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Abstract. In this paper, we study explicit correspondences between the integrable Novi-
kov and Sawada–Kotera hierarchies, and between the Degasperis–Procesi and Kaup–Kuper-
shmidt hierarchies. We show how a pair of Liouville transformations between the isospectral
problems of the Novikov and Sawada–Kotera equations, and the isospectral problems of the
Degasperis–Procesi and Kaup–Kupershmidt equations relate the corresponding hierarchies,
in both positive and negative directions, as well as their associated conservation laws. Com-
bining these results with the Miura transformation relating the Sawada–Kotera and Kaup–
Kupershmidt equations, we further construct an implicit relationship which associates the
Novikov and Degasperis–Procesi equations.
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1 Introduction

This paper is devoted to studying Liouville correspondences between certain integrable hierar-
chies and their interrelationships. One pair consists of the Novikov and Sawada–Kotera (SK)
hierarchies, which are initiated respectively from the Novikov equation [34, 55]

mt = 3uuxm+ u2mx, m = u− uxx, (1.1)

and the SK equation [7, 62]

Qτ +Qyyyyy + 5QQyyy + 5QyQyy + 5Q2Qy = 0. (1.2)

The second pair of integrable hierarchies is initiated by the Degasperis–Procesi (DP) equa-
tion [17, 18]

mt = 3uxm+ umx, m = u− uxx, (1.3)

and the Kaup–Kupershmidt (KK) equation [37, 39]

Pτ + Pyyyyy + 10PPyyy + 25PyPyy + 80P 2Py = 0. (1.4)
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Furthermore, combining these explicit correspondences with the known Miura transformation
linking the SK and KK equations [23], we derive a nontrivial underlying correspondence between
the Novikov equation (1.1) and the DP equation (1.3).

The DP equation (1.3) was derived by Degasperis and Procesi [18] as a result of the asymp-
totic integrability method for classifying (a class of) third-order nonlinear dispersive evolution
equations. It was subsequently shown that the DP equation is integrable with a Lax pair invol-
ving a 3×3 isospectral problem as well as a bi-Hamiltonian structure [17]. Furthermore, the Lax
representation can be written in the form of a matrix spectral problem of Zakharov–Shabat (ZS)
form. The associated inverse scattering transform and the dressing method can be applied to
construct smooth soliton solutions for the DP equation [12, 13, 52]. Physically, the DP equation
provides a model describing the propagation of shallow water waves [14, 20]. It admits peaked
solitons (peakons) [17] as well as multi-peakon solutions which recover the soliton interaction
dynamics [17, 48] and exhibits a particular shock peakon structure [47]. The integrability, well-
posedness, wave breaking phenomenon and stability of peakons for the DP equation have been
studied extensively; see [9, 33, 43, 46] and references therein. The Novikov equation (1.1) with
cubic nonlinear terms was discovered as a consequence of the symmetry classification of nonlocal
partial differential equations involving both cubic and quadratic nonlinearities [55]. A Lax pair
formulation based on a 3 × 3 isospectral problem and the associated bi-Hamiltonian structure
were established in [34]. It was also shown that the Novikov equation possesses peaked solitons
and multi-peakon solutions [32, 34]. The well-posedness, wave breaking and blow-up phenom-
ena, as well as stability of peakons for the Novikov equation have been studied in a number of
papers, including [30, 45, 63].

The SK equation (1.2) and the KK equation (1.4) are two typical fifth-order integrable
equations [7, 37, 39, 62]. Their integrability can be verified from several different standpoints:
for instance, they both possess 3× 3 isospectral problems and bi-Hamiltonian structures, enjoy
the Painlevé property, admit multi-soliton solutions, etc. Like the DP equation, the KK equation
also admits a Lax operator of ZS form, which can be applied to construct solitons of the KK hie-
rarchy, [2, 27, 52, 64]. In Section 2, we will see that both the Novikov and SK equations support
Lax operators of ZS form. Geometrically, the SK equation arises naturally from an integrable
planar curve flow in affine geometry [8, 59], while the KK equation comes from an integrable
planar curve flow in projective geometry [42, 54]. Interestingly, both equations are related to
the so-called Fordy–Gibbons–Jimbo–Miwa equation via certain Miura transformations [23].

Like the Camassa–Holm (CH) equation [4, 5, 25] and the modified Camassa–Holm (mCH)
equation [24, 60], the Novikov and DP equations exhibit nonlinear dispersion. Recent years have
seen a proliferation of papers for the CH and mCH equations studying their integrable properties,
geometric formulations, well-posedness for solutions of the Cauchy problem, and the stability
of peaked solitary waves solutions; see [1, 3, 6, 10, 11, 14, 15, 16, 29, 31, 35, 38, 41, 44, 51].
Interestingly, these equations support a notable variety of non-smooth soliton-like solutions and
can model the phenomenon of wave breaking.

The method of tri-Hamiltonian duality was developed [22, 24, 60] to systematically derive ad-
ditional nonlinear dispersive integrable systems. This method begins with the basic observation
that most classical integrable soliton equations that possess a bi-Hamiltonian structure, actu-
ally support a compatible triple of Hamiltonian structures using a particular scaling argument,
leading to a systematic algorithm [60], to construct their dual nonlinear dispersive integrable
systems. In particular, the CH and mCH equations appear as the duals to, respectively, the
KdV and mKdV equations.

In view of this duality, it is of interest to establish relationships between the full integrable
hierarchy and the corresponding dual integrable hierarchy. In [40] and [50], the correspondence
between the CH hierarchy and the KdV hierarchy is established through a Liouville transfor-
mation, the key point being that the two Hamiltonian operators of the CH hierarchy can be
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obtained directly from those of the KdV hierarchy. This argument does not work for the mCH
and mKdV hierarchies, whose correspondence through a Liouville transformation is based upon
a relationship between the corresponding recursion operators and some subtle identities relating
the respective Hamiltonian operators [36]. It demonstrates that the positive flow and negative
flow of the mCH hierarchy are generated by the negative flow and positive flow of the mKdV
hierarchy, respectively. The correspondences between the Hamiltonian conservation laws for the
CH (mCH) hierarchy and KdV (mKdV) hierarchy have also been derived [36, 40].

The goal of this paper is to study the similar Liouville correspondences between the flows and
Hamiltonian conservation laws in both the Novikov and SK hierarchies, as well as the DP and
KK hierarchies. Furthermore, an underlying correspondence between the Novikov equation (1.1)
and the DP equation (1.3) is also constructed. Our motivations are three-fold. First, it was
shown that the Novikov equation is related to the first negative flow of the SK hierarchy [34],
while the DP equation is related to the first negative flow of the KK hierarchy [17]. Second, the
CH and mCH hierarchies are related, respectively, to the KdV and mKdV hierarchies through
Liouville transformations relating their isospectral problems. Third, the SK equation is related
to the KK equation by a Miura transformation [23], and there exists a transformation found
in [36] which maps the mCH equation to the CH equation.

However, in the Novikov-SK and DP-KK settings, due to the non-standard bi-Hamiltonian
structures [26], we neither have the dual relationship, as in both CH-KdV and mCH-mKdV
settings, nor the subtle relationship between their Hamiltonian operators, as in the CH-KdV
setting [40, 50], nor between their recursion operators, as in the mCH-mKdV setting [36]. On the
other hand, given that the Novikov and DP equations are both third-order nonlinear equations,
while the SK and KK equations are of fifth order, it seems difficult to establish any relationship
between the Novikov or DP equations with the flows in the negative direction of the SK hierarchy
or the KK hierarchy. Nevertheless, based on the Liouville transformation between the isospectral
problems of the Novikov and SK hierarchies, as well as the DP and KK hierarchies, we are able
to establish certain nontrivial identities which reveal the underlying relationship between the
recursion operator of the Novikov (DP) hierarchy and the adjoint operator of the recursion
operator for the SK (KK) hierarchy. Using these operator identities, we are able to prescribe
a Liouville correspondence between the flows involved in the Novikov-SK hierarchies and DP-KK
hierarchies.

