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Abstract. The redistribution of energy levels between energy bands is studied for a family
of simple effective Hamiltonians depending on one control parameter and possessing axial
symmetry and energy-reflection symmetry. Further study is made on the topological phase
transition in the corresponding semi-quantum and completely classical models, and finally
the joint spectrum of the two commuting observables (H = E, Jz) (also called the lattice
of quantum states) is superposed on the image of the energy-momentum map for the clas-
sical model. Through these comparative analyses, mutual correspondence is demonstrated
to exist among the redistribution of energy levels between energy bands for the quantum
Hamiltonian, the modification of Chern numbers of eigenline bundles for the corresponding
semi-quantum Hamiltonian, and the presence of Hamiltonian monodromy for the complete
classical analog. In particular, as far as the band rearrangement is concerned, a fine agree-
ment is found between the redistribution of the energy levels described in terms of joint
spectrum of energy and momentum in the full quantum model and the evolution of sin-
gularities of the energy-momentum map of the complete classical model. The topological
phase transition observed in the present semi-quantum and the complete classical models
are analogous to topological phase transitions of matter.

Key words: energy bands; redistribution of energy levels; energy-reflection symmetry; Chern
number; band inversion
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1 Introduction

The theoretical and experimental study of topological phases of matter is a hot topic of mathe-
matical and solid state physics of the last twenty-five years [8, 9, 29, 31, 40, 52, 54, 59, 61].
Less attention is paid to the qualitative effects occurring for finite particle quantum systems,
such as atomic or molecular systems, under the variation of some control parameter. Owing
to a sufficiently high density of states, the dynamical behavior in excited states of such a
simple few-body system nevertheless mimics a behavior quite similar to the topological phase
transitions seen in condensed phase matter [38, 51, 58, 69]. For a conceptual unity among
different fields of physics, it should be recognized that common topological ideas are shared
among molecular physics, topological insulators, superfluids, and particle physics although they
are formulated in different words in their respective fields, such as band rearrangement or energy
level redistribution, gap closing, gap node, gapless excitation, contact of the conduction band
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and the valence band at a single point, Dirac points, etc. Further comments on this aspect will
be given in the last section.

The topological origin of the qualitative effect of redistribution of quantum energy levels
between energy bands for simple isolated molecular systems under the variation of a control
parameter was already suggested in 1988 [50]. Later, topological invariants such as Chern
numbers and especially delta-Chern numbers calculated within the associated semi-quantum
model [23, 36, 37, 39] were demonstrated to be relevant to the band rearrangement for a number
of concrete molecular examples. The correspondence between the redistribution phenomenon
for a quantum Hamiltonian and the appearance of Hamiltonian monodromy for its full classical
analog was equally studied [21, 53].

For a better understanding of the reorganization of the energy bands and of the classification
of topological phases of matter, it is of great use to take into account for dynamical molecular
Hamiltonians additional symmetries such as the time-reversal and the particle-hole transforma-
tions, whose actions are represented in quantum mechanics by antiunitary transformations [64,
Chapter 26]. Manifestations of these discrete symmetries are different for the fermionic bands
characteristic for the topological insulators and superconductors [2] from one side and for the
adiabatic energy bands formed in finite particle systems due to adiabatic separation of fast and
slow dynamic degrees of freedom from another side [24]. Molecular examples with time-reversal
symmetry and without time-reversal symmetry were both studied and a general statement con-
cerning the implication of time-reversal invariance on the Chern numbers of adiabatic energy
bands was recently formulated [24]. At the same time the analysis of the energy-reflection sym-
metry for molecular problems has not been seriously studied, whereas this kind of generalized
symmetry (or pseudo-symmetry), known also as particle-hole or charge conjugation symmetry,
is typical for condensed matter studies [12, 18]. Systems with such a symmetry belong to the D
class (one of the BdG classes) within a ten-fold way classification of the topological insulators
and superconductors [2, 9, 54]. In the present paper we study molecular effective Hamiltonians
with a band structure resulting from the separation of dynamical variables into slow and fast
subsystems, on the assumption of the axial symmetry and of the dynamical pseudo-symmetry
manifesting as an energy-reflection symmetry.

The purpose of the present paper is to show that in the presence of the axial symmetry
together with or without the energy-reflection symmetry there exists a mutual correspondence
among the redistribution of the energy levels between bands for the quantum Hamiltonian,
the modification of the Chern numbers of the eigenline bundles for the corresponding semi-
quantum Hamiltonian, and the presence of Hamiltonian monodromy for the complete classical
analog together with fine agreement between the evolution of the energy-momentum map and
the redistribution of energy levels in the initial quantum system seen through the evolution of
the joint spectrum of two commuting observables. Fig. 1 graphically summarizes the different
aspects of the reorganization of the energy band structure and justifies the qualification of this
qualitative phenomenon as a topological phase transition in an isolated molecular system.

