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Abstract. The paper presents two results. First it is shown how the discrete potential mo-
dified KdV equation and its Lax pairs in matrix form arise from the Hirota–Miwa equation by
a 2-periodic reduction. Then Darboux transformations and binary Darboux transformations
are derived for the discrete potential modified KdV equation and it is shown how these may
be used to construct exact solutions.
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1 Introduction

The discrete version of the potential modified KdV equation that we want to investigate in this
paper is the nonlinear partial difference equation

Q(v, v1, v2, v12; a1, a2) ≡ a1(vv2 − v1v12) = a2(vv1 − v2v12). (1.1)

The notation we adopted here and later is as follows, with forward shift operators Tn1 , Tn2 :

v := v(n1, n2), v1 := Tn1(v) = v(n1 + 1, n2),

v2 := Tn2(v) = v(n1, n2 + 1), v12 := Tn1Tn2(v) = v(n1 + 1, n2 + 1),

and a1, a2 denote lattice parameters associated with the directions n1, n2 respectively. Equa-
tion (1.1) was derived in [14] from the Cauchy matrix approach, and was originally found
in [16, 20] through the direct linearization approach. Up to a gauge transformation v → in1+n2v
and changing the lattice parameters as their reciprocals, equation (1.1) is equivalent to the
equation H3δ=0 in the Adler–Bobenko–Suris (ABS) classification [1],

H3δ ≡ a1(vv1 + v2v12)− a2(vv2 + v1v12) = δ
(
a22 − a21

)
. (1.2)

There are several papers dedicated to closed-formN -soliton solutions of the ‘ABS list’ [5, 6, 8, 14].
So, in [14], based on a Cauchy matrix structure, the closed-form N -soliton solution of equa-
tion (1.1) was derived, in [8], following Hirota’s method, the authors derive bilinear difference
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equations of equation (1.2) and its N -soliton solutions in terms of Casoratian determinants,
and in [5], by the discrete inverse scattering transform, the authors point out that the soliton
solutions of equation (1.2) derived from the Cauchy matrix approach are exactly the solutions
obtained from reflectionless potentials.

The Hirota–Miwa equation [9, 13] is the three-dimensional discrete integrable system

(a1 − a2)τ12τ3 + (a2 − a3)τ23τ1 + (a3 − a1)τ13τ2 = 0, (1.3)

where lattice parameters ak are constants, k = 1, 2, 3, and for τ = τ(n1, n2, n3) each subscript i
denotes a forward shift in the corresponding discrete variable ni. It was discovered by Hirota [9]
as a fully discrete analogue of the two-dimensional Toda equation and later Miwa [13] showed
that it was intimately related to the KP (Kadomtsev–Petviashvili) hierarchy. In paper [10],
Hirota gives the discretization of the potential modified KdV equation, which can be transformed
into the form (1.1), and shows that it is a 4-reduction of the Hirota–Miwa equation (which Hirota
named as the discrete analogue of a generalized Toda equation).

In this paper, we discuss in detail the Darboux and binary Darboux transformations and how
these may be used to obtain exact solutions of the discrete potential modified Korteweg–de Vries
(d-p-mKdV) equation (1.1). In contrast to the approaches presented in [4, 14, 16], we get (1.1)
and its Lax pairs by reducing the Hirota–Miwa equation (1.3) and its Lax pairs. In fact, the
2-periodic reduction method studied here has already been investigated in [2] where authors
present a multidimensionally consistent hierarchy of discrete systems whose first member is
the equation (1.1). Otherwise, this was refined and extended to the non-commutative case
in [7]. In [2, 3, 4, 7, 17], as we see that the integrability is understood in the sense of the
multidimensional consistency property, which gives a Lax pair directly. We here, through a 2-
periodic reduction of the linear systems of the Hirota–Miwa equation (1.3), obtain the Lax
pairs of the equation (1.1) which allows the application of the classical Darboux transforma-
tions [11, 12]. However, up to gauge transformations, these Lax pairs are coincident with the
ones given by the multidimensional consistency property [4]. This paper is part of the work
which will explore the equations in the ABS list, their Lax pairs and Darboux transformations
as reductions of the Hirota–Miwa equation.

The outline of this paper is as follows. In Section 2, we recall important results on Darboux
transformations and binary Darboux transformations of the Hirota–Miwa equation. In particu-
lar, in a departure from the results in [18, 19, 21], we write the linear system of Hirota–Miwa

equation in a different form, by the gauge transformation φ →
3∏
i=1

a−nii φ, which is suitable for

making the reduction. In Section 3, we show that how the d-p-mKdV equation and its Lax
pairs in matrix form arise from the Hirota–Miwa equation by a 2-periodic reduction. Then its
Darboux transformations and binary Darboux transformations are derived and it is shown how
these may be used to construct exact solutions.

2 Hirota–Miwa equation

The Hirota–Miwa equation (1.3) arises as the compatibility conditions of the linear system

φi − φj = (ai − aj)uijφ, 1 ≤ i < j ≤ 3, (2.1)

where for φ = φ(n1, n2, n3) each subscript i denotes a forward shift in the corresponding discrete
variable ni, for example, φ1 = Tn1 (φ) = φ(n1 + 1, n2, n3). This linear system (2.1) is compatible
if and only if

(a1 − a2)u12 + (a2 − a3)u23 + (a3 − a1)u13 = 0, (2.2a)(
uij
)
k
uik =

(
uik
)
j
uij . (2.2b)
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Note that when one uses the formula uij = τijτ/τiτj , (2.2a) gives (1.3) and (2.2b) is satisfied
identically. A second way is to suppose uij = (vj − vi + (ai − aj))/(ai − aj). This ansatz
solves (2.2a) exactly and (2.2b) becomes the discrete potential KP (d-p-KP) equation [15].

In this paper, in particular we deal with the Hirota–Miwa equation (1.3) together with its
linear system in the form (2.1). Using the reversal-invariance property of the Hirota–Miwa
equation, i.e., it is invariant with respect to the reversal of all lattice directions ni → −ni, we
have the linear system in formal adjoint form [18]

ψi − ψj = (ai − aj)
τijτ

τiτj
ψ, 1 ≤ i < j ≤ 3. (2.3)

The subscript i denotes a backward shift with respect to ni, for example, ψ1 = T−1
n1

(ψ) =

ψ(n1 − 1, n2, n3).

2.1 Darboux and binary Darboux transformations

The basic Darboux transformation for the Hirota–Miwa equation is stated in the following
proposition.

Proposition 2.1. Let θ be a non-zero solution of the linear system (2.1) for some τ . Then the
transformation

DTθ : φ→
C

[i]
(θ, φ)

θ
, τ → θτ,

leaves (2.1) invariant, where C
[i]

(θ, φ) = θφi−θiφ, i = 1, 2, 3, using the subscript [i] to designate
that the forward shifts of the determinant C

[i]
(θ, φ) is with respect to the variable ni.