It is worth noting that, in the Novikov-SK setting, in order to establish the explicit rela-
tionship between the flows in the positive Novikov hierarchy and the flows in the negative SK
hierarchy, we make use of a novel factorization of the recursion operator of the SK equation
to identify the equations transformed from the positive flows in the Novikov hierarchy as the
corresponding negative flows in the SK hierarchy exactly. The factorization is based on the
following nontrivial operator identity for the recursion operator of the SK equation [8]:

R̄ = −
(
∂3y + 2Q∂y + 2∂yQ

)(
2∂3y + 2∂2yQ∂

−1
y + 2∂−1y Q∂2y +Q2∂−1y + ∂−1y Q2

)
= −2

(
∂4y + 5Q∂2y + 4Qy∂y +Qyy + 4Q2 + 2Qy∂

−1
y Q

)(
∂2y +Q+Qy∂

−1
y

)
.

Since conservation laws play a key role in the study of well-posedness of solutions, stability of
solitons, and wave-breaking phenomena, another topic of this paper is to establish relationships
between the Hamiltonian conservation laws for the Novikov and SK hierarchies, and the DP and
KK hierarchies. These rely on some new identities for Hamiltonian conservation laws related by
the Liouville transformations and certain known results.

This section is concluded by outlining the rest of the paper. In Section 2, we first present
the Liouville transformation relating the isospectral problems of the Novikov hierarchy and the
SK hierarchy in Section 2.1. Next in Section 2.2, several operator identities are combined with
the Liouville transformation to establish the one-to-one correspondence between the flows in the
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Novikov and SK hierarchies. It is proved in Section 2.3 that the Liouville transformation estab-
lishes the correspondence between the series of Hamiltonian conservation laws of the Novikov
equation and the SK equation. The Liouville correspondence between the DP hierarchy and the
KK hierarchy, and the relationship of their conservation laws will be studied in Section 3. In
Section 4, we obtain a nontrivial relationship between the Novikov equation (1.1) and the DP
equation (1.3) by exploiting the Miura transformations relating the SK equation (1.2) and the
KK equation (1.4) and the results in previous Sections.

2 The correspondence between the Novikov and SK hierarchies

2.1 A Liouville transformation between the isospectral problems
of the Novikov and SK hierarchies

In this section, we first obtain the Liouville transformation relating the Novikov and SK hi-
erarchies. In accordance with standard terminology, a Liouville transformation is defined by
a change of variables which maps one spectral problem to another [53, 56]. If the transformation
does not affect the independent variables, it is referred to as a Miura transformation.

The Novikov equation

mt = u2mx + 3uuxm, m = u− uxx, (2.1)

can be expressed as the compatibility condition for the linear system [34] consisting of

Ψx =

0 λm 1
0 0 λm
1 0 0

Ψ, Ψ =

ψ1

ψ2

ψ3

 , (2.2)

and

Ψt =

1
3λ
−2 − uux λ−1ux − λu2m u2x
λ−1u −2

3λ
−2 −λ−1ux − λu2m

−u2 λ−1u 1
3λ
−2 + uux

Ψ.

Note that equation (2.2) is reduced to a scalar equation by setting Ψ = ψ2, namely

Ψxxx = 2m−1mxΨxx +
(
m−1mxx − 2m−2m2

x + 1
)
Ψx + λ2m2Ψ. (2.3)

It was proved in [34] that by the reciprocal transformation

dy = m
2
3 dx+m

2
3u2dt, dτ = dt, (2.4)

the isospectral problem (2.3) is converted into

Φyyy +QΦy = µΦ, (2.5)

with

Φ = Ψ, µ = λ2, Q =
4

9
m−

10
3 m2

x −
1

3
m−

7
3mxx −m−

4
3 , (2.6)

which is a third-order spectral problem for the SK equation. Note that the isospectral problems
for the Novikov equation and the SK equation can also be written as the Zakharov–Shabat (ZS)
form

Ψ̃y +
(
Ql − λ̃J

)
Ψ̃ = 0,
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where λ̃ = λ
2
3 , while

Ql =

−g−1gy 0 0
0 g−1gy + h−1hy 0
0 0 −h−1hy

 ,

is a diagonal sl(3) matrix. The functions here, g(y, t), h(y, t) satisfy the system

gyy + h−1hygy + hg = 0, h−1hyy − 2h−1h2y + h = −1

3
m−1myy +

2

9
m−2m2

y −m−
4
3 ,

in the case of the Novikov equation, and

gyy + h−1hygy + hg = 0, h−1hyy − 2h−1h2y + h = Q,

for the SK equation.
Moreover, using (2.4),

∂t = ∂τ +m
2
3u2∂y,

the t evolution of Ψ = ψ2 in (2.2) is transformed into

Φτ −
1

µ
(V Φyy − VyΦy) +

2

3µ
Φ = 0, with V = um

1
3 . (2.7)

Notice that (2.7) is equivalent to

Φτ +
1

3µ
(WΦyy −WyΦy) = 0 (2.8)

after gauging Φ by a factor of e2τ/(3µ) and setting W = −3V . Indeed, the linear system (2.5)
and (2.8) provides the Lax pair for the first negative flow in the SK hierarchy [28] (see also [33,
34]), and the compatibility condition Φyyyτ = Φτyyy yields

Qτ = Wy, Wyy +QW = T, Ty = 0. (2.9)

Therefore, we conclude that there exists a Liouville correspondence between the Novikov equa-
tion (2.1) and the first negative flow (2.9) of the SK hierarchy, where their corresponding Lax
pairs are related by the transformations (2.4) and (2.6).

In light of this, we are led to generalize the Liouville correspondence between the Novikov
equation and the first negative flow of the SK hierarchy to their entire hierarchies, establishing
the correspondence between the flows of the Novikov and SK hierarchies. Motivated by (2.4)
and (2.6), we pursue this study by utilizing the Liouville transformation

y =

∫ x

m
2
3 (t, ξ)dξ, τ = t, Q =

4

9
m−

10
3 m2

x −
1

3
m−

7
3mxx −m−

4
3 . (2.10)

Note that the first expression in (2.10) has the form of a reciprocal transformation [61].

2.2 The correspondence between the Novikov and SK hierarchies

Let us now study the correspondence between the Novikov hierarchy and the SK hierarchy. First
of all, the Novikov equation (2.1) can be written in bi-Hamiltonian form [34]

mt = K1 = KδH0

δm
= J δH1

δm
, m = u− uxx, (2.11)
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where

K =
1

2
m

1
3∂xm

2
3
(
4∂x − ∂3x

)−1
m

2
3∂xm

1
3 , J =

(
1− ∂2x

)
m−1∂xm

−1(1− ∂2x) (2.12)

are the compatible Hamiltonian operators. The corresponding Hamiltonian functionals are given
by

H0 = 9

∫ (
u2 + u2x

)
dx

and

H1 =
1

6

∫
um∂−1x m

(
1− ∂2x

)−1(
u2mx + 3uuxm

)
dx.

Moreover, since

∂−1x (mut) =

∫ x

−∞
(u− uxx)utdx = −(uxut − uuxt)(t, x) +

∫ x

−∞
u(ut − uxxt)dx

= −(uxut − uuxt)(t, x) +

∫ x

−∞
u
(
u2mx + 3uuxm

)
dx

=
(
uuxt − uxut + u3m

)
(t, x),

using the Novikov equation (2.1),

H1 =
1

6

∫
R
um∂−1x (mut)dx =

1

6

∫
R
um
(
uuxt − uxut + u3m

)
dx

=
1

6

∫
R
u2muxtdx−

1

6

∫
R
uuxmutdx+

1

6

∫
R
u4m2dx

=
1

6

∫
R

(
−3uuxm− u2mx

)
utdx+

1

6

∫
R
u4m2dx,

which implies that H1 can be written in the following local form in terms of u and m:

H1 =
1

6

∫ (
u4m2 −mtut

)
dx.

According to Magri’s theorem [49, 57, 58], an integrable bi-Hamiltonian equation with two
compatible Hamiltonian operators K and J belongs to an infinite hierarchy

mt = Kn = KδHn−1
δm

= J δHn
δm

, n ∈ Z (2.13)

of higher-order bi-Hamiltonian systems, in both the positive and negative directions, where Hn,
n ∈ Z are all conserved functionals common to all members of the hierarchy.