The present paper is organized as follows: Section 2 starts with the analysis of a simple
quantum system possessing two energy bands whose internal structure is described by angular
momentum variables. A description is given of the generic phenomenon of the redistribution
of energy levels between energy bands for the two-band problem with the axial symmetry and
an accent is put on the new features appearing in the presence of additional energy-reflection
symmetry. The effective Hamiltonian under study depends on one control parameter A that
plays the role of the width of the energy gap between the bands. Accompanying the shift of the
control parameter A from −∞ to +∞, an inversion of the two bands manifests itself through the
exchange of two energy levels redistributing between the energy bands in opposite directions,
see Fig. 1(a). The quantum Hamiltonian describing the inversion of two bands is generalized to
a model quantum Hamiltonian describing the inversion of a system of energy bands and then
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the global reorganization of bands associated with the band inversion phenomenon is explained
in terms of redistribution of quantum energy levels.

The corresponding semi-quantum model is studied in Section 3 in order to reveal the topo-
logical origin of the redistribution phenomenon. In this model, the dynamical variables are
split in two subsets of slow and fast variables. The slow variables corresponding to small tran-
sition frequencies are responsible for the internal structure of the bands and can be treated
as classical variables. The fast variables are kept as quantum operators. The Hamiltonian is
then represented as a matrix defined on the classical slow variables. The eigenvalues of this
semi-quantum matrix Hamiltonian determine the energy surfaces for the intra-band classical
motion. The formation of degeneracy points of these eigenvalues, as schematically shown in
Fig. 1(b), is responsible for the modification of the topology of the eigenline bundles. The
generic modifications of the topological invariant, the Chern number, are explicitly calculated
for both the model with and without the energy-reflection symmetry. It is shown that the pres-
ence of the energy-reflection symmetry imposes the simultaneous appearance of two degeneracy
points with opposite delta-Chern contributions.

In Section 4, the quantum multi-band problem is treated as a completely classical one defined
on a phase space which is the product of two two-dimensional spheres. The classical Hamilto-
nian system is completely integrable because of the presence of the axial symmetry and can be
characterized by the image of its energy-momentum map, see Fig. 1(c). The energy-reflection
symmetry manifests itself through the (E, Jz) → (−E,−Jz) symmetry in the image of the
energy-momentum map. A counterpart of the band inversion phenomenon consists in the qual-
itative modification of the system of critical values of the energy-momentum map occurring
under the variation of the control parameter and is associated with the appearance of isolated
critical values whose inverse image is a pinched torus, implying the existence of Hamiltonian
monodromy.

Returning back in Section 5 from the complete classical picture to the quantum problem, we
are interested in the lattice of quantum states in the image of the energy-momentum map (see
Fig. 1(d)), which is defined as the joint spectrum of the two commuting observables (H = E, Jz).
This joint spectrum for the transition region between A→ −∞ and A→ +∞ shows the presence
of two elementary monodromy defects and indicates the splitting of the whole set of quantum
states into bulk and edge states. The adjectives bulk and edge are to be understood in a spectral
meaning: the bulk states correspond to energy levels that belong to the bulk of the energy
bands while the edge states are associated with the energy levels redistributing between the
bands during the band inversion process. In topological insulator theory, the word edge has
a spatial meaning. But the edge state plays also a role of gap closing. In this sense, our
nomenclature of edge state based on spectral theory is in accord with the spatial meaning since
the edge states are responsible for the band rearrangement.

Section 6 presents the relation between the spectral flow for the multi-band quantum problem
and the topological effects. These effects are discussed in the semi-quantum and completely
classical analogs of the quantum problem. A generalization of the spectral flow notion to the
band inversion phenomenon with an arbitrary number of bands is discussed.

Section 7 contains the conclusion.

2 Quantum Hamiltonian and its symmetry

We start in this section by considering a quantum system formed by “slow” and “fast” subsys-
tems and assuming the existence of two quantum fast states such that further excitations of the
fast subsystem is much more energy consuming than the excitations of the slow subsystem. In
this situation we are allowed to write an effective Hamiltonian as a two-by-two Hermitian matrix
with matrix elements being functions of quantum operators responsible for the internal structure
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Figure 1. Graphical summary of the four different descriptions of the same problem studied in the

present paper. (a) Evolution of the quantum energy levels of Hamiltonian (2.2) for S = 1/2 as a function

of control parameter A. (b) Schematic representation of the eigenvalues of the semi-quantum Hamiltonian

for S = 1/2 forming two conical intersection points viewed as a topological origin of the redistribution

of energy levels between bands in the completely quantum version. (c) Image of the energy-momentum

map for the classical Hamiltonian system with L � S, A ∼ 0. The four isolated critical values of the

energy-momentum map are shown by filled dots. For more details see Fig. 9. (d) Lattice of quantum

states corresponding to the classical Hamiltonian H with L = 5, S = 2, A = 0 superposed on the image

of the classical energy-momentum map. Quantum bulk and edge states are marked by black and green

dots respectively, edge states being responsible for the redistribution of energy levels.

of the two bands [69]. We use the components of the angular momentum Lα, α = x, y, z to
describe the internal structure.