Next we write down the closed form expression for the result of N applications of the above
Darboux transformation, which give solutions in Casoratian determinant form. To do this
we need to define the Casoratian of N solutions. Let θ = (θ1(n1, n2, n3), θ

2(n1, n2, n3), . . . ,
θN (n1, n2, n3))

T be an N -vector solution of (2.1). The Casoratian determinant (with forward-
shifts) can be written as

C
(
θ1, θ2, . . . , θN

)
=
∣∣θ, Tni (θ), T 2

ni
(θ) . . . , TN−1

ni
(θ)
∣∣, 1 ≤ i ≤ 3,

which may also be unambiguously defined in the following notation as

C
[i]

(
θ1, θ2, . . . , θN

)
=
∣∣θ(0),θ(1),θ(2), . . . ,θ(N − 1)

∣∣, 1 ≤ i ≤ 3,

where θ(k) denotes the N -vector
(
θ1(n1, n2, n3), θ

2(n1, n2, n3), . . . , θ
N (n1, n2, n3)

)T
subject to

the k times shift T k
ni

on ni which gives ni → ni + k, 0 ≤ k ≤ N − 1, and i = 1, 2 or 3, the same
value being taken for i in each column in the determinant. Then we have the following.

Proposition 2.2. Let θ1, θ2, . . . , θN be non-zero, independent solutions of the linear system (2.1)
for some τ , such that C

[i]

(
θ1, θ2, . . . , θN

)
6= 0. Then the N -fold Darboux transformation

φ→
C

[i]

(
θ1, θ2, . . . , θN , φ

)
C

[i]

(
θ1, θ2, . . . , θN

) , τ → C
[i]

(
θ1, θ2, . . . , θN

)
τ,

leaves (2.1) invariant.

Now we can apply the reflections ni → −ni, i = 1, 2, 3, to the above results to deduce adjoint
Darboux transformation for the second linear system (2.3).
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Proposition 2.3. Let ρ be a non-zero solution of the linear system (2.3) for some τ . Then the
transformation

DTρ : ψ →
C

[i]
(ρ, ψ)

ρ
, τ → ρτ,

leaves (2.3) invariant, where C
[i]

(ρ, ψ) = ρ
i
ψ−ρψ

i
, i = 1, 2, 3, using the subscript [i] to designate

that the backward shifts of the determinant C
[i]

(ρ, ψ) is with respect to the variable ni.

The N -fold adjoint Darboux transformation is expressed in terms of the Casoratian

C
[i]

(
ρ1, ρ2, . . . , ρN

)
= |ρ(0),ρ(−1),ρ(−2), . . . ,ρ(−N + 1)|, 1 ≤ i ≤ 3,

where ρ =
(
ρ1, ρ2, . . . , ρN

)T
and ρ(−k) = T−k

ni
(ρ) = ρ|

ni→ni−k
, 0 ≤ k ≤ N − 1, the same i = 1, 2

or 3 be taken in all columns.

Proposition 2.4. Let ρ1, ρ2, . . . , ρN be N non-zero independent solutions of the linear sys-
tem (2.3) for some τ , such that C

[i]

(
ρ1, ρ2, . . . , ρN

)
6= 0. Then the N -fold adjoint Darboux

transformation

ψ →
C

[i]

(
ρ1, ρ2, . . . , ρN , ψ

)
C

[i]

(
ρ1, ρ2, . . . , ρN

) , τ → C
[i]

(
ρ1, ρ2, . . . , ρN

)
τ,

leaves (2.3) invariant.

To construct a binary Darboux transformation, we introduce the potential ω = ω(φ, ψ),
defined by the relations

∆iω(φ, ψ) = φψi, i = 1, 2, 3, (2.4)

where ∆i = Tni − 1 is the forward-difference operator in discrete variable ni. If φ and ψ satisfy
the linear systems (2.1) and (2.3) for some τ , respectively, then (2.4) are compatible in the sense
as ∆i(φψj) = ∆j(φψi), for i < j. So the potential ω is well-defined.

The following proposition gives the binary Darboux transformation of the Hirota–Miwa equa-
tion (1.3).

Proposition 2.5. For some τ , let θ and φ be two non-zero solutions of the linear system (2.1),
ρ and ψ be two non-zero solutions of the linear system (2.3), then

BDTθ,ρ : φ→ φ− θω(θ, ρ)−1ω(φ, ρ), τ → ω(θ, ρ)τ,

aBDTθ,ρ : ψ → ψ − ρω(θ, ρ)−1ω(θ, ψ), τ → ω(θ, ρ)τ,

leave (2.1) and (2.3) respectively invariant.

The N -fold iteration of these binary Darboux transformations are given below.

Proposition 2.6. Let θ =
(
θ1, . . . , θN

)T
and ρ =

(
ρ1, . . . , ρN

)T
satisfy linear systems (2.1)

and (2.3) for some τ respectively. Then

φ→
∣∣∣∣ω(θ,ρT ) θ
ω
(
φ,ρT

)
φ

∣∣∣∣ ∣∣ω(θ,ρT )∣∣−1, τ →
∣∣ω(θ,ρT )∣∣τ,

ψ →
∣∣∣∣ω(θT ,ρ) ρ
ω
(
θT , ψ

)
ψ

∣∣∣∣ ∣∣ω(θT ,ρ)∣∣−1, τ →
∣∣ω(θT ,ρ)∣∣τ,

leave (2.1) and (2.3) respectively invariant.

Here ω
(
θ,ρT

)
=
(
ω
(
θ(i), ρ(j)

))
i,j=1,...,N

, ω
(
θT ,ρ

)
= ω

(
θ,ρT

)T
are N×N matrix, ω

(
φ,ρT

)
=(

ω
(
φ, ρ(j)

))
j=1,...,N

and ω
(
θT , ψ

)
=
(
ω
(
θ(i), ψ

))
i=1,...,N

are N -row vectors.

The proofs of those above propositions are straightforward computation, so we do not give
the details. The reader is also referred to the papers [18, 19].
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2.2 Explicit solutions obtained by Darboux transformations

Here we present explicit examples of the classes of solutions that may be obtained by means of
the Darboux transformations derived above. We choose the seed solution of the Hirota–Miwa
equation (1.3) as τ = τ0 = 1. With this choice, the first linear system (2.1) reads

φi − φj = (ai − aj)φ, 1 ≤ i < j ≤ 3,

and the basic eigenfunctions, depending on a single parameter p are found to be

φ(n1, n2, n3; p) =
3∏
i=1

(ai + p)ni . (2.5)

In a similar way the basic eigenfunctions of the adjoint linear system (2.3), depending on a single
parameter q, are

ψ(n1, n2, n3; q) =
3∏
i=1

(ai + q)−ni . (2.6)

For these eigenfunctions above we may integrate (2.4) and obtain the potential

ω(φ, ψ) =
1

p− q

3∏
i=1

(
ai + p

ai + q

)ni
+ c. (2.7)

Given the above expression it is straightforward to write down the following explicit solution for
the Hirota–Miwa equation (1.3)

τ(n1, n2, n3) = C
[i]

(
θ1, θ2, . . . , θN

)
τ0, (2.8)

where θk = αkθ(n1, n2, n3; pk) + θ(n1, n2, n3; p
′
k) where θ(n1, n2, n3; pk) and θ(n1, n2, n3; p

′
k) are

given by (2.5) and pk, p
′
k, pk 6= p′k and αk are arbitrary constants;

τ(n1, n2, n3) = C
[i]

(
ρ1, ρ2, . . . , ρN

)
τ0,

where ρk = βkρ(n1, n2, n3; qk) + ρ(n1, n2, n3; q
′
k) where ρ(n1, n2, n3; qk) and ρ(n1, n2, n3; q

′
k) are

given by (2.6) and qk, q
′
k, qk 6= q′k and βk are arbitrary constants;

τ(n1, n2, n3) = det(ωk,l)τ0, k, l = 1, 2, . . . , N,

where ωk,l is given by (2.7) with and p = pk, q = ql and c = ckl.