The Novikov equation (2.11) serves as the first member in the positive direction of (2.13).
As for the negative direction, observe that

K0 = J δH0

δm
= 0,

and the Hamiltonian operator K admits the Casimir functional

HC =
9

2

∫
m

2
3 dx with

δHC
δm

= 3m−
1
3 .
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Therefore, we conclude that the negative flows of the Novikov hierarchy are generated from the
Casimir equation

mt = K−1 = J δH−1
δm

= J δHC
δm

= 3Jm−
1
3 . (2.14)

The SK equation

Qτ +Qyyyyy + 5QQyyy + 5QyQyy + 5Q2Qy = 0 (2.15)

exhibits a generalized bi-Hamiltonian system, whose corresponding integrable hierarchy is ge-
nerated by a recursion operator R̄ = K̄J̄ , with

K̄ = −
(
∂3y + 2Q∂y + 2∂yQ

)
(2.16)

and

J̄ = 2∂3y + 2∂2yQ∂
−1
y + 2∂−1y Q∂2y +Q2∂−1y + ∂−1y Q2. (2.17)

As noted in [26], K̄ maps the variational gradients of the conservation laws of the equation under
consideration onto its symmetry groups, while J̄ works in the opposite way.

Definition 2.1. The equation Qτ = K̄[Q] is called a generalized bi-Hamiltonian system if there
exist an implectic (Hamiltonian) operator K̄ and a functional H̄0 such that

K̄[Q] = K̄δH̄0

δQ
,

as well as a symplectic operator J̄ and a corresponding functional H̄1 satisfying

J̄ K̄[Q] =
δH̄1

δQ
.

The term “generalized bi-Hamiltonian system” is taken from [26], and refers to the fact that
we do not assume any nondegeneracy or invertibility conditions for the operators K̄ and J̄ .
These are particular instances of the general notion of compatible pairs of Dirac structures,
whose properties are developed in Dorfman [19].

Therefore, defining

H̄0 =
1

6

∫ (
Q3 − 3Q2

y

)
dy with

δH̄0

δQ
=

1

2
Q2 +Qyy, (2.18)

one finds that the SK equation (2.15) can be written as

Qτ = K̄1 = K̄δH̄0

δQ
,

and the positive flows of the SK hierarchy are generated by applying successively the recursion
operator R̄ = K̄J̄ to K̄1, namely

Qτ = K̄n =
(
K̄J̄

)n−1
K̄1, n = 1, 2, . . . . (2.19)

On the other hand, in the negative direction, note that the trivial function f = 0 satisfies the
equation

J̄ · f =
δH̄0

δQ
.
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Then the n-th negative flow is proposed to take the form

R̄nQτ = 0, n = 1, 2, . . . . (2.20)

Furthermore, it has been discovered in [8] that the recursion operator R̄ satisfies the following
decomposition

R̄ = K̄J̄ = −
(
∂3y + 2Q∂y + 2∂yQ

)(
2∂3y + 2∂2yQ∂

−1
y + 2∂−1y Q∂2y +Q2∂−1y + ∂−1y Q2

)
= −2

(
∂4y + 5Q∂2y + 4Qy∂y +Qyy + 4Q2 + 2Qy∂

−1
y Q

)(
∂2y +Q+Qy∂

−1
y

)
. (2.21)

This factorization result demonstrates that the first negative flow (2.9) in the SK hierarchy
derived in [34] satisfies R̄Qτ = 0. We have thus confirmed the formulation (2.20) for the
negative flows.

We are now in the position to establish the theorem which shows how the transforma-
tions (2.10) affect the underlying Liouville correspondence between the Novikov and SK hie-
rarchies. In this theorem and hereafter, we denote, for a positive integer n, the n-th equation in
the positive and negative directions of the Novikov hierarchy by (Novikov)n and (Novikov)−n,
respectively, while the n-th positive and negative flows of the SK hierarchy are denoted by (SK)n
and (SK)−n, respectively.

Theorem 2.2. Under the Liouville transformation (2.10), for each nonzero integer n ∈ Z, the
(Novikov)n equation is mapped into the (SK)−n equation, and conversely.

The proof of this theorem relies on the following two lemmas.

Lemma 2.3. Let m(t, x) and Q(τ, y) be related by the transformation (2.10). Then the following
operator identities hold:

m−1
(
1− ∂2x

)
m−

1
3 = −

(
Q+ ∂2y

)
, (2.22)

m−1Jm−
1
3 =

1

2
∂yJ̄ ∂y, (2.23)

m−
4
3
(
4∂x − ∂3x

)
m−

2
3 = K̄. (2.24)

Proof. (i). In view of the transformation (2.10), one has ∂x = m
2
3∂y. It follows that

∂2xm
− 1

3 = m
2
3∂ym

2
3∂y = m∂2y +

(
m−

1
3
)
xx
,

where, by (2.10), a direct computation yields

(
m−

1
3
)
xx

= −1

3

(
m−

4
3mx

)
x

=
1

3

(
4

3
m−

7
3m2

x −m−
4
3

(
4

3
m−1m2

x − 3m− 3m
7
3Q

))
= m

(
m−

4
3 +Q

)
.

We thus arrive at

m−1
(
1− ∂2x

)
m−

1
3 = m−1

(
m−

1
3 −

(
m∂2y +m−

1
3 +mQ

))
= −

(
Q+ ∂2y

)
.

(ii). Thanks to (2.22), we deduce that

m−1
(
1− ∂2x

)
m−1∂xm

−1(1− ∂2x)m− 1
3∂−1y =

(
Q+ ∂2y

)
∂y
(
Q+ ∂2y

)
∂−1y =

1

2
∂yJ̄ ,

verifying (2.23).
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(iii). Using the transformations (2.10) again, we find

∂2xm
− 2

3 = m
2
3∂y

(
∂y −

2

3
m−

5
3mx

)
= m

2
3

(
∂2y −

2

3
m−

5
3mx∂y −

2

3
m−

2
3
(
m−

5
3mx

)
x

)
=

2

9
m−

8
3m2

x + 2m−
2
3 + 2m

2
3Q− 2

3
m−1mx∂y +m

2
3∂2y .

Hence,

m−
4
3
(
4∂x − ∂3x

)
m−

2
3 = m−

2
3∂y(4− ∂2x)m−

2
3

= m−
2
3∂y

(
2m−

2
3 − 2

9
m−

8
3m2

x − 2m
2
3Q+

2

3
m−1mx∂y −m

2
3∂2y

)
= 2m−

4
3
(
m−

2
3
)
x
− 2

9
m−

4
3
(
m−

8
3m2

x

)
x
− 2m−

4
3
(
m

2
3
)
x
Q− 2Qy

+

(
2m−

4
3 − 2

9
m−

10
3 m2

x +
2

3
m−

4
3
(
m−1mx

)
x
− 2Q

)
∂y

+

(
m−

2
3
(
m

2
3
)
x
− 2

3
m−1mx

)
∂2y − ∂3y ,

then (2.24) follows. �

The relationship between the recursion operator for the Novikov hierarchy and the adjoint
operator of recursion operator for the SK hierarchy is given by the following result.

Lemma 2.4. Under the transformation (2.10), the relation

m−1
(
JK−1

)n
m = ∂y

(
J̄ K̄

)n
∂−1y (2.25)

holds for each integer n ≥ 1.

Proof. We prove (2.25) by induction on n. First, using the inverse operator K−1 along
with (2.10), we deduce from (2.23) and (2.24) that

m−1JK−1m = 2m−1Jm−
1
3∂−1x m−

2
3
(
4∂x − ∂3x

)
m−

2
3∂−1x m

2
3 = ∂yJ̄ K̄∂−1y ,

which shows that (2.25) holds for n = 1. Next, we assume that (2.25) holds for n = k, say

m−1
(
JK−1

)k
m = ∂y

(
J̄ K̄

)k
∂−1y .

Then for n = k + 1, thanks to the result when n = 1, one has

m−1
(
JK−1

)k+1
m = m−1JK−1

(
JK−1

)k
m = ∂y

(
J̄ K̄

)k+1
∂−1y .