We assume that the effective quantum Hamiltonian respects the axial symmetry with diagonal
action on the fast (Sα, these variables are explicitly introduced in equation (2.2)) and slow (Lα)
variables (this means that both Sα and Lα transform as vectors) and contains Lα operators of
the lowest degrees only. The Hamiltonian, consequently, takes the following simple form1:

Hquantum =

(
A+ δLz + dL2

z γ̄L−
γL+ −A− δLz − dL2

z

)
, (2.1)

where L± = Lx ± iLy, and where A is a control parameter and δ, d, γ are phenomenological
parameters among which δ and d are real constants and γ is a complex constant.

The space of quantum states on which this Hamiltonian acts is realized to be C2 ⊗ H(S2),
where C2 carries the fast (or vibrational-like) degrees of freedom and H(S2) is the Hilbert space
of square-integrable functions over the unit sphere S2, carrying the slow (or rotational) degrees
of freedom. Denoting a basis of C2 by |V+〉 and |V−〉 and a basis of H(S2) by |L,ML〉 with
|ML| ≤ L and L = 0, 1, . . . , we denote a basis of C2 ⊗ H(S2) by |Vk;L,ML〉, k = +,−, where

1The simplifying assumption of a diagonal action of the axial symmetry allows us to restrict off-diagonal matrix
elements to being linear in L±. Note that a non-diagonal action leads to new interesting effects, in particular, to
fractional monodromy for completely classical and fully quantum models [30, 38, 45].
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|L,ML〉 are realized in terms of the spherical harmonics. Since L2 = L2
x +L2

y +L2
z is an integral

of motion, the label L can be fixed and the Hamiltonian (2.1) is put in the form of an Hermitian
matrix of size 2(2L+1)×2(2L+1) on the subspace spanned by |Vk;L,ML〉, k = +,−, |ML| ≤ L.

Our main interest is in the analysis of qualitative modifications of the band structure along
the variation of the control parameter A. In other words, we are interested in the modification
of the number of energy levels in the band which can take place according to the redistribution
of the energy levels between bands under the variation of the control parameter A. In contrast
to this modification, the variation of the internal structure of each band is of less importance,
if the bands are isolated.

A quick observation is made on the Hamiltonian with a sufficiently large control parameter.
If |A| is sufficiently big, the off-diagonal blocks of the Hamiltonian (2.1) can be approximately
neglected and then the Hamiltonian has two energy bands separated by an energy gap which
becomes bigger than the width of each band for sufficiently big |A|. In this case, the number of
energy levels in both bands is the same, and equal to 2L+ 1.

Now we set out to find eigenvalues of the Hamiltonian (2.1) by the effective use of the SO(2)
symmetry. The axial rotation about the z-axis gives rise to the unitary transformation on
C2 ⊗H(S2) in the manner UtΦ = e−it

1
2
σzΦ ◦ R−t, where Φ is a two-component vector function

on S2 and where σz is one of the Pauli matrices and Rt denotes the axial rotation. We denote
the infinitesimal generator of Ut by Jz or set Ut = exp(−itJz), then a straightforward calculation
provides

Jz =

(
Lz + 1

2 0
0 Lz − 1

2

)
.

The Hamiltonian (2.1) is SO(2) invariant. In fact, one can easily verify that [Jz, Hquantum] = 0.
Hence, the eigenvalue problem for Hquantum reduces to subproblems on the eigenspaces of Jz.

An alternative expression of the Hamiltonian (2.1) is possible in terms of pseudo-spin com-
ponents [55, 65] with S = 1/2 by associating with |V+〉 and |V−〉 states the effective projection
of the pseudo-spin on the z-axis respectively equal to +1