3 Discrete potential modified KdV equation

3.1 From Hirota–Miwa equation to d-p-mKdV equation:
2-periodic reductions

Here, we explain the way to obtain the d-p-mKdV equation (1.1) from the Hirota–Miwa equa-
tion (1.3) through a 2-periodic reduction technique.

For the Hirota–Miwa equation (1.3), from (2.8), it is easy to get its one soliton solution in
discrete exponential function form

τ(n1, n2, n3) = 1 + α

3∏
i=1

(
ai + p

ai + p′

)ni
. (3.1)
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Introduce f(n1, n2, n3) and f̄(n1, n2, n3) and impose a 2-periodic property on the τ function (3.1)
as below

τ = f = T 2
n3

(f), f = Tn3(f). (3.2)

Note here that the reduction condition (3.2) gives a3 = 0, p′ = −p, and

f = T 2
n3

(f), f = Tn3(f). (3.3)

Moreover (3.2) and (3.3) indicate the symmetric property between f and f , with respect to n3.
By applying the reduction condition (3.2) to the Hirota–Miwa equation (1.3), together with

parameter reduction a3 = 0, we get

(a1 − a2)f12f = a1f2f1 − a2f1f2, (3.4a)

(a1 − a2)f12f = a1f2f1 − a2f1f2. (3.4b)

There are two ways to obtain the equation (3.4b), one way is applying the symmetric property
between f and f to the equation (3.4a), the another one is taking the shift operator Tn3 on the
Hirota–Miwa equation (1.3), and using the reduction condition (3.3).

Define two functions (potentials)

v(n1, n2, n3) =
f

f
, u(n1, n2, n3) =

f12f

f1f2
. (3.5)

By substituting (3.5) into (3.4), we get

(a1 − a2)vu = a1v1 − a2v2, (3.6a)

(a1 − a2)v12u = a1v2 − a2v1. (3.6b)

Eliminating u in (3.6) gives

Q(v, v1, v2, v12; a1, a2) ≡ v12(a1v1 − a2v2)− v(a1v2 − a2v1) = 0, (3.7)

which is the d-p-mKdV equation (1.1) and is exactly same as the one first given by Nijhoff,
cf. [14], through the Cauchy matrix approach. Moreover, the relation (3.6) serves as the discrete
Miura transformation between the d-KdV equation

1

u1
− 1

u2
=
a1 − a2
a1 + a2

(u12 − u) ,

in potential u (or more specifically, say u2 [21]) and the d-p-mKdV equation (3.7) in potential v.
Another interesting result is that with the periodic property of f and f , we have the following

formulae on the potentials u and v as follows

Tn3(u) = uv12vv
−1
1 v−12 , T 2

n3
(u) = u, Tn3(v) = v−1, T 2

n3
(v) = v.

So the potentials u and v also satisfy the 2-periodic property in the virtual variable n3. We
observe that if v is a solution of the d-p-mKdV equation then, as in the continuous case, −v is
a solution, but in the discrete case, v−1 is a yet another solution.

Under the reduction condition (3.2), from the τ function (3.1), we easily get the exact solution
of (3.4)

f(n1, n2, n3) = 1 + α(−1)n3

2∏
i=1

(
ai + p

a1 − p

)ni
,

f(n1, n2, n3) = 1− α(−1)n3

2∏
i=1

(
ai + p

a1 − p

)ni
,
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which directly gives the one soliton solution of the d-p-mKdV equation

v(n1, n2) =
f

f
=

1− α(−1)n3

2∏
i=1

(
ai+p
a1−p

)ni
1 + α(−1)n3

2∏
i=1

(
ai+p
a1−p

)ni .
Note here that in the equation (3.7), there is no shift depends on the discrete variable n3. So
treating the n3 as a virtual variable for the d-p-mKdV equation is allowable.

Next, we show the way of discovering the linear system in matrix form of the d-p-mKdV
equation (3.7) from the linear system of the Hirota–Miwa equation (2.1) through the 2-periodic
reduction technique.

Introduce eigenfunctions φ(n1, n2, n3) and φ(n1, n2, n3) and impose a 2-periodic condition on
the eigenfunction φ(n1, n2, n3) in the linear system (2.1) as below

φ = λ−2T 2
n3

(φ), φ = λ−1Tn3(φ), (3.8)

where the parameter λ serves as the spectral parameter. From (3.8), we have

φ = λ−2T 2
n3

(φ), φ = λ−1Tn3(φ). (3.9)

So (3.8) and (3.9) mean the symmetric property between φ and φ, with respect to n3.
By applying the reduction conditions (3.2) and (3.8), together with a3 = 0, to the linear

system (2.1), we get

φ1 − φ2 = (a1 − a2)
f12f

f1f2
φ, (3.10a)

φ2 − λφ = a2
f2f

f2f
φ, (3.10b)

λφ− φ1 = −a1
f1f

f1f
φ. (3.10c)

Then by using the symmetric property (3.3) and (3.9) respectively between f and f , φ and φ,
we get

φ1 − φ2 = (a1 − a2)
f12f

f1f2
φ, (3.11a)

φ2 − λφ = a2
f2f

f2f
φ, (3.11b)

λφ− φ1 = −a1
f1f

f1f
φ. (3.11c)

Substituting (3.5) into (3.10) and (3.11) gives

φ1 − φ2 = (a1 − a2)uφ, (3.12a)

φ2 − λφ = a2v2v
−1φ, (3.12b)

λφ− φ1 = −a1v1v−1φ, (3.12c)

and

φ1 − φ2 = (a1 − a2)uv12vv−11 v−12 φ, (3.13a)

φ2 − λφ = a2v
−1
2 vφ, (3.13b)

λφ− φ1 = −a1v−11 vφ. (3.13c)
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Through the discrete Miura transformation (3.6), the equations (3.12a) and (3.13a) can be
derived by (3.12b) and (3.12c), (3.13b) and (3.13c), respectively.

Defining a vector eigenfunction Φ = (φ, φ)T , which satisfies the condition (3.8), then (3.12c)
and (3.13c), (3.12b) and (3.13b), can be respectively written in matrix form as below

Φ1 = LΦ, (3.14a)

Φ2 = MΦ, (3.14b)

where

L =

(
a1v1v

−1 λ

λ a1v
−1
1 v

)
, M =

(
a2v2v

−1 λ

λ a2v
−1
2 v

)
.

One then finds that

0 = Φ12 −Φ21 = (L2M −M1L)Φ = λQ(v, v1, v2, v12; a1, a2)

(
0 −v−11 v−12

v−1v−112 0

)
Φ.

So the compatibility condition of the above linear system (3.14) in eigenfunction Φ is that v
obeys the d-p-mKdV equation (3.7).

3.2 Darboux and binary Darboux transformations

In this section, we will see that through the reduction conditions (3.2) and (3.8), it is easy to
investigate the Darboux and binary Darboux transformations of d-p-mKdV equation.

Let v be a solution of the d-p-mKdV equation (3.7) and Φ = (φ, φ)T be a vector solution
of its Lax pair (3.14). The fundamental Darboux transformation of the d-p-mKdV equation is
given as below.