This completes the induction step, and thus proves the lemma. �

Proof of Theorem 2.2. The proof of Theorem 2.2 contains two parts:
(i). Let us begin with the (Novikov)−n equation for n ≥ 1. First, since the relation (2.10)

can be rewritten as

Q = −m−1
(
1− ∂2x

)
m−

1
3 , (2.26)

we deduce from (2.22) that the first negative flow (2.14) of the Novikov hierarchy satisfies

mt = K−1 = −3
(
1− ∂2x

)
m−1Qx = 3m

(
Q+ ∂2y

)
Qy = 3m∂y

(
1

2
Q2 +Qyy

)
.
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Hence, the n-th member in the negative hierarchy takes the form

mt = K−n =
(
JK−1

)n−1
K−1 = 3

(
JK−1

)n−1
m∂y

(
1

2
Q2 +Qyy

)
, n = 1, 2, . . . . (2.27)

Next, suppose that m(t, x) is the solution of the equation (2.27). We calculate the t-derivative
of the corresponding function Q(τ, y) defined in (2.26). More precisely, we deduce that, on the
one hand,

Qt = Qτ +Qy

∫ x (
m

2
3 (t, ξ)

)
t
dξ = Qτ +

2

3
Qy∂

−1
x m−

1
3mt = Qτ +

2

3
Qy∂

−1
y m−1mt,

and on the other hand, in view of (2.26),

Qt = m−2mt

(
1− ∂2x

)
m−

1
3 +

1

3
m−1

(
1− ∂2x

)
m−

4
3mt = −m−1

(
Q− 1

3

(
1− ∂2x

)
m−

4
3

)
mt.

Hence, combining the preceding two equations, we arrive at

Qτ =

(
−2

3
Qy∂

−1
y m−1 −m−1Q+

1

3
m−1

(
1− ∂2x

)
m−

4
3

)
mt =

1

3
K̄∂−1y m−1mt, (2.28)

where we have made use of the formula (2.22).
Finally, according to Lemma 2.4, we deduce that if m(t, x) is the solution of the (Novikov)−n

equation (2.27), the corresponding Q(τ, y) satisfies

Qτ = K̄∂−1y m−1
(
JK−1

)n−1
m∂y

(
1

2
Q2 +Qyy

)
= K̄

(
J̄ K̄

)n−1(1

2
Q2 +Qyy

)
= R̄n−1K̄1 = K̄n.

This immediately implies that Q(τ, y) solves the (SK)n equation (2.19).
Conversely, if Q(τ, y) is a solution of the (SK)n equation for n ≥ 1, since the transforma-

tion (2.10) is a bijection, tracing the previous steps backwards suffices to verify that the reverse
argument is also true.

(ii). Now, we focus our attention on the (Novikov)n equation for n ≥ 1, which can be written
as

mt = Kn =
(
KJ −1

)n−1KδH0

δm
= 9
(
KJ −1

)n−1
m

1
3∂xm

2
3
(
4∂x − ∂3x

)−1
m

2
3∂xm

1
3u. (2.29)

Plugging it into (2.28), we find

Qτ = 3K̄∂−1y m−1
(
KJ −1

)n−1
m

1
3∂xm

2
3
(
4∂x − ∂3x

)−1
m

2
3∂xm

1
3u.

As a consequence, the operator factorization identity (2.21), when combined with (2.25), allows
us to deduce that, for each n ≥ 1, if m(t, x) solves the (Novikov)n equation (2.29), then for the
operator B defined by

B = −2
(
∂4y + 5Q∂2y + 4Qy∂y +Qyy + 4Q2 + 2Qy∂

−1
y Q

)
,

the corresponding Q(τ, y) satisfies

R̄nQτ = B
(
∂2y +Q+Qy∂

−1
y

)(
K̄J̄

)n−1
Qτ

= 3B∂y
(
∂2y+Q

)
∂−1y

(
K̄J̄

)n−1K̄∂−1y m−1
(
KJ −1

)n−1
m

1
3∂xm

2
3
(
4∂x− ∂3x

)−1
m

2
3∂xm

1
3u

= 3B∂y
(
∂2y +Q

)
∂−1y K̄m

2
3
(
4∂x − ∂3x

)−1
m

2
3∂xm

1
3u

= 3B∂y
(
∂2y +Q

)
m

1
3u = −3B∂y · 1 = 0,
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where we have made use of the operator identity (2.22). This immediately reveals that Q(τ, y)
solves the (SK)−n equation (2.20). We thus prove that, for each n ≥ 1 the (Novikov)n equation
is mapped into the (SK)−n equation under the transformation (2.10).

In analogy with the proof of part (i), the reverse argument follows from the fact that (2.10)
is a bijection. �

2.3 The correspondence between the Hamiltonian conservation laws
of the Novikov and SK equations

According to Magri’s theorem, one can also recursively construct an infinite hierarchy of Hamil-
tonian conservation laws of any bi-Hamiltonian structure. In particular, for the Novikov equa-
tion (2.1), at the n-th stage we determine the Hamiltonian conservation laws Hn satisfying the
recursive formula

KδHn−1
δm

= J δHn
δm

, n ∈ Z, (2.30)

where K and J are the two compatible Hamiltonian operators (2.12) admitted by the Novikov
equation. On the other hand, the recursive formula

J̄ K̄δH̄n−1
δQ

=
δH̄n
δQ

, n ∈ Z, (2.31)

formally provides an infinite collection of Hamiltonian conservation laws for the SK equa-
tion (2.15), using the operator pair K̄ and J̄ given in (2.16) and (2.17).

In this subsection we investigate the relationship between the two hierarchies of Hamiltonian
conservation laws {Hn} and {H̄n}. Let us begin with two preliminary lemmas.

Lemma 2.5. Let {Hn} and {H̄n} be the hierarchies of Hamiltonian conservation laws of the
Novikov and SK equations, respectively. Then, for each n ∈ Z, their corresponding variational
derivatives satisfy the relation

δH̄n
δQ

=
1

3
∂−1x m−

1
3K

δH−(n+2)

δm
. (2.32)

Proof. The proof relies on an induction argument. First of all, since

δH−2
δm

= K−1J δH−1
δm

= 3K−1
(
1− ∂2x

)
m−1∂xm

−1(1− ∂2x)m− 1
3

= −3K−1
(
1− ∂2x

)
m−1Qx = 3K−1m

(
Q+ ∂2y

)
Qy = 3K−1m∂y

δH̄0

δQ
,

by (2.10), (2.22), and (2.26), and so, clearly, (2.32) holds for n = 0.

Suppose by induction, that (2.32) holds for n = k with k ≥ 0, say

δH̄k
δQ

=
1

3
∂−1x m−

1
3K

δH−(k+2)

δm
.

Then, for n = k + 1, by (2.30) and (2.31), we deduce that

δH̄k+1

δQ
= J̄ K̄δH̄k

δQ
=

1

3
J̄ K̄∂−1x m−

1
3K

δH−(k+2)

δm

=
1

3
J̄ K̄∂−1y m−1KJ −1K

δH−(k+3)

δm
=

1

3
∂−1x m−

1
3K

δH−(k+3)

δm
,
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where we have made use of Lemma 2.4 with n = 1. This verifies (2.32) for n ≥ 0, completing
the first step.

Next, in the case of n = −1, it follows from δH−1/δm = 3m−1/3 that

1

3
K̄∂−1x m−

1
3KδH−1

δm
=

1

2
m−

2
3∂x · 1 = 0,

which, together with the fact that K̄ · (δH̄−1/δQ) = 0 shows that (2.32) holds for n = −1.
Finally, to prove (2.32) holds for all n ≤ −1, we assume that (2.32) holds for n = k. Then

for n = k − 1, using the recursive formulae (2.30) and (2.31) and Lemma 2.4 with n = 1 again,
we infer that

δH−(k−1)
δm

= J −1KδH−k
δm

= 3J −1m∂y
δH̄k−2
δQ

= 3J −1m∂yJ̄ K̄
δH̄k−3
δQ

= 3K−1m
1
3∂x

δH̄k−3
δQ

,

which establishes the induction step for n ≤ −1 and thus proves the lemma in general. �

In order to establish the correspondence between Hamiltonian conservation laws admitted by
the Novikov and SK equations, we require the formula for the change of variational derivatives.