2 and −1
2 . The Hamiltonian can then

be rewritten as

Hquantum = 2Sz ⊗
(
A+ δLz + dL2

z

)
+ γS− ⊗ L+ + γ̄S+ ⊗ L−, (2.2)

where S± = Sx ± iSy. In this representation, the pseudo-spin operators Sα act on the pseudo-
spin component |V±〉 and the angular momentum operators Lα act on the spherical harmonics
|L,ML〉. If we adopt this expression, it is easy to extend the Hamiltonian so as to act on
the space of quantum states C2S+1 ⊗H(S2) and to keep the SO(2) symmetry, where the basis
of C2S+1 is denoted by |Vk〉, |k| ≤ S, and the basis of C2S+1⊗H(S2) by |Vk;L,ML〉, and where
the pseudo-spin operators Sα are to be represented in the form of (2S + 1)× (2S + 1) matrices.
The SO(2) symmetry operator is given by the unitary operator Ut = e−itSz ⊗ e−itLz , which acts
on S± and L± in the manner

e−itSzS±e
itSz = e∓itS±, e−itLzL±e

itLz = e∓itL±,

and leaves Sz and Lz invariant, so that one has UtHquantumU
−1
t = Hquantum. The infinitesimal

generator of Ut = e−itSz ⊗ e−itLz is shown to be put in the form Jz = Sz ⊗ I + I ⊗ Lz, where I
denotes the identity of the respective factor spaces of C2S+1 ⊗H(S2). However, we denote the
operator Jz by Jz = Lz + Sz for notational simplicity. Then, one immediately verifies that
[Jz, Hquantum] = 0.

Postponing the study of the case of a generic S, we here deal first with the case of S = 1
2 . The

SO(2) symmetry allows us to represent the Hamiltonian in a block-diagonalized form with two
one-dimensional blocks associated with invariant subspaces of both Hquantum and Jz given by

|V−;L,ML = −L〉 and |V+;L,ML = L〉,
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respectively, and 2L two-dimensional blocks associated with two-dimensional invariant subspaces
(again of both Hquantum and Jz operators) spanned by

|V−;L,ML〉, |V+;L,ML − 1〉, ML = L,L− 1, . . . ,−L+ 1.

Thus, our eigenvalue problem amounts to finding eigenvalues of Hermitian matrices representing
Hquantum on these invariant subspaces, and hence the explicit expressions of the eigenstates are
easily obtained for arbitrary choice of values of the phenomenological parameters δ, d, γ and
the control parameter A.

The eigenvalues for the two one-dimensional blocks are

Hquantum|V−;L,ML = −L〉 =
(
−A+ δL− dL2

)
|V−;L,ML = −L〉, (2.3)

Hquantum|V+;L,ML = L〉 =
(
A+ δL+ dL2

)
|V+;L,ML = L〉. (2.4)

It is to be noted that these two eigenvalues are linear in A, which consequently implies that
under variation of the control parameter A from big negative to big positive values, these two
eigenvalues go from one band to another and participate in the redistribution of the energy levels
between bands.

The matrix expression of the Hamiltonian in each two-dimensional invariant subspace,

span
{
|V−;L,ML〉, |V+;L,ML − 1〉

}
,

is given by(
−
(
A+ δML + dM2

L

)
γ
√
L(L+ 1)−ML(ML − 1)

γ̄
√
L(L+ 1)−ML(ML − 1) A+ δ(ML − 1) + d(ML − 1)2

)
. (2.5)

The eigenvalues of the present block Hermitian matrix are

λ±(L,ML) = −δ + (2ML − 1)d

2

±
√[

A+ δ
(
ML − 1

2

)
+ d
(
M2
L −ML + 1

2

)]2
+ |γ|2(L(L+ 1)−ML(ML − 1)). (2.6)

The eigenvalues λ+(L,ML) and λ−(L,ML) of the two-dimensional blocks (2.5) given by equa-
tion (2.6) do not cross each other, accompanying the variation of the control parameter A,
if ML is fixed with ML = L,L−1, . . . ,−L+1. This implies that the eigenvalues λ+(L,ML) and
λ−(L,ML) with ML ranging from −L+1 to +L in (2.5) form respective bands, upper and lower,
without referring to the eigenvalues given in equations (2.3) and (2.4), which are responsible for
the redistribution of the energy levels. However, for sufficiently large values of |A|, there are
two energy bands to one of which each eigenvalue from equations (2.3) and (2.4) belongs. In
view of this, we are allowed to introduce a label b to assign each of the bands. This label takes
integer values starting with b = 0 and increasing along with the increasing order in energy. The
Hamiltonian we are dealing with has two bands, for which the label b takes two values: b = 0
and b = 1 for the lower and the upper energy bands, respectively.