Proposition 3.1. Suppose (θ, θ)T , which holds the 2-periodic property θ = µ−2T 2
n3

(θ), θ =

µ−1Tn3 (θ), is a vector solution of the linear system (3.14) by taking λ = µ for some v, then

DTθ,θ : φ→
C

[3]
(θ, φ)

θ
, φ→

C
[3]

(θ, φ)

θ
, v →

Tn3 (θ)

θ
v = µ2

θ

Tn3 (θ)
v (3.15)

leaves (3.14) invariant. Otherwise,

C
[3]

(θ, φ)

θ
= λ−1Tn3

(
C

[3]
(θ, φ)

θ

)
,

C
[3]

(θ, φ)

θ
= λ−1Tn3

(
C

[3]
(θ, φ)

θ

)
.

We remark that may also write the gauge transformation of Φ = (φ, φ)T in (3.15) in matrix
form as follows

DTθ,θ : Φ→

(
−µθ−1θ λ

λ −µθθ−1

)
Φ.

But for later convenience of the construction of the binary Darboux transformation, we here
write in scalar form shown in (3.15).

Next we write down the closed form expression for the result of N applications of the above
Darboux transformation, which give solutions in Casoratian determinant form.
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Proposition 3.2. Let
(
θ1, θ

1)T
,
(
θ2, θ

2)T
, . . . ,

(
θN , θ

N)T
, satisfying θk = λ−2k T 2

n3
(θk), θ

k
=

λ−1k Tn3 (θk), be N non-zero independent vector solutions of the linear system (3.14) by taking

λ = λk, k = 1, 2, . . . , N , for some v, such that C
[3]

(
θ1, θ2, . . . , θN

)
6= 0. Then

φ→ φ̃ =
C

[3]

(
θ1, θ2, . . . , θN , φ

)
C

[3]

(
θ1, θ2, . . . , θN

) , φ→ φ̃ =
C

[3]

(
θ
1
, θ

2
, . . . , θ

N
, φ
)

C
[3]

(
θ
1
, θ

2
, . . . , θ

N) , (3.16a)

v → ṽ =
Tn3
(
C

[3]

(
θ1, θ2, . . . , θN

))
C

[3]

(
θ1, θ2, . . . , θN

) v =

N∏
i=1

λ2i
C

[3]

(
θ
1
, θ

2
, . . . , θ

N)
Tn3
(
C

[3]

(
θ
1
, θ

2
, . . . , θ

N))v, (3.16b)

leaves (3.14) invariant. Otherwise, φ̃ = λ−1Tn3 (φ̃), φ̃ = λ−1Tn3
(
φ̃
)
.

The d-p-mKdV equation (3.7) is invariant with respect to the reversal of all lattice directions
ni → −ni, i = 1, 2. But its linear system (3.14) does not have such invariance and so the
reflections ni → −ni, i = 1, 2, acting on (3.14) give a second linear system on the vector
eigenfunction Ψ = (ψ,ψ)T , which also satisfy 2-periodic reduction condition

ψ = λ−2T−2
n3

(ψ), ψ = λ−1T−1n3
(ψ), (3.17)

as follows

Ψ1 = UΨ, (3.18a)

Ψ2 = VΨ, (3.18b)

where

U =

(
a1v1v

−1 λ

λ a1v
−1
1
v

)
, V =

(
a2v2v

−1 λ

λ a2v
−1
2
v

)
.

One then finds that

0 = Ψ12 −Ψ21 = (U2V − V1U)Ψ = λQ
(
v, v1, v2, v12; a1, a2

)( 0 −v−1
1
v−1
2

v−1v−1
12

0

)
Ψ.

Now we apply the reflections ni → −ni, i = 1, 2, in order to deduce Darboux transformation
for the second linear system as below.

Proposition 3.3. Suppose (ρ, ρ)T , which holds the 2-periodic property ρ = µ−2T−2
n3

(ρ), ρ =

µ−1T−1
n3

(ρ), is a vector solution of the linear system (3.18) by taking λ = µ for some v, then

DTρ,ρ : ψ →
C

[3]
(ρ, ψ)

ρ
, ψ →

C
[3]

(ρ, ψ)

ρ
, v →

T−1
n3

(ρ)

ρ
v = µ2

ρ

T−1
n3

(ρ)
v

leaves (3.18) invariant. Otherwise,

C
[3]

(ρ, ψ)

ρ
= λ−1T−1

n3

(
C

[3]
(ρ, ψ)

ρ

)
,

C
[3]

(ρ, ψ)

ρ
= λ−1T−1

n3

(
C

[3]
(ρ, ψ)

ρ

)
.

Next we write down the closed form expression for the result of N applications of the above
Darboux transformation, which give solutions in Casoratian determinant form.
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Proposition 3.4. Let
(
ρ1, ρ1

)T
,
(
ρ2, ρ2

)T
, . . . ,

(
ρN , ρN

)T
, satisfying ρk = λ−2k T−2

n3
(ρk), ρk =

λ−1k T−1
n3

(ρk), be N non-zero independent vector solutions of the linear system (3.18) by taking

λ = λk, k = 1, 2, . . . , N , for some v, such that C
[3]

(ρ1, ρ2, . . . , ρN ) 6= 0. Then

ψ → ψ̃ =
C

[3]

(
ρ1, ρ2, . . . , ρN , ψ

)
C

[3]

(
ρ1, ρ2, . . . , ρN

) , ψ → ψ̃ =
C

[3]

(
ρ1, ρ2, . . . , ρN , ψ

)
C

[3]

(
ρ1, ρ2, . . . , ρN

) ,

v → ṽ =
T−1
n3

(
C

[3]

(
ρ1, ρ2, . . . , ρN

))
C

[3]

(
ρ1, ρ2, . . . , ρN

) v =

N∏
i=1

λ2i
C

[3]

(
ρ1, ρ2, . . . , ρN

)
T−1
n3

(
C

[3]

(
ρ1, ρ2, . . . , ρN

))v,
leaves (3.18) invariant. Otherwise, ψ̃ = λ−1T−1

n3
(ψ̃), ψ̃ = λ−1T−1

n3

(
ψ̃
)
.

To construct a binary Darboux transformation, we introduce the potentials ω = ω(φ, ψ) and
ω = ω(φ, ψ), defined by the relations

∆3(ω(φ, ψ)) = φTn3 (ψ), (3.19a)

∆3(ω(φ, ψ)) = φTn3 (ψ). (3.19b)

If (φ, φ) and (ψ,ψ) satisfy the linear systems (3.14) and (3.18) for some v, respectively. Other-
wise, together with the reductions (3.8) and (3.17), we have the reduction condition for (ω, ω)T

as follows

Tn3 (ω(φ, ψ)) = ω(φ, ψ), T 2
n3

(ω(φ, ψ)) = ω(φ, ψ),

Tn3 (ω(φ, ψ)) = ω(φ, ψ), T 2
n3

(ω(φ, ψ)) = ω(φ, ψ).