Lemma 2.6. Let m(t, x) and Q(τ, y) be related by the transformations (2.10). If H(m) = H̄(Q),
then

δH
δm

=
1

3
m−

1
3∂−1y K̄

δH̄
δQ

, (2.33)

where K̄ is the Hamiltonian operator (2.16) admitted by the SK equation (2.15).

Proof. First of all, motivated by (2.10) and (2.26), we introduce

F [m(t, x)] ≡ −m−1
(
1− ∂2x

)
m−

1
3 = Q(τ, y).

Then the Fréchet derivative of F [m] is

DF [m] =
4

3
m−

7
3 −m−2

(
m−

1
3
)
xx
− 1

3
m−1∂2xm

− 4
3

= −m−1Q− 1

3

(
Q+ ∂2y

)
m−1 = −1

3

(
4Q+ ∂2y

)
m−1.

On the other hand,

d

dε

∣∣∣
ε=0

F [m+ ερ] = Qy
d

dε

∣∣∣
ε=0

y(m+ ερ) +
d

dε

∣∣∣y fixed
ε=0

F [m+ ερ],

where, by (2.10),

d

dε

∣∣∣
ε=0

y(m+ ερ) =
2

3
∂−1x m−

1
3 ρ.

Next, it follows from

d

dε

∣∣∣
ε=0

F [m+ ερ] = DF [m](ρ) = −1

3

(
4Q+ ∂2y

)
m−1ρ

that

d

dε

∣∣∣y fixed
ε=0

F [m+ ερ] = −1

3

(
4Q+ ∂2y

)
m−1ρ− 2

3
Qy∂

−1
y m−1ρ =

1

3
K̄∂−1y m−1ρ.
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Finally, the assumption of the lemma implies that

d

dε

∣∣∣
ε=0
H(m+ ερ) =

d

dε

∣∣∣
ε=0
H̄ (F [m+ ερ]) .

According to the usual definition of the variational derivative, we have, on the one hand,

d

dε

∣∣∣
ε=0
H(m+ ερ) =

∫
δH
δm
· ρdx. (2.34)

On the other hand, using the fact that K̄ is skew-symmetric, we infer that

d

dε

∣∣∣
ε=0
H̄(F [m+ ερ]) =

∫
δH̄
δQ
· d

dε

∣∣∣y fixed
ε=0

F [m+ ερ]dy =
1

3

∫
δH̄
δQ
· K̄∂−1y m−1ρdy

=
1

3

∫
m

2
3
(
K̄∂−1y m−1

)∗ δH̄
δQ
· ρdx =

1

3

∫
m−

1
3∂−1y K̄

δH̄
δQ
· ρdx,

which, in comparison with (2.34) verifies (2.33), proving the lemma. �

Finally, referring back to the form of the Hamiltonian operator K, one has

K−1m
1
3∂x = 2m−

1
3∂−1x m−

2
3
(
4∂x − ∂3x

)
m−

2
3 = 2m−

1
3∂−1y K̄.

It follows that the relation (2.32) can be written in an equivalent form, namely

δHn
δm

= 3K−1m
1
3∂x

δH̄−(n+2)

δQ
= 6m−

1
3∂−1y K̄

δH̄−(n+2)

δQ
. (2.35)

Therefore, subject to the hypothesis of Lemma 2.6, if we define the functional

Gl(Q) ≡ Hn(m),

for some l ∈ Z, then Lemma 2.6 allows us to conclude that, for each n ∈ Z,

δHn
δm

=
1

3
m−

1
3∂−1y K̄

δGl
δQ

.

This, when combined with (2.35), immediately leads to

Gl(Q) = 18H̄−(n+2)(Q),

and then

Hn(m) = 18H̄−(n+2)(Q)

follows. We thus conclude that there exsits an one-to-one correspondence between the sequences
of the Hamiltonian conservation laws admitted by the Novikov and SK equations.

Indeed, we have proved the following theorem.

Theorem 2.7. Under the Liouville transformation (2.10), for each n ∈ Z, the Hamiltonian con-
servation law H̄n(Q) of the SK equation is related to the Hamiltonian conservation law H−n(m)
of the Novikov equation, according to the following identity

Hn(m) = 18H̄−(n+2)(Q), n ∈ Z.
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For instance, in the case of n = 2,

δH−2
δm

= K−1J δH−1
δm

,

which can be expressed in terms of Q according to (2.26), say

δH−2
δm

= 6m−
1
3∂−1y K̄

(
1

2
Q2 +Qyy

)
= −6m−

1
3

(
Qyyyy + 5QQyy +

5

3
Q3

)
.

As a consequence,

H−2(m) = 9

∫
m

2
3

(
1

5
Qyyyy +QQyy +

1

3
Q3

)
dx = 3

∫ (
Q3 − 3Q2

y

)
dy,

with Q being determined by (2.10) and (2.26), which, when compared with (2.18), shows that
H−2(m) = 18H̄0(Q), in accordance with Theorem 2.7.

3 The correspondence between the DP and KK hierarchies

3.1 A Liouville transformation between the isospectral problems
of the DP and KK hierarchies

The Lax pair for the DP equation

nt = vnx + 3vxn, n = v − vxx, (3.1)

takes the form [34]

Ψx =

 0 1 0
0 0 1
−λn 1 0

Ψ, Ψ =

ψ1

ψ2

ψ3

 , (3.2)

and

Ψt =

 vx −v −λ−1
v −λ−1 −v

λvn+ vx 0 −λ−1 − vx

Ψ.

These can be rewritten in scalar form by setting Ψ = ψ1, namely

Ψxxx −Ψx + λnΨ = 0, Ψt + λ−1Ψxx + vΨx − vxΨ = 0.

Consider the KK equation

Pτ + Pyyyyy + 20PPyyy + 50PyPyy + 80P 2Py = 0. (3.3)

It has been shown in [34] that the Lax pair for the first negative flow of its associated hierarchy
is

Φyyy + 4PΦy + 2PyΦ = µΦ (3.4)

and

Φτ + µ−1
(
UΦyy −

1

2
UyΦy +

1

6
(Uyy + 16PU)Φ

)
= 0, (3.5)
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which is a reduction of a (2 + 1)-dimensional non-isospectral Lax pair given in [28]. The com-
patibility condition for (3.4) and (3.5) gives rise to

Pτ =
3

4
Uy, AU = 0, (3.6)

where A is the fifth-order operator

A = ∂5y + 6
(
∂yP∂

2
y + ∂2yP∂y

)
+ 4
(
∂3yP + P∂3y

)
+ 32

(
∂yP

2 + P 2∂y
)
.

In analogy with the Liouville correspondence between the Novikov equation and the first
negative flow of the SK hierarchy, there exists a similar correspondence between the DP equation
and the first negative flow of the KK hierarchy. In fact, it has been found [17] that the following
coordinate transformations

dy = n
1
3 dx+ n

1
3 v2dt, dτ = dt,

together with

Ψ = n−
1
3 Φ, λ = −µ, P =

1

4

(
7

9
n−

8
3n2x −

2

3
n−

5
3nxx − n−

2
3

)
will convert the scalar form of the isospectral problem (3.2) into (3.4).

As before, in this section we investigate the Liouville correspondence between the DP and
KK hierarchies. More precisely, the respective flows in the two hierarchies are related by the
Liouville transformations

y =

∫ x

n
1
3 (t, ξ)dξ, τ = t, (3.7)

and

P =
1

4

(
7

9
n−

8
3n2x −

2

3
n−

5
3nxx − n−

2
3

)
=

1

4
n−

1
2
(
4∂2x − 1

)
n−

1
6 . (3.8)

In addition, the relationship between the Hamiltonian conservation laws for the DP hierarchy
and those for the KK hierarchy is also clarified.

3.2 The correspondence between the DP and KK hierarchies

The DP equation (3.1) is also a bi-Hamiltonian system [17]

nt = G1 = LδE0
δn

= D δE1
δn

, n = v − vxx,

where

L = n
2
3∂xn

1
3
(
∂x − ∂3x

)−1
n

1
3∂xn

2
3 , D = ∂x

(
1− ∂2x

)(
4− ∂2x

)
(3.9)

are a pair of compatible Hamiltonian operators, and the corresponding Hamiltonian functionals
are

E0 =
9

2

∫
ndx, E1 =

1

6

∫
u3dx.