An example of the evolution of the energy level pattern along with the variation of the
control parameter A is shown in Fig. 2(a). We note the existence of two bands: for big |A|,
the eigenvalues λ−(L,ML) belong to the lower band, while the eigenvalues λ+(L,ML) belong to
the upper band. The average 〈Sz〉 of the projection of the pseudo-spin operator on the z axis
can be used to characterize these bands in the limit of big |A|. The lower and upper bands are
respectively associated with 〈Sz〉 = −1/2 and 〈Sz〉 = +1/2 for big positive A values (domain III)
and the correspondence is reversed in the limit A → −∞ (domain I). For intermediate values
of A (domain II), the average value of Sz varies, which means that a band rearrangement is
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Figure 2. Evolution of the pattern of quantum energy levels of the Hamiltonian (2.1) under variation

of control parameter A. The blue and red lines correspond to the two one-dimensional blocks (edge

states). The black lines are associated with the solutions of the 2 × 2 blocks, see equation (2.6), and

can be associated to the bulk states of each band. Symbols I, II, and III indicates intervals of A-

values corresponding to three different iso-Chern domains. Figures are done for the following choice of

phenomenological parameters of the Hamiltonian (2.1): (a) L = 5, γ = 1 + 2i, d = 1, δ = 3. (b) L = 5,

γ = 1 + 2i, d = 1, δ = 0.

in progress under the variation of the control parameter A, and hence the average value of Sz
cannot be used to label bands. However, the energy levels λ+(L,ML) and λ−(L,ML) belong to
the upper and lower bands, respectively, independently of the variation of the control parameter.
Such states that always belong to the same band are called bulk states.

The two levels represented by red and blue lines in Fig. 2(a) change bands along the variation
of A, they are the so-called edge states. The redistribution between bands of these two energy
levels occurs at two different A-values with the difference between these values depending on
the parameter δ. The position of these levels with respect to E = 0 can be used to assign these
two levels to one or to another band. If δ is positive as in Fig. 2(a) the upward blue quantum
energy level crosses the horizontal axis E = 0 before the downward red level, but the order in the
crossing is reversed for negative δ. In the part of Fig. 2(a) with a white background (domains I
and III), one level is in the lower band and the other level is in the upper band, while the two
blue and red levels belong to the upper band in the grey area (domain II). As a consequence,
the number of levels in each band changes with A: for δ > 0, it is 2L+1 in the domain I and III,
while it is 2L + 2 in the upper band and 2L in the lower band in the domain II. In case of
a negative value of δ, the blue and the red lines cross each other in the region of E < 0. Then,
the number of levels of the upper band is 2L and that of levels of the lower band is 2L + 2
in the domain II, while in the domains I and III the number of levels of the upper and the
lower bands are the same and equal to 2L + 1. An alternative graphical representation of the
redistribution phenomenon in terms of the evolution of the joint spectrum of two commuting
observables, (E, Jz), will be discussed in Section 5.

2.1 Additional finite symmetry and pseudo-symmetry

If we impose δ = 0, the eigenvalue pattern of the Hamiltonian (2.1) becomes more symmetric,
see Fig. 2(b). This can be seen from the explicit expressions for eigenvalues which for δ = 0
become

E(A, δ = 0, L,ML = −L) = −A− dL2,
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E(A, δ = 0, L,ML = L) = A+ dL2,

E±(A, δ = 0, L,M) =
(
−ML + 1

2

)
d

±
√[

A+ d
(
M2
L −ML + 1

2

)]2
+ |γ|2(L(L+ 1)−ML(ML − 1)).

One can easily verify that

E±(A; δ = 0, L,−ML + 1) = −E∓(A; δ = 0, L,ML).

This means that the energy level pattern satisfies the energy-reflection symmetry, i.e., if E(δ = 0)
is an eigenvalue of the Hamiltonian (2.1), then −E is also an eigenvalue. The right border of
domain I and the left border of domain III coincide for δ = 0 and the domain II is empty.

The energy-reflection symmetry can be explained without any reference to the explicit form
of the eigenvalues by applying the following antiunitary transformation to the Hamiltonian
Hquantum with δ = 0. First we define the action of complex conjugation K on Hamiltonian (2.1)
as consisting in the transformation Lα → −Lα and in the complex conjugation of all coefficients.
This means that the different terms of (2.1) transform according to

γL+ → −γ̄L−, γ̄L− → −γL+, Lz → −Lz, L2
z → L2

z. (2.7)

Adding the unitary transformation with matrix σ1 = σ−11 = ( 0 1
1 0 ), we easily verify for Hamilto-

nian (2.1) that

(σ1K)Hquantum(σ1K)−1 = −Hquantum, with δ = 0. (2.8)

This implies that if Φ is an eigenstate associated with an eigenvalue E then σ1KΦ is an eigenstate
associated with the eigenvalue −E. The action of the same transformation on the basis functions
yields the mapping between invariant subspaces for Hquantum,

span
{
|V−;L,ML〉, |V+;L,ML − 1〉

}
→ span

{
|V+;L,−ML + 1〉, |V−;L,−ML〉

}
.