Especially,

Tn3 (ω(φ, ρ)) = λµ−1ω(φ, ρ), T 2
n3

(ω(φ, ρ)) = λ2µ−2ω(φ, ρ),

Tn3 (ω(φ, ρ)) = λµ−1ω(φ, ρ), T 2
n3

(ω(φ, ρ)) = λ2µ−2ω(φ, ρ);

Tn3 (ω(θ, ψ)) = λ−1µ ω(θ, ψ), T 2
n3

(ω(θ, ψ)) = λ−2µ2ω(θ, ψ),

Tn3 (ω(θ, ψ)) = λ−1µ ω(θ, ψ), T 2
n3

(ω(θ, ψ)) = λ−2µ2ω(θ, ψ);

Tn3 (ω(θ, ρ)) = ω(θ, ρ), T 2
n3

(ω(θ, ρ)) = ω(θ, ρ),

Tn3 (ω(θ, ρ)) = ω(θ, ρ), T 2
n3

(ω(θ, ρ)) = ω(θ, ρ);

and

Tn3 (ω(θk, ρl)) =

(
λk
λl

)
ω(θ

k
, ρl), T 2

n3
(ω(θk, ρl)) =

(
λk
λl

)2

ω(θk, ρl),

Tn3 (ω(θ
k
, ρl)) =

(
λk
λl

)
ω(θk, ρl), T 2

n3
(ω(θ

k
, ρl)) =

(
λk
λl

)2

ω(θ
k
, ρl).

The following proposition gives the binary Darboux transformation of the d-p-mKdV equation.

Proposition 3.5. For some v, let (θ, θ)T and (φ, φ)T be two non-zero vector solutions of the
linear system (3.14), respectively corresponding to spectrum parameters µ and λ; (ρ, ρ)T and
(ψ,ψ)T be two non-zero vector solutions of the linear system (3.18), respectively corresponding
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to spectrum parameters µ and λ, then

BDT: φ→ φ− θω(θ, ρ)−1ω(φ, ρ), φ→ φ− θω(θ, ρ)−1ω(φ, ρ),

v →
Tn3 (ω(θ, ρ))

ω(θ, ρ)
v =

ω(θ, ρ)

Tn3 (ω(θ, ρ))
v, (3.20)

aBDT: ψ → ψ − ρω(θ, ρ)−1ω(θ, ψ), ψ → ψ − ρω(θ, ρ)−1ω(θ, ψ),

v →
Tn3 (ω(θ, ρ))

ω(θ, ρ)
v =

ω(θ, ρ)

Tn3 (ω(θ, ρ))
v, (3.21)

leave (3.14) and (3.18) respectively invariant. Otherwise,

φ− θω(θ, ρ)−1ω(φ, ρ) = λ−1Tn3
(
φ− θω(θ, ρ)−1ω(φ, ρ)

)
,

φ− θω(θ, ρ)−1ω(φ, ρ) = λ−1Tn3
(
φ− θω(θ, ρ)−1ω(φ, ρ)

)
,

ψ − ρω(θ, ρ)−1ω(θ, ψ) = λ−1T−1
n3

(
ψ − ρω(θ, ρ)−1ω(θ, ψ)

)
,

ψ − ρω(θ, ρ)−1ω(θ, ψ) = λ−1T−1
n3

(
ψ − ρω(θ, ρ)−1ω(θ, ψ)

)
.

The N -fold iteration of these binary Darboux transformations are given below.

Proposition 3.6. Let
(
θ1, θ

1)T
,
(
θ2, θ

2)T
, . . . ,

(
θN , θ

N)T
and

(
ρ1, ρ1

)T
,
(
ρ2, ρ2

)T
, . . . ,

(
ρN , ρN

)T
be N independent vector solutions, holding θk = λ−2k T 2

n3
(θk), θ

k
= λ−1k Tn3 (θk), and ρk =

λ−2k T−2
n3

(ρk), ρk = λ−1k T−1
n3

(ρk), by taking λ = λk, k = 1, 2, . . . , N , satisfy linear systems (3.14)

and (3.18) for some v respectively. Then

φ→ φ̂ =

∣∣∣∣ω(θ,ρT ) θ
ω
(
φ,ρT

)
φ

∣∣∣∣∣∣ω(θ,ρT )∣∣ , φ→ φ̂ =

∣∣∣∣ω(θ,ρT ) θ

ω
(
φ,ρT

)
φ

∣∣∣∣∣∣ω(θ,ρT )∣∣ ,

v → v̂ =

∣∣Tn3(ω(θ,ρT )
)∣∣∣∣ω(θ,ρT )∣∣ v =

∣∣ω(θ,ρT )∣∣∣∣Tn3(ω(θ,ρT ))∣∣v,
and

ψ → ψ̂ =

∣∣∣∣ω(θT ,ρ) ρ
ω
(
θT , ψ

)
ψ

∣∣∣∣∣∣ω(θT ,ρ)∣∣ , ψ → ψ̂ =

∣∣∣∣∣ω
(
θ
T
,ρ
)
ρ

ω
(
θ
T
, ψ
)

ψ

∣∣∣∣∣∣∣ω(θT ,ρ)∣∣ ,

v → v̂ =

∣∣Tn3(ω(θT ,ρ))∣∣∣∣ω(θT ,ρ)∣∣ v =

∣∣ω(θT ,ρ)∣∣∣∣Tn3(ω(θT ,ρ))∣∣v,
leave (3.14) and (3.18) respectively invariant, where θ =

(
θ1, . . . , θN

)T
and ρ =

(
ρ1, . . . , ρN

)T
.

Otherwise, φ̂ = λ−1Tn3 (φ̂), φ̂ = λ−1Tn3 (φ̂), ψ̂ = λ−1T−1
n3

(ψ̂), ψ̂ = λ−1T−1
n3

(ψ̂).

3.3 Explicit solutions obtained by Darboux transformations

Here we present explicit examples of the classes of solutions that may be obtained by means
of the Darboux transformations derived above. We choose the seed solution of the d-p-mKdV
equation (3.7) as v = v0 = 1. With this choice, the first linear system (3.14) reads

φ1 = a1φ+ λφ, φ1 = a1φ+ λφ,

φ2 = a2φ+ λφ, φ2 = a2φ+ λφ,
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and the eigenfunctions are found to be

φ(n1, n2, n3;λ) = λn3

2∏
i=1

(ai + λ)ni + (−λ)n3

2∏
i=1

(ai − λ)ni , (3.22a)

φ(n1, n2, n3;λ) = λn3

2∏
i=1

(ai + λ)ni − (−λ)n3

2∏
i=1

(ai − λ)ni , (3.22b)

which hold φ = λ−2Tn3 (φ), φ = λ−1Tn3 (φ).
In a similar way the eigenfunctions of the second linear system (3.18) are

ψ(n1, n2, n3;λ) = λ−n3

2∏
i=1

(ai + λ)−ni + (−λ)−n3

2∏
i=1

(ai − λ)−ni , (3.23a)

ψ(n1, n2, n3;λ) = λ−n3

2∏
i=1

(ai + λ)−ni − (−λ)−n3

2∏
i=1

(ai − λ)−ni , (3.23b)

which hold ψ = λ−2T−1
n3

(ψ), ψ = λ−1T−1
n3

(ψ).

For these eigenfunctions (3.22) and (3.23) above we may integrate (3.19) and obtain the
potentials

ω(φ, ψ) =
1

2λ

[
(−1)n3

2∏
i=1

(
ai + λ

ai − λ

)ni
− (−1)−n3

2∏
i=1

(
ai + λ

ai − λ

)−ni]
, (3.24a)

ω(φ, ψ) =
1

2λ

[
(−1)−n3

2∏
i=1

(
ai + λ

ai − λ

)−ni
− (−1)n3

2∏
i=1

(
ai + λ

ai − λ

)ni]
, (3.24b)

which hold ω(φ, ψ) = T 2
n3

(ω(φ, ψ)), ω(φ, ψ) = Tn3 (ω(φ, ψ)).