Applying the recursion operator R̃ = LD−1 successively to the initial symmetry nt = G1

gives rise to an infinite hierarchy

nt = Gl = LδEl−1
δn

= D δEl
δn
, l ∈ Z,
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of commuting bi-Hamiltonian flows and consequent conservation laws El. As far as the associated
negative flows are concerned, noting that

G0 = D δE0
δn

= 0,

and L admits the Casimir functional

EC = 18

∫
n

1
3 dx with

δEC
δn

= 6n−
2
3 .

Therefore, we conclude that the first negative flow of the DP hierarchy is the Casimir equation

nt = G−1 = D δEC
δn

= 6Dn−
2
3

and applying R̃−1 = DL−1 successively to it produces the hierarchy of negative flows, in which
the l-th member takes the form

nt = G−l = 6
(
DL−1

)l−1Dn− 2
3 , l = 1, 2, . . . .

Analogous to the SK hierarchy, the integrable hierarchy of the KK equation also arises from
a generalized bi-Hamiltonian structure, the flow is governed by Pτ = Ḡl[P ], where Ḡl[P ] are
determined by the relations

Ḡl[P ] = L̄δĒl−1
δP

and D̄Ḡl[P ] =
δĒl
δP

, l ∈ Z,

with

L̄ = −
(
∂3y + 2P∂y + 2∂yP

)
,

D̄ = ∂3y + 6(P∂y + ∂yP ) + 4
(
∂2yP∂

−1
y + ∂−1y P∂2y

)
+ 32

(
P 2∂−1y + ∂−1y P 2

)
,

(3.10)

and R̂ = L̄D̄ is the consequent recursion operator. It is easy to see that the KK equation (3.3)
in this hierarchy is exactly

Pτ = Ḡ1[P ] = L̄δĒ0
δP

= L̄
(
Pyy + 8P 2

)
,

with the corresponding Hamiltonian functional

Ē0 =

∫ (
8

3
P 3 − 1

2
P 2
y

)
dy.

Similarly, if we use the fact that D̄ · 0 = δĒ0/δP , we may conclude that the negative flows of
the KK hierarchy take the form(

L̄D̄
)l
Pτ = 0, l = 1, 2, . . . . (3.11)

It is worth noting that since D̄ = ∂−1y A∂−1y , so the equation (3.6) arising from the compatibility
condition of the Lax pair (3.4) and (3.5) is a reduction of the first negative flow L̄D̄Pτ = 0.

As before, we hereafter denote, for a positive integer l, the l-th equation in the positive and
negative directions of the DP hierarchy by (DP)l and (DP)−l, respectively, while the l-th positive
and negative flows of the KK hierarchy by (KK)l and (KK)−l, respectively. With this notation,
we state the main theorem on the Liouville correspondence between the DP and KK hierarchies
as follows.



Liouville Correspondences between Integrable Hierarchies 17

Theorem 3.1. Under the Liouville transformations (3.7) and (3.8), for each nonzero integer
0 6= l ∈ Z, the (DP)l equation is mapped into the (KK)−l equation, and conversely.

The proof of this theorem is based on the following two preliminary lemmas, which clarify
the relations between certain operators.

Lemma 3.2. Let n(t, x) and P (τ, y) be related by the transformations (3.7) and (3.8). Then
the following identities hold:

n−
1
2

(
1

4
− ∂2x

)
n−

1
6 = −

(
P + ∂2y

)
, (3.12)

n−
2
3
(
∂x − ∂3x

)
n−

1
3 = L̄, (3.13)

n−1Dn−
2
3 = ∂yD̄∂y. (3.14)

Proof. (i). Define χ = n
1
3 , so from (3.7) and (3.8), we have ∂x = χ∂y and

P =
1

4
χ−2χ2

y −
1

2
χ−1χyy −

1

4
χ−2. (3.15)

And then, a direct calculation shows that

∂2xχ
− 1

2 = χ∂yχ∂yχ
− 1

2 = χ
3
2∂2y −

1

2
χ
(
χ−

1
2χy
)
y
,

where, by (3.15)

χ
(
χ−

1
2χy
)
y

= −1

2
χ−

1
2 − 2χ

3
2P.

We thus have

∂2xχ
− 1

2 =
1

4
χ−

1
2 + χ

3
2
(
P + ∂2y

)
,

which immediately leads to(
1

4
− ∂2x

)
χ−

1
2 = −χ

3
2
(
P + ∂2y

)
,

and verifies (3.12).
(ii). To prove (3.13), according to (3.7) and (3.8), we only need to verify

L̄ = χ−1∂y
(
1− ∂2x

)
χ−1. (3.16)

In fact, since(
1− ∂2x

)
χ−1 = χ−1 + χ

(
χ−1χy

)
y

+ χy∂y − χ∂2y ,

one has

χ−1∂y
(
1− ∂2x

)
χ−1 = χ−1

(
χ−1 + χ

(
χ−1χy

)
y

)
y

+ χ−1
(
χ−1 + χ

(
χ−1χy

)
y

+ χyy
)
∂y − ∂3y .

This, when combined with (3.15), proves (3.16).
(iii). In view of the explicit form of D, we deduce that

χ−3Dχ−2 = χ−1L̄χ
(
4− ∂2x

)
χ−2,
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where we have made used of (3.13). In the right-hand side of the preceding equation

χ
(
4− ∂2x

)
χ−2 = χ

(
4χ−2 + 2χ

(
χ−2χy

)
y

+ 3χ−1χy∂y − ∂2y
)

= −16χP − 6χyy + 3χy∂y − χ∂2y .

Hence,

χ−1L̄χ
(
4− ∂2x

)
χ−2

= χ−1
(
32χPPy + 64(χP )yP + 12χyyPy + 24χyyyP + 16(χP )yyy + 6χyyyyy

)
+ χ−1

(
64χP 2 − 6χyPy + 12χyyP + 48(χP )yy + 15χyyyy

)
∂y

+ χ−1
(
2χPy − 8χyP + 48(χP )y + 10χyyy

)
∂2y + 20P∂3y + ∂5y

= 4(16PPy + Pyyy) + 2
(
32P 2 + 9Pyy

)
∂y + 30Py∂

2
y + 20P∂3y + ∂5y ,

which implies

χ−3Dχ−2 = ∂yD̄∂y,

and then (3.14) follows. �

Lemma 3.3. Under the transformations (3.7) and (3.8), the relation

n−1
(
DL−1

)l
n = ∂y

(
D̄L̄
)l
∂−1y (3.17)

holds for each integer l ≥ 1.

Proof. Due to the form of the inverse operator L−1 and the identities (3.13) and (3.14), we
arrive at

n−1DL−1n = ∂yD̄∂y∂−1x n−
1
3
(
∂x − ∂3x

)
n−

1
3∂−1x n

1
3 = ∂yD̄L̄∂−1y ,

which verifies (3.17) for l = 1. Then an obvious induction procedure allows us to prove (3.17)
in general. Hence the lemma is proved. �

Proof of Theorem 3.1. To prove this theorem, we take the analogous steps as in the proof of
Theorem 2.2. First of all, the derivative of P with respect to t is

Pt = Pτ + Py

∫ x (
n

1
3 (t, ξ)

)
t
dξ = Pτ +

1

3
Py∂

−1
x n−

2
3nt = Pτ +

1

3
Py∂

−1
y n−1nt.

On the other hand, it follows from (3.8) that

Pt =
1

8
n−

3
2nt
(
1− 4∂2x

)
n−

1
6 +

1

24
n−

1
2
(
1− 4∂2x

)
n−

7
6nt

= −1

2
Pn−1nt +

1

24
n−

1
2
(
1− 4∂2x

)
n−

7
6nt.