This shows that the antiunitary transformation σ1K gives rise to the substitutionML 7→ −ML+1
in the indices of the basis vectors. Using the fact that the Hamiltonian with δ = 0 changes the
sign under the same transformation, we conclude that in the case of δ = 0, the energy level
pattern for Hquantum(δ = 0) respects the energy-reflection symmetry which is a characteristic
symmetry transformation for supersymmetric quantum mechanics [11]. Fig. 2(b) illustrates this
symmetry on a concrete example.

It should be noted that the energy-reflection symmetry can sometimes be realized in an other
way, say, by using a unitary transformation. A simple molecular example with such a property
is the maximally asymmetric rigid rotor described by the Hamiltonian Hasym = B(L2

x − L2
y).

The invariance group for a generic asymmetric rotor is D2h. The Hamiltonian Hasym in addition
transforms according to a one-dimensional not totally symmetric representation of the D4h

group. In particular Hasym changes sign under the rotation by π/2 around the z axis. The same
unitary transformation interchanges eigenfunctions of Hasym. This implies the energy-reflection
symmetry for Hasym. However, the main topic of the present analysis are effective Hamiltonians
which change the sign under an antiunitary operator UCK represented as a product of a unitary
operator UC and the complex conjugation K, like (UCK)H(UCK)−1 = −H.

An even more symmetric energy level pattern is obtained for Hamiltonian (2.1) if we impose
d = 0 in addition to δ = 0. The energy level pattern in such a case reveals an additional
parametric symmetry. It is invariant under the A→ −A reflection. We used precisely this case
to illustrate the rearrangement of energy levels for a quantum two-band problem in Fig. 1(a).
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Figure 3. Quantum energy level pattern for the S = 1 problem with L = 5, g = 1 + 2i, d = 1/2,

δ = 1. The edge states in red and blue respectively belong to the one-dimensional invariant subspaces

Jz = ±(L + S) and the two-dimensional invariant subspaces Jz = ±(L + S − 1). (a) General view of

the quantum energy level pattern. Symbols I, II, and III indicates intervals of A-values corresponding

to three different iso-Chern domains. (b) Correlation diagram showing the redistribution of the energy

levels that change band in the upward direction between the A → −∞ and the A → ∞ limits. In each

limit, the bands can be labeled by increasing energy with an integer b = 0, 1, 2, or by the average value

of 〈Sz〉. Only the levels which change bands under control parameter A variation are shown. (c) Same

as (b) but for the energy levels that change band in the downward direction between the A → −∞ and

the A→∞ limits.

2.2 Band inversion for an arbitrary number of bands

We proceed to the case of S being an arbitrary positive integer or half-integer with a main
interest in the inversion of the system of 2S + 1 bands for the Hamiltonian (2.2) under the
variation of the control parameter A from very big negative to very big positive A values. As is
easily seen, the Hamiltonian in the two limits (A→ ±∞) does not depend on the details of the
Hamiltonian, since the contribution of the ASz term is dominant in the limit of big |A|. This
allows us to characterize the energy bands in the big |A| limit by an average value of Sz and
to see that under the change of the sign of A the order of the energy bands is inversed. At the
same time we can label bands by consecutive integers b = 0, 1, 2, . . . , 2S in a similar manner to
that done earlier for the two-band model. This band label does not change under variation of
the control parameter A.

In order to solve the eigenvalue problem for Hquantum with N = 2S+ 1 bands in the presence
of the axial symmetry and under the assumption that S � L, we can split the problem into
subproblems on respective eigenspaces for Jz = Lz + Sz. This is because each eigenspace of Jz
is an invariant subspace of Hquantum on account of [Jz, Hquantum] = 0.

For given L and S, the eigenvalues of Jz are integers or half-integers ranging from −L − S
to L + S. In what follows, we use the same symbol Jz to denote its eigenvalues for notational
simplicity. The eigenspace associated with an eigenvalue Jz (|Jz| ≤ L+ S) is spanned by states
|Vk;L,ML〉 with k+ML = Jz. Explicitly speaking, the eigenspaces associated with Jz = ±(L+S)
and Jz = ±(L + S − 1) are of dimension one and two, respectively, and so on. The eigenspace
with Jz = ±(L − S + 1) is of dimension 2S. For −L + S ≤ Jz ≤ L − S, the eigenspaces are of
maximal dimension 2S + 1.

We assign invariant subspaces of the Hamiltonian by using the eigenvalues of Jz. Under vari-
ation of the control parameter A, the eigenvalues obtained from the subproblem on the invariant
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subspace with the Jz eigenvalue fixed do not cross one another in general, since the Hermitian
matrices determined on the respective invariant subspaces have one continuous parameter A and
at most one discrete parameter ML with L and S fixed, and since the codimension of degeneracy
in eigenvalues is three for any Hermitian matrix of size greater than or equal to two [3, 62]. In
particular, energy eigenvalues from the blocks with −L + S ≤ Jz ≤ L − S do not cross one
another under variation of the control parameter and the number of energy levels in each block
is maximal or 2S + 1.