Otherwise, for λ = λk, v = v0 = 1, the first linear system (3.14) has eigenfunctions

θk(n1, n2, n3;λk) = λn3
k

2∏
i=1

(ai + λk)
ni + (−λk)n3

2∏
i=1

(ai − λk)ni , (3.25a)

θ
k
(n1, n2, n3;λk) = λn3

k

2∏
i=1

(ai + λk)
ni − (−λk)n3

2∏
i=1

(ai − λk)ni , (3.25b)

which hold θk = λ−2k T 2
n3

(θk), θ
k

= λ−1k Tn3 (θk).

Similarly, for λ = λl, v = v0 = 1, the second linear system (3.18) has eigenfunctions

ρl(n1, n2, n3;λl) = λ−n3
l

2∏
i=1

(ai + λl)
−ni + (−λl)−n3

2∏
i=1

(ai − λl)−ni , (3.26a)

ρl(n1, n2, n3;λl) = λ−n3
l

2∏
i=1

(ai + λl)
−ni − (−λl)−n3

2∏
i=1

(ai − λl)−ni , (3.26b)

which hold ρl = λ−2l T−2
n3

(ρl), ρl = λ−1l T−1
n3

(ρl).

For these eigenfunctions (3.25) and (3.26) above we may integrate (3.19) and obtain the
potential, for λk 6= λl,

ω
(
θk, ρl

)
= λ−1l

(
λk
λl

)n3
[(

λk
λl
− 1

)−1 2∏
i=1

(
ai + λk
ai + λl

)ni
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−
(
λk
λl

+ 1

)−1
(−1)n3

2∏
i=1

(
ai − λk
ai + λl

)ni
+

(
λk
λl

+ 1

)−1
(−1)n3

2∏
i=1

(
ai + λk
ai − λl

)ni
−
(
λk
λl
− 1

)−1 2∏
i=1

(
ai − λk
ai − λl

)ni ]
, (3.27a)

ω
(
θ
k
, ρl
)

= λ−1l

(
λk
λl

)n3
[(

λk
λl
− 1

)−1 2∏
i=1

(
ai + λk
ai + λl

)ni
+

(
λk
λl

+ 1

)−1
(−1)n3

2∏
i=1

(
ai − λk
ai + λl

)ni
−
(
λk
λl

+ 1

)−1
(−1)n3

2∏
i=1

(
ai + λk
ai − λl

)ni
−
(
λk
λl
− 1

)−1 2∏
i=1

(
ai − λk
ai − λl

)ni ]
, (3.27b)

which hold

Tn3
(
ω
(
θk, ρl

))
=

(
λk
λl

)
ω
(
θ
k
, ρl
)
, T 2

n3

(
ω
(
θk, ρl

))
=

(
λk
λl

)2

ω
(
θk, ρl

)
.

For λk = λl, these eigenfunctions are (3.24) taking λ = λk = λl.

Given the above expression it is straightforward to write down the following explicit solution
for the d-p-mKdV equation (3.7)

v(n1, n2) =
Tn3
(
C

[3]

(
θ1, θ2, . . . , θN

))
C

[3]

(
θ1, θ2, . . . , θN

) v0,

where θk = θk(n1, n2, n3;λk) is given by (3.25) and λk are arbitrary constants;

v(n1, n2) =
T−1
n3

(
C

[3]

(
ρ1, ρ2, . . . , ρN

))
C

[3]

(
ρ1, ρ2, . . . , ρN

) v0,

where ρk = ρk(n1, n2, n3;λk) is given by (3.26) and λk are arbitrary constants;

v(n1, n2, n3) =
Tn3 (det(ωk,l))

det(ωk,l)
v0, k, l = 1, 2, . . . , N,

where ωk,l is given by (3.27) with ωk,l = ω(θk, ρl).

4 Conclusions

In this paper, we presents two main results. In the first we show how the d-p-mKdV equation
and its Lax pairs in matrix form arise from the Hirota–Miwa equation by 2-periodic reduction.
The second is that Darboux transformations and binary Darboux transformations are derived for
the d-p-mKdV equation and we show how these may be used to construct exact solutions. In this
paper, we have revisited the Darboux and binary transformations of the Hirota–Miwa equation

but in a departure from the results in [18, 19, 21], by the gauge transformation φ→
3∏
i=1

a−nii φ,

we write the linear system of Hirota–Miwa equation in a way which is suitable for obtaining the
Lax pair of the d-pmKdV equation naturally by a 2-periodic reduction. Up to gauge transfor-
mations, these Lax pairs, which allow the application of the classical Darboux transformations,
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are coincident with the ones given by the multidimensional consistency property [4]. Hieta-
rinta and Zhang [8] derived the N -soliton solutions to the d-p-mKdV equation using Hirota’s
direct method and the authors mention that the bilinear equations they get are similar to the
Hirota–Miwa equation (1.3). The results in this paper, in which similar results are obtained by
reduction of the Hirota–Miwa equation, give an explanation of the observations in [8].

A Some proofs

This section contains proofs of some of the propositions in the main text. For the d-p-mKdV
equation, one each of the N -fold basic Darboux transformations and binary Darboux transfor-
mations is proved. The omitted proofs are very similar.

A.1 Proof of Proposition 3.2

Let

F := C
[3]

(
θ1, θ2, . . . , θN

)
= |θ(0),θ(1), . . . ,θ(N − 1)|,

G := C
[3]

(
θ1, θ2, . . . , θN , φ

)
=
∣∣θ†(0),θ

†
(1), . . . ,θ

†
(N)

∣∣,
F := C

[3]

(
θ
1
, θ

2
, . . . , θ

N)
=
∣∣θ(0),θ(1), . . . ,θ(N − 1)

∣∣,
G := C

[3]

(
θ
1
, θ

2
, . . . , θ

N
, φ
)

=
∣∣θ†(0),θ

†
(1), . . . ,θ

†
(N)

∣∣,
where θ =

(
θ1, θ2, . . . , θN

)
, θ
†
=
(
θ1, θ2, . . . , θN, φ

)
, θ =

(
θ
1
, θ

2
, . . . , θ

N)
, θ
†
=
(
θ
1
, θ

2
, . . . , θ

N
, φ
)
.