From the preceding equations and using the formula (3.12), we have

Pτ =

(
−1

3
Py∂

−1
y −

1

2
P − 1

6

(
P + ∂2y

))
n−1nt =

1

6
L̄∂−1y n−1nt. (3.18)

Now, suppose n(t, x) is the solution of the (DP)−l equation

nt = G−l = 6
(
DL−1

)l−1Dn− 2
3 , l = 1, 2, . . . , (3.19)
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and n(t, x) is related to P (τ, y) according to (3.7) and (3.8). Then plugging (3.19) into (3.18),
one finds that the corresponding function P (τ, y) satisfies

Pτ = L̄∂−1y n−1
(
DL−1

)l−1Dn− 2
3 = L̄

(
D̄L̄
)l−1

∂−1y n−1Dn−
2
3

=
(
L̄D̄
)l−1L̄D̄ · 0 =

(
L̄D̄
)l−1L̄δĒ0

δP
= Ḡl.

This shows that by the transformations (3.7) and (3.8), the (DP)−l equation is mapped into the
(KK)l equation.

When it comes to the (DP)l equation for l ≥ 1, inserting the formula

nt = Gl =
(
LD−1

)l−1LδE0
δn

=
(
LD−1

)l−1L · 9

2

for the (DP)l equation into (3.18) yields

Pτ =
3

4
L̄∂−1y n−1

(
LD−1

)l−1L · 1.
Therefore, referring back to the form of the operator D and using the identity (3.17), we deduce
that (

L̄D̄
)l
Pτ =

3

4
L̄
(
D̄L̄
)l
∂−1y n−1

(
LD−1

)l−1L · 1
=

3

4
L̄∂−1y n−1D · 1 = −3

4

(
∂2y + 4P + 2Py∂

−1
y

)
· 0 = 0,

which shows that P (τ, y) is a solution for the (KK)−l equation (3.11). We thus have proved that
for each l ≥ 1, the (DP)l equation is mapped, via the transformations (3.7) and (3.8), into the
(KK)−l equation.

As in Theorem 2.2, the converse argument is also valid. �

3.3 The correspondence between the Hamiltonian conservation laws
of the DP and KK equations

We now investigate the relationship between the Hamiltonian conservation laws of the DP and
KK equations. For the DP equation (3.1), with the Hamiltonian pair L and D defined in (3.9) in
hand, the corresponding recursive formula formally defines an infinite hierarchy of Hamiltonian
conservation laws El determined by

LδEl−1
δn

= D δEl
δn
, l ∈ Z. (3.20)

For the KK equation, its Hamiltonian conservation laws Ēl can be determined by the generalized
bi-Hamiltonian (bi-Dirac) structure

D̄L̄δĒl−1
δP

=
δĒl
δP

, l ∈ Z,

with L̄ and D̄ given by (3.10).

Before proving the main theorem for the correspondence between the two hierarchies of
Hamiltonian conservation laws {El} and {Ēl}, two lemmas regarding their variational derivatives
are in order.
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Lemma 3.4. Let {El} and {Ēl} be the hierarchies of Hamiltonian conservation laws of the DP
and KK equations, respectively. Then, for each l ∈ Z, their corresponding variational derivatives
are related according to the following identity

δEl
δn

= 6L−1n∂y
δĒ−(l+2)

δP
. (3.21)

Proof. We first consider the case of l ≤ −2. Since

δE−2
δn

= L−1D δE−1
δn

= 6L−1Dn−
2
3 = 6L−1n∂yD̄ · 0,

then the fact D̄ · 0 = δĒ0/δP reveals that (3.21) holds for l = −2.
We proceed by induction on l. Assume that (3.21) holds when l = k, namely

δEk
δn

= 6L−1n∂y
δĒ−(k+2)

δP
.

From the recursive formula (3.20) and by the assumption,

δĒ−(k+1)

δP
= D̄L̄

δĒ−(k+2)

δP
=

1

6
D̄L̄∂−1y n−1LδEk

δn
=

1

6
D̄L̄∂−1y n−1LD−1LδEk−1

δn
.

Then, thanks to Lemma 3.3 with l = 1, we conclude that (3.21) holds for l = k − 1.
Furthermore, for the case of l = −1, we claim

δĒ−1
δP

=
1

6
∂−1y n−1LδE−1

δn
.

Note that Ē−1 is a Casimir functional for Hamiltonian operator L̄, it suffices to show that

L̄∂−1y n−1LδE−1
δn

= 0.

Indeed, from the definition of the operator L and the formula (3.13), we have

L̄∂−1y n−1Ln−
2
3 = n−

1
3∂x · 1 = 0,

proving the claim and verifying that (3.21) holds for l = −1.
Finally, induction on l shows that if (3.21) holds for l = k, then for l = k + 1, from the

recursive formula (3.20) and the identities (3.13) and (3.14), we infer that

δEk+1

δn
= D−1LδEk

δn
= 6D−1n∂y

δĒ−(k+2)

δP
= 6D−1n∂yD̄L̄

δĒ−(k+3)

δP

= 6n−
2
3∂−1x n−

1
3
(
∂x − ∂3x

)
n−

1
3
δĒ−(k+3)

δP
= 6L−1n∂y

δĒ−(k+3)

δP
,

which completes the induction step, and thereby proves the lemma. �

Lemma 3.5. Let n(t, x) and P (τ, y) be related by the transformations (3.7) and (3.8). If
E(n) = Ē(P ), then

δE
δn

=
1

6
n−

2
3∂−1y L̄

δĒ
δP

, (3.22)

where L̄ is the Hamiltonian operator (3.10) admitted by the KK equation (3.3).
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Proof. As the first step, in view of (3.8), for convenience, we introduce the notation

F̃ [n(t, x)] ≡ −n−
1
2

(
1

4
− ∂2x

)
n−

1
6 = P (τ, y).

Evaluating the Fréchet derivative of F̃ [n] produces

DF̃ [n] =
1

6
n−

5
3 − 1

2
n−

3
2
(
n−

1
6
)
xx
− 1

6
n−

1
2
(
n−

7
6
)
xx

= −1

2
n−1P − 1

6

(
P + ∂2y

)
n−1 = −1

6

(
4P + ∂2y

)
n−1.

On the other hand, we get

d

dε

∣∣∣y fixed
ε=0

F̃ [n+ ερ] = DF̃ (ρ)− 1

3
Py∂

−1
y n−1ρ =

1

6
L̄∂−1y n−1ρ.

Secondly, by the assumption, one has

d

dε

∣∣∣
ε=0
E(n+ ερ) =

d

dε

∣∣∣
ε=0
Ē
(
F̃ [n+ ερ]

)
.

Furthermore, due to the fact that L̄ is skew-adjoint, the righ-hand side of the above expression
yields

d

dε

∣∣∣
ε=0
Ē
(
F̃ [n+ ερ]

)
=

∫
δĒ
δP
· d

dε

∣∣∣y fixed
ε=0

F̃ [n+ ερ]dy

=

∫
δĒ
δP
·
(

1

6
L̄∂−1y n−1ρ

)
dy =

1

6

∫
n−

2
3∂−1y L̄

δĒ
δP

ρdx,

which, combined with the definition of the variational derivative, produces (3.22). �

Finally, it follows from (3.14) and (3.17) with l = 1 that

L−1n∂y = D−1n∂yD̄L̄ = n−
2
3∂−1y L̄,

which, together with (3.21), implies

δEl
δn

= 6n−
2
3∂−1y L̄

δĒ−(l+2)

δP
. (3.23)

Now, we suppose that n(t, x) and P (τ, y) are related by the transformations (3.7) and (3.8).
Define a functional

G̃k(P ) ≡ El(n),

for some k ∈ Z. Then from Lemma 3.5, we conclude, for each k ∈ Z,

δEl
δn

=
1

6
n−

2
3∂−1y L̄

δG̃k
δP

,

which, in comparision with (3.23) produces

El(n) = G̃k(P ) = 36Ē−(l+2)(P ).

As a consequence, the following theorem is thereby proved.
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Theorem 3.6. Under the Liouville transformations (3.7) and (3.8), for each l ∈ Z, the Hamil-
tonian conservation law Ēl(P ) of the KK equation is related to that El(n) of the DP equation,
according to the following identity

El(n) = 36Ē−(l+2)(P ), l ∈ Z.