Hence, the totality of the energy levels associated with bulk states form bands with labels
b = 0, 1, . . . , 2S in the increasing order in energy. The bulk states have nothing to do with band
rearrangement and the labels assigned to respective bands are constant in A. In contrast with
this, eigenvalues coming from different invariant subspaces of the Hamiltonian may cross one
another and energy levels from blocks of smaller size with |Jz| > |L − S| are responsible for
band rearrangement. In the limit of sufficiently big |A|, we may extend the labeling of bands
so as to include the energy levels for edge states. In this situation, for an arbitrary S � L, the
redistribution of energy levels takes place in the manner to be stated below.

The energy levels belonging to the one-dimensional invariant subspaces with Jz = ±(L+ S)
should go from b = S ∓ S bands to b = S ± S bands, i.e., from the lowest in energy band to
the highest in energy band and vice versa. These levels change the band label by ±2S. Energy
levels belonging to the two-dimensional invariant subspaces with Jz = ±(L + S − 1) should go
from b = S∓ (S− c) bands with c = 0, 1 to bands with b = S± (S+ c− 1), i.e., they change the
band label by ±(2S − 1). More generally, energy levels belonging to m-dimensional invariant
subspaces, m = 1, 2, . . . , 2S, associated with Jz = ±(L+S−m+1) should go from b = S∓(S−c)
bands with c = 0, 1, . . . ,m − 1 to bands with b = S ± (S + c − m + 1), i.e., they change the
band label by 2S −m + 1. Thus, all energy eigenvalues belonging to the invariant subspace of
non-maximal dimension for Jz should change energy bands under the variation of the control
parameter from big negative to big positive A values. We call this phenomenon the inversion of
the whole set of bands because the average value 〈Sz〉 changes the sign under variation of the
sign of A in the limit of big |A| for the band with label b.

Fig. 3 illustrates the rearrangement of the energy levels between bands for the example of
the Hamiltonian (2.2) with S = 1. In particular, Fig. 3(b,c) illustrate schematically the global
rearrangement of energy levels by showing the correlation diagram for the case S = 1 with three
energy bands exhibiting global inversion of the band system. Fig. 4 presents in a similar way
the inversion of the band system for S = 2 and five energy bands.

3 Semi-quantum model and Chern numbers

The redistribution of energy levels for the Hamiltonian (2.1) against the control parameter has
a counterpart in the semi-quantum limit [53]. In the limiting procedure, the rotational variables
are viewed as slow variables and then treated as classical ones and the fast vibrational-like
variables remain to be quantum ones, but only a small (two in the simplest case) number of
quantum states are taken into account. The matrix Hamiltonian (2.1) then becomes to be
defined on the classical phase space for slow variables. In order to stress the difference between
the quantum and the semi-quantum versions, we denote below the slow variables by x1, x2, x3
instead of Lx, Ly, Lz, hence the semi-quantum Hamiltonian is put in the form

Hsemi-quantum =

(
A+ δx3 + dx23 γ̄(x1 − ix2)
γ(x1 + ix2) −A− δx3 − dx23

)
, (3.1)

with the renormalized restriction on xk variables x21 + x22 + x23 = 1. The classical phase space is
thus a two-dimensional unit sphere S2 in R3, the space of xk variables. The two eigenvalues of
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Figure 4. Correlation diagram showing the redistribution of the energy levels between bands associated

with an inversion of the system of bands. Example of the system of five bands for the case of an effective

spin S = 2. The bands symbolized by a horizontal thick line are labelled by the average value of 〈Sz〉
and by a quantum number b = 0, 1, 2, 3, 4 attributed consecutively to bands with increasing energy. Only

the energy levels which change bands under the variation of the control parameter A are shown. To

make the figure more easy to read, the levels belonging to the invariant subspaces Jz = −L − Sz and

Jz = L+ Sz (Sz = S, S − 1, . . . ,−S + 1) are shown in separate subfigures (a) and (b). Levels belonging

to invariant subspaces of the same dimension are shown by the same color. Red color: one-dimensional

invariant subspaces, Jz = ±(L+S). Blue color: two-dimensional invariant subspaces, Jz = ±(L+S−1).

Green color: three-dimensional invariant subspaces, Jz = ±(L+S− 2). Magenta color: four-dimensional

invariant subspaces, Jz = ±(L+ S − 3).

Hsemi-quantum (3.1) are functions defined on S2, depending on the control parameter A and on
the phenomenological parameters. If the eigenvalues are not degenerate, each of two associated
eigenspaces is assigned to every point of S2 to form a complex line bundle, called an eigenline
bundle, over S2.