Moreover, by the reduction conditions φ = λ−1Tn3 (φ), φ = λ−1Tn3 (φ), θ
i

= λ−1i Tn3 (θi), and θi =

λ−1i Tn3 (θ
i
), we easily get the relation G

F
= λ−1Tn3

(
G
F

)
, G
F = λ−1Tn3

(
G
F

)
. To verify that (3.14)

is invariant under (3.16) we must show that, for κ = 1, 2,

GκTn3 (F ) = aκvκv
−1Tn3 (Fκ)G+ Tn3 (G)Fκ,

GκTn3 (F ) = aκv
−1
κ vTn3 (F κ)G+ Tn3 (G)F κ,

which is equivalent to, under the backward shift operator T−1
n3
T−1
nκ

,

T−1
n3

(G)Fκ = aκvv
−1
κ FT−1

n3
(Gκ) +GκT

−1
n3

(F ), (A.1a)

T−1
n3

(G)F κ = aκv
−1vκFT

−1
n3

(Gκ) +GκT
−1
n3

(F ). (A.1b)

From (3.14), we can deduce the following formulae which are the basic properties we use in
proving

θκ(l) = θ(l − 1) +
l−2∑
i=0

(−ακ)i+1θ(l − 2− i) + (−ακ)lθκ(0),

θ†κ(l) = θ†(l − 1) +
l−2∑
i=0

(−ακ)i+1θ†(l − 2− i) + (−ακ)lθ†κ(0),

θκ(l) = θ(l − 1) +

l−2∑
i=0

(−βκ)i+1θ(l − 2− i) + (−βκ)lθκ(0),

θ
†
κ(l) = θ

†
(l − 1) +

l−2∑
i=0

(−βκ)i+1θ
†
(l − 2− i) + (−βκ)lθ

†
κ(0),
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where ακ = aκvv
−1
κ and βκ = aκv

−1vκ are scalars, κ = 1, 2. Then, for (A.1a), it follows that

T−1
n3

(G) =
∣∣θ†(−1),θ†(0),θ†(1), . . . ,θ†(N − 1)

∣∣,
Fκ =

∣∣θ†κ(0),θ(0),θ(1), . . . ,θ(N − 2)
∣∣,

ακT
−1
n3

(Gκ) = −
∣∣θ†κ(0),θ†(−1),θ†(0), . . . ,θ†(N − 2)

∣∣,
F =

∣∣θ(0),θ(1),θ(2), . . . ,θ(N − 1)
∣∣,

Gκ =
∣∣θ†κ(0),θ†(0),θ†(1), . . . ,θ†(N − 1)

∣∣,
T−1
n3

(F ) =
∣∣θ(−1),θ(0),θ(1), . . . ,θ(N − 2)

∣∣.
Substituting into the left-hand side of (A.1a), and using the Laplace theorem, we get

LHS =

∣∣∣∣θ†κ(0) θ†(−1) θ†(0) · · · θ†(N − 2) 0 · · · 0 θ†(N − 1)
θκ(0) θ(−1) 0 · · · 0 θ(0) · · · θ(N − 2) θ(N − 1)

∣∣∣∣ = 0.

In a similar way, we can prove that (A.1b) is also satisfied.

A.2 Proof of Proposition 3.6

The proof is by induction. Let
(
θ1, θ

1)T
= (θ[0], θ[0])T ,

(
θ2, θ

2)T
, . . . ,

(
θN , θ

N)T
and

(
ρ1, ρ1

)T
=

(ρ[0], ρ[0])T ,
(
ρ2, ρ2

)T
, . . . ,

(
ρN , ρN

)T
be vector eigenfunctions of ‘seed’ linear system (3.14) and

(3.18) respectively for the ‘seed’ potential v = v[0] and let (φ, φ) = (φ[0], φ[0]), (ψ,ψ) =
(ψ[0], ψ[0]) denote arbitrary eigenfunctions.

The Nth iteration of binary Darboux transformations is via the formulae, N = 1, 2, . . . ,

φ[N ] = φ[N − 1]− θ[N − 1]ω(θ[N − 1], ρ[N − 1])−1ω(φ[N − 1], ρ[N − 1]), (A.2a)

φ[N ] = φ[N − 1]− θ[N − 1]ω(θ[N − 1], ρ[N − 1])−1ω(φ[N − 1], ρ[N − 1]), (A.2b)

ψ[N ] = ψ[N − 1]− ρ[N − 1]ω(θ[N − 1], ρ[N − 1])−1ω(θ[N − 1], ψ[N − 1]), (A.2c)

ψ[N ] = ψ[N − 1]− ρ[N − 1]ω(θ[N − 1], ρ[N − 1])−1ω(θ[N − 1], ψ[N − 1]), (A.2d)

v[N ] =
Tn3(ω(θ[N − 1], ρ[N − 1]))

ω(θ[N − 1], ρ[N − 1])
v[N − 1]

=
ω(θ[N − 1], ρ[N − 1])

Tn3(ω(θ[N − 1], ρ[N − 1]))
v[N − 1], (A.2e)

and

θ[N ] = φ[N ]|
φ→θN+1 , θ[N ] = φ[N ]|

φ→θN+1 , (A.3a)

ρ[N ] = ψ[N ]|
ψ→ρN+1 , ρ[N ] = ψ[N ]|

ψ→ρN+1 . (A.3b)

For N = 1, the iterated binary Darboux transformation is the basic form given by (3.20)
and (3.21).

Suppose for N = k, the Proposition 3.6 is right, i.e., we have

φ[k] =

∣∣∣∣ω(θ,ρT ) θ
ω
(
φ,ρT

)
φ

∣∣∣∣ ∣∣ω(θ,ρT )∣∣−1, φ[k] =

∣∣∣∣ω(θ,ρT ) θ

ω
(
φ,ρT

)
φ

∣∣∣∣ ∣∣ω(θ,ρT )∣∣−1, (A.4a)

ψ[k] =

∣∣∣∣ω(θT ,ρ) ρ
ω
(
θT , ψ) ψ

∣∣∣∣ ∣∣ω(θT ,ρ)∣∣−1, ψ[k] =

∣∣∣∣∣ω
(
θ
T
,ρ
)
ρ

ω
(
θ
T
, ψ
)

ψ

∣∣∣∣∣ ∣∣ω(θT ,ρ)∣∣−1, (A.4b)

v[k] =

∣∣Tn3(ω(θT ,ρ))∣∣∣∣ω(θT ,ρ)∣∣ v =

∣∣ω(θT ,ρ)∣∣∣∣Tn3(ω(θT ,ρ))∣∣v



16 Y. Shi, J. Nimmo and J.X. Zhao

=

∣∣Tn3(ω(θ,ρT ))∣∣∣∣ω(θ,ρT )∣∣ v =

∣∣ω(θ,ρT )∣∣∣∣Tn3(ω(θ,ρT ))∣∣v, (A.4c)

where the column vectors are as below

θ =
(
θ1, θ2, . . . , θk

)T
, θ =

(
θ
1
, θ

2
, . . . , θ

k)T
,

ρ =
(
ρ1, ρ2, . . . , ρk

)T
, ρ =

(
ρ1, ρ2, . . . , ρk

)T
,

and the k × k matrices and 1× k row vectors are as follows

ω
(
θ,ρT

)
=


ω
(
θ1, ρ1

)
ω
(
θ1, ρ2

)
· · · ω

(
θ1, ρk

)
ω
(
θ2, ρ1

)
ω
(
θ2, ρ2

)
· · · ω

(
θ2, ρk

)
...

... · · ·
...

ω
(
θk, ρ1

)
ω
(
θk, ρ2

)
· · · ω

(
θk, ρk

)
 , ω

(
θT ,ρ

)
= ω

(
θ,ρT

)T
,

ω
(
θ,ρT

)
=


ω
(
θ
1
, ρ1
)

ω
(
θ
1
, ρ2
)
· · · ω

(
θ
1
, ρk
)

ω
(
θ
2
, ρ1
)

ω
(
θ
2
, ρ2
)
· · · ω

(
θ
2
, ρk
)

...
... · · ·

...

