefore, we can also assume that the automorphism k is
given by the flow of a local infinitesimal automorphism of (K×iP → K/H,ωα). Then we obtain
the following result as a consequence of the construction in [13, Section 3] and [7, Section 1.3].

Theorem A.1. Let (G → M,ω) be a locally homogeneous locally s-symmetric parabolic geo-
metry, let k be the Lie algebra of the local infinitesimal automorphisms and denote by α the
inclusion of k into g given by ω(u) at some u ∈ G. Then:

1) Ad(s)(k) ⊂ k is an automorphism of the Lie algebra k,

2) there exist (see [13, Section 3] for the explicit construction)

• a Klein geometry (K,H) such that k is the Lie algebra of K,

• an extension (α, i) of (K,H) to (G,P ),

• an open covering Ua of M , and

• isomorphisms φa : Ui → K/H of parabolic geometries (G|Ua → Ui, ω|Ub) and (K ×i
P |φa(Ua) → φa(Ua), ωα|φa(Ua)) of type (G,P ) such that φa ◦ φ−1

b is the restriction of
the left action of some element of K for each a, b.
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