For example, in the case of l = −2, it is inferred from (3.13) and (3.14), and using the fact
D̄ · 0 = δĒ0/δP = (Pyy + 8P 2), that

δE−2
δn

= L−1D δE−1
δn

= 6n−
2
3∂−1y L̄D̄ · 0 = −6n−

2
3

(
Pyyyy + 20PPyy + 15P 2

y +
80

3
P 3

)
,

with P satisfying (3.8). Consequently, we arrive at

E−2(n) =
18

5

∫
n

1
3

(
Pyyyy + 20PPyy + 15P 2

y +
80

3
P 3

)
dx

= 36

∫ (
8

3
P 3 − 1

2
P 2
y

)
dy = 36Ē0(P ),

which is in accordance with Theorem 3.6.

4 The relationship between the Novikov equation
and the DP equation

It has been shown in [23] that under the Miura transformations

B1(Q,V ) ≡ Q− Vy + V 2 = 0 (4.1)

and

B2(P, V ) ≡ P + Vy +
1

2
V 2 = 0, (4.2)

the SK equation (2.15) and the KK equation (3.3) are respectively transformed into the Fordy–
Gibbons–Jimbo–Miwa equation

Vτ + Vyyyyy − 5
(
VyVyyy + V 2

yy + V 3
y + 4V VyVyy + V 2Vyyy − V 4Vy

)
= 0. (4.3)

This, together with the fact that there exist the Liouville correspondences between the Novikov
and SK hierarchies, as well as between the DP and KK hierarchies, inspires a natural question
as to whether there exists some relationship between the Novikov equation (2.1) and the DP
equation (3.1).

We can regard (4.1) and (4.2) as Bäcklund transformations. According to Fokas and Fuchs-
steiner [21], all the positive flows in the SK hierarchy admit the same transformation (4.1).
More precisely, set

T1 ≡ B−11,V B1,Q = (2V − ∂y)−1, (4.4)

where B1,V and B1,Q are the Fréchet derivatives of (4.1) with respect to V and Q, respec-
tively. Then, the recursion operator R̄ of the SK equation and the recursion operator R∗ of
equation (4.3) satisfy

R∗ = T1R̄T−11 .
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Similarly, each member in the KK hierarchy admits the Miura transformation (4.2), and its
corresponding recursion operator R̂ is linked with the recursion operator R∗ according to the
identity

R∗ = T2R̂T−12 ,

where

T2 ≡ B−12,V B2,P = (V + ∂y)
−1

is the operator arising from the function (4.2).
In light of these relations, we claim that both the first negative flow of the SK hierarchy and

the KK hierarchy are related to the same equation

R∗Vτ = 0, (4.5)

via the Miura transformations (4.1) and (4.2), respectively. Indeed, we have the following result.

Proposition 4.1. Assume that V satisfies the equation (4.5). Then Q = Vy − V 2 and P =
−Vy − 1

2V
2 satisfy the first negative flow of the SK hierarchy R̄Qτ = 0 and the first negative

flow of the KK hierarchy R̂Pτ = 0, respectively.

Proof. Thanks to (4.1), one has

Qτ = Vyτ − 2V Vτ = −T−11 Vτ .

This, together with (4.4), implies

R̄Qτ = −R̄T−11 Vτ = −T−11 R
∗Vτ .

Therefore, if R∗Vτ = 0, then R̄Qτ = −(2V − ∂y)R∗Vτ = 0, proving the SK part of the proposi-
tion. The KK part can be proved by in a similar manner. �

Finally, using Proposition 4.1, combined with Theorems 2.2 and 3.1, we are able to establish
a relationship between the Novikov equation (2.1) and the DP equation (3.1). This fact is
summarized in the following proposition.

Proposition 4.2. Both the Novikov equation (2.1) and the DP equation (3.1) are linked with
the equation (4.5) in the following sense. If V (τ, y) is a solution of equation (4.5), then the
function m(t, x) determined implicitly by the relation

Vy − V 2 = −m−1
(
1− ∂2x

)
m−

1
3 , y =

∫ x

m
2
3 (t, ξ)dξ, τ = t,

satisfies the Novikov equation (2.1), while the function n(t, x) determined by

Vy +
1

2
V 2 =

1

4
n−

1
2
(
1− 4∂2x

)
n−

1
6 , y =

∫ x

n
1
3 (t, ξ)dξ, τ = t,

satisfies the DP equation (3.1).

Acknowledgements

The authors thank the referees for valuable comments and suggestions. Kang’s research was
supported by NSFC under Grant 11631007 and Grant 11471260. Liu’s research was supported
in part by NSFC under Grant 11631007 and Grant 11401471, and Ph.D. Programs Foundation
of Ministry of Education of China-20136101120017. Olver’s research was supported by NSF
under Grant DMS-1108894. Qu’s research was supported by NSFC under Grant 11631007 and
Grant 11471174.



24 J. Kang, X.C. Liu, P.J. Olver and C.Z. Qu

References

[1] Alber M.S., Camassa R., Holm D.D., Marsden J.E., The geometry of peaked solitons and billiard solutions
of a class of integrable PDEs, Lett. Math. Phys. 32 (1994), 137–151.

[2] Babalic C.N., Constantinescu R., Gerdjikov V.S., On the soliton solutions of a family of Tzitzeica equations,
J. Geom. Symmetry Phys. 37 (2015), 1–24, arXiv:1703.05855.

[3] Beals R., Sattinger D.H., Szmigielski J., Multipeakons and the classical moment problem, Adv. Math. 154
(2000), 229–257, solv-int/9906001.

[4] Camassa R., Holm D.D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71
(1993), 1661–1664, patt-sol/9305002.

[5] Camassa R., Holm D.D., Hyman J.M., A new integrable shallow water equation, Adv. Appl. Mech. 31
(1994), 1–33.

[6] Cao C., Holm D.D., Titi E.S., Traveling wave solutions for a class of one-dimensional nonlinear shallow
water wave models, J. Dynam. Differential Equations 16 (2004), 167–178.

[7] Caudrey P.J., Dodd R.K., Gibbon J.D., A new hierarchy of Korteweg–de Vries equations, Proc. Roy. Soc.
London Ser. A 351 (1976), 407–422.

[8] Chou K.S., Qu C.Z., Integrable equations arising from motions of plane curves, Phys. D 162 (2002), 9–33.

[9] Coclite G.M., Karlsen K.H., Periodic solutions of the Degasperis–Procesi equation: well-posedness and
asymptotics, J. Funct. Anal. 268 (2015), 1053–1077.

[10] Constantin A., Escher J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181
(1998), 229–243.

[11] Constantin A., Gerdjikov V.S., Ivanov R.I., Inverse scattering transform for the Camassa-Holm equation,
Inverse Problems 22 (2006), 2197–2207, nlin.SI/0603019.

[12] Constantin A., Ivanov R., Dressing method for the Degasperis–Procesi equation, Stud. Appl. Math. 138
(2017), 205–226, arXiv:1608.02120.

[13] Constantin A., Ivanov R.I., Lenells J., Inverse scattering transform for the Degasperis–Procesi equation,
Nonlinearity 23 (2010), 2559–2575, arXiv:1205.4754.

[14] Constantin A., Lannes D., The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi
equations, Arch. Ration. Mech. Anal. 192 (2009), 165–186, arXiv:0709.0905.

[15] Constantin A., McKean H.P., A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999),
949–982.

[16] Constantin A., Strauss W.A., Stability of peakons, Comm. Pure Appl. Math. 53 (2000), 603–610.

[17] Degasperis A., Holm D.D., Hone A.N.W., A new integrable equation with peakon solutions, Theoret. and
Math. Phys. 133 (2002), 1463–1474, nlin.SI/0205023.

[18] Degasperis A., Procesi M., Asymptotic integrability, in Symmetry and Perturbation Theory (Rome, 1998),
World Sci. Publ., River Edge, NJ, 1999, 23–37.

[19] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, Nonlinear Science: Theory
and Applications, John Wiley & Sons, Ltd., Chichester, 1993.

[20] Dullin H.R., Gottwald G.A., Holm D.D., Camassa–Holm, Korteweg–de Vries-5 and other asymptotically
equivalent equations for shallow water waves, Fluid Dynam. Res. 33 (2003), 73–95.
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