ω
(
θ
k
, ρ1
)

ω
(
θ
k
, ρ2
)
· · · ω

(
θ
k
, ρk
)

 , ω
(
θ
T
,ρ
)

= ω
(
θ,ρT

)T
,

ω
(
φ,ρT

)
=
(
ω
(
φ, ρ1

)
ω
(
φ, ρ2

)
· · · ω

(
φ, ρk

))
,

ω
(
φ,ρT

)
=
(
ω
(
φ, ρ1

)
ω
(
φ, ρ2

)
· · · ω

(
φ, ρk

))
,

ω
(
θT , ψ

)
=
(
ω
(
θ1, ψ

)
ω
(
θ2, ψ

)
· · · ω

(
θk, ψ

))
,

ω
(
θ
T
, ψ
)

=
(
ω
(
θ
1
, ψ
)

ω
(
θ
2
, ψ
)
· · · ω

(
θ
k
, ψ
))
.

Moerover, we have

ω(φ[k], ψ[k]) =

∣∣∣∣ω(θ,ρT ) ω(θ, ψ)
ω
(
φ,ρT

)
ω(φ, ψ)

∣∣∣∣ ∣∣ω(θ,ρT )∣∣−1, (A.5a)

ω(φ[k], ψ[k]) =

∣∣∣∣ω(θ,ρT ) ω(θ, ψ)

ω
(
φ,ρT

)
ω(φ, ψ)

∣∣∣∣ ∣∣ω(θ,ρT )∣∣−1. (A.5b)

The proof of (A.5) is as follows. By the definition of ω and ω in (3.19), and together with (A.4a)
and (A.4b), we have

∆3(ω(φ[k], ψ[k])) = φ[k]Tn3 (ψ[k]) = ∆3(ω(φ, ψ))− Tn3
(
ω
(
θT , ψ

)
ω
(
θT ,ρ

)−1)
∆3(ω(φ,ρ))

−∆3

(
ω
(
θT , ψ

))
ω
(
θT ,ρ

)−1
ω(φ,ρ)

+ Tn3
(
ω
(
θT , ψ

)
ω
(
θT ,ρ

)−1)
∆3

(
ω
(
θT ,ρ

))
ω
(
θT ,ρ

)−1
ω(φ,ρ)

= ∆3

(
ω(φ, ψ)− ω

(
θT , ψ

)
ω
(
θT ,ρ

)−1
ω(φ,ρ)

)
= ∆3

(∣∣∣∣ω(θ,ρT ) ω(θ, ψ)
ω
(
φ,ρT

)
ω(φ, ψ)

∣∣∣∣ ∣∣ω(θ,ρT )∣∣−1) ,
which means (A.5a) is right. Similarly, we can get (A.5b) is right as well.

Note here that we use the difference operator property for matrices as follows

∆n

(
CA−1B

)
= Tn(CA−1)∆n(B)−∆n(C)A−1B − CnA−1n ∆n(A)A−1B,

where ∆n = Tn − 1 is the difference operator, A = AN×N , B = BN×1 and C = C1×N are
arbitrary function matrix, column vector and row vector of independent discrete variable n
respectively.
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Next, let us prove the (k + 1)-th step is also right. By the iterated formulae (A.2a), we have

φ[k + 1] = φ[k]− θ[k]ω(θ[k], ρ[k])−1ω(φ[k], ρ[k]). (A.6)

Substitute (A.2a), (A.3a), (A.3b) and (A.5a) into (A.6), we have

φ[k + 1] =

∣∣∣∣ω(θ,ρT ) θ
ω
(
φ,ρT

)
φ

∣∣∣∣ ∣∣ω(θ,ρT )∣∣−1 − ∣∣∣∣ ω
(
θ,ρT

)
θ

ω
(
θk+1,ρT

)
θk+1

∣∣∣∣ ∣∣ω(θ,ρT )∣∣−1
×
∣∣∣∣ ω

(
θ,ρT

)
ω
(
θ, ρk+1

)
ω
(
θk+1,ρT

)
ω
(
θk+1, ρk+1

)∣∣∣∣−1 ∣∣ω(θ,ρT )∣∣
×
∣∣∣∣ω(θ,ρT ) ω

(
θ, ρk+1

)
ω
(
φ,ρT

)
ω
(
φ, ρk+1

)∣∣∣∣ ∣∣ω(θ,ρT )∣∣−1
=

(∣∣∣∣ω(θ,ρT ) θ
ω
(
φ,ρT

)
φ

∣∣∣∣ ∣∣∣∣ ω
(
θ,ρT

)
ω
(
θ, ρk+1

)
ω
(
θk+1,ρT

)
ω
(
θk+1, ρk+1

)∣∣∣∣− ∣∣∣∣ ω
(
θ,ρT

)
θ

ω
(
θk+1,ρT

)
θk+1

∣∣∣∣
×
∣∣∣∣ω(θ,ρT ) ω

(
θ, ρk+1

)
ω
(
φ,ρT

)
ω
(
φ, ρk+1

)∣∣∣∣)(∣∣∣∣ ω
(
θ,ρT

)
ω
(
θ, ρk+1

)
ω
(
θk+1,ρT

)
ω
(
θk+1, ρk+1

)∣∣∣∣ ∣∣ω(θ,ρT )∣∣)−1

=

∣∣∣∣∣∣
ω
(
θ,ρT

)
ω
(
θ, ρk+1

)
θ

ω
(
θk+1,ρT

)
ω
(
θk+1, ρk+1

)
θk+1

ω
(
φ,ρT

)
ω(φ, ρk+1) φ

∣∣∣∣∣∣
∣∣∣∣ ω

(
θ,ρT

)
ω
(
θ, ρk+1

)
ω
(
θk+1,ρT

)
ω
(
θk+1, ρk+1

)∣∣∣∣−1 .
Note here that we use the Jacobi identity.

Similarly, we can have

ψ[k + 1] =

∣∣∣∣∣∣
ω
(
θT ,ρ

)
ω
(
θk+1,ρ

)
ρ

ω
(
θT , ρk+1

)
ω
(
θk+1, ρk+1

)
ρk+1

ω
(
θT , ψ

)
ω
(
θk+1, ψ

)
ψ

∣∣∣∣∣∣
∣∣∣∣ ω

(
θT ,ρ

)
ω
(
θk+1,ρ

)
ω
(
θT , ρk+1

)
ω
(
θk+1, ρk+1

)∣∣∣∣−1 .
Then from (A.2e), for the potential v̂, we get

v[k + 1] =
Tn3(ω(θ[k], ρ[k]))

ω(θ[k], ρ[k])
v[k] = Tn3

(∣∣∣∣ ω
(
θ,ρT

)
ω(θ, ρk+1)

ω)
(
θk+1,ρT

)
ω
(
θk+1, ρk+1

)∣∣∣∣ ∣∣ω(θ,ρT )∣∣−1)
×
∣∣∣∣ ω

(
θ,ρT

)
ω
(
θ, ρk+1

)
ω
(
θk+1,ρT

)
ω
(
θk+1, ρk+1

)∣∣∣∣−1 ∣∣ω(θ,ρT )∣∣Tn3

(∣∣ω(θ,ρT )∣∣)∣∣ω(θ,ρT )∣∣−1v
= Tn3

(∣∣∣∣ ω
(
θ,ρT

)
ω
(
θ, ρk+1

)
ω
(
θk+1,ρT

)
ω
(
θk+1, ρk+1

)∣∣∣∣) ∣∣∣∣ ω
(
θ,ρT

)
ω
(
θ, ρk+1

)
ω
(
θk+1,ρT

)
ω
(
θk+1, ρk+1

)∣∣∣∣−1 v.
The proofs of the remaining parts are very similar, we omit them here.
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