We now wish to relate the qualitative modifications occurring in the quantum energy level pat-
tern for Hquantum under the variation of the control parameter A to the qualitative modifications
observed for a fiber bundle associated with the semi-quantum model under the same variation
of the control parameter A. If the eigenvalues remain non-degenerate on the whole base space
against A, the eigenline bundles remain topologically unchanged, so that no topological phase
transition of the band structure is expected. Thus, we need to find the degeneracy points of
eigenvalues which can appear during the variation of the control parameter A and to character-
ize the modifications occurring with eigenline bundles when the control parameter goes through
points associated with degeneracy in eigenvalues.

Let us start by looking at the symmetry of the semi-quantum Hamiltonian (3.1). The semi-
quantum Hamiltonian possesses the same axial symmetry as its quantum analog, which is put
in the form

e−itσz/2Hs-q(x1 + ix2, x1 − ix2, x3)eitσz/2 = Hs-q

(
eit(x1 + ix2), e

−it(x1 − ix2), x3
)
, (3.2)

where the subscript s-q is the abbreviation of semi-quantum. Under the action of the axial
symmetry, the base space x21 +x22 +x23 = 1 is stratified into orbits. There are two isolated orbits,
at the north and south poles of the sphere, which are invariant under axial symmetry. All
other orbits are one-dimensional circles. If a point is a degeneracy point of the eigenvalues, all
points of its orbit should necessarily be degeneracy points, as is seen from (3.2). For this reason,
a circle of constant latitude could be a set of degeneracy points. However, this rarely happens
on account of the codimension condition. Appearance of a degeneracy at a circular orbit for
a one-parameter family of SO(2) invariant Hamiltonians is not generic. We are here reminded
that for a Hermitian matrix, the codimension of degeneracy is three [3, 62] and, consequently, for
a one-parameter family of semi-quantum Hamiltonians defined on a two-dimensional base space,
degeneracy points generically exist and are isolated. It then follows that isolated degeneracy
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points under the presence of the axial symmetry can appear only at the north pole, at the south
pole, or at both of them.

The two eigenvalues of the semi-quantum Hamiltonian (3.1) are

±
√(

A+ δx3 + dx23
)2

+ |γ|2
(
x21 + x22

)
. (3.3)

It is clear from this expression that the two eigenvalues are symmetric with respect to the E = 0
axis for Hamiltonians with arbitrary δ, i.e., the traceless semi-quantum two-level Hamiltonian
always satisfies the energy-reflection symmetry even though its quantum analog does not respect
this symmetry. Taking into account the fact that the points of the base space for semi-quantum
Hamiltonian are real, we can express the energy-reflection symmetry for the semi-quantum
Hamiltonian as a result of the transformation

iσ2Hsemi-quantum(−iσ2) = −Hsemi-quantum, with iσ2 =

(
0 1
−1 0

)
. (3.4)

From equation (3.3) it follows that the degeneracy in eigenvalues of the semi-quantum Hamil-
tonian (3.1) occurs for γ 6= 0 if and only if

x1 = x2 = 0, A+ δx3 + dx23 = 0. (3.5)

If x1 = x2 = 0 then x23 = 1, so that the second of the above equations (3.5) becomes for x3 = +1:
A + δ + d = 0 and for x3 = −1: A − δ + d = 0. This means that the degeneracy occurs, when
A = −d− δ, at the north pole of the unit sphere and when A = −d+ δ at the south pole of the
unit sphere. If the phenomenological parameter of the Hamiltonian δ → 0 tends to zero, both
degeneracy points occur at the same value of the control parameter A but at different poles of
the unit sphere.

In order to simplify the analysis of the evolution of the eigenline bundles under the variation
of the control parameter A, we consider independently two cases. In the first case, we study
the Hamiltonian Hsemi-quantum with d = 0, δ = 1 or δ = −1. Two degeneracy points appear
in this case at Adeg = ±1 at different poles of the sphere. In the second case, we look at the
Hamiltonian Hsemi-quantum with d = 1 and δ = 0. In that case, two degeneracy points appear at
the same value of the control parameter Adeg = −1 at different poles of the sphere.

For both cases we calculate for each eigenline bundle depending on the control parameter A
the modification of the topological invariant, the Chern number, associated with crossing the
point Adeg associated with the eigenvalue degeneracy. The method of calculation is explained
in details in [36]. We just summarize here the most important steps.

3.1 Chern numbers for Hsemi-quantum with d = 0

3.1.1 Chern numbers for Hsemi-quantum with d = 0, δ = 1

Let us denote the eigenvalues of the Hamiltonian Hsemi-quantum with d = 0, δ = 1 by µ±:

µ± = ±
√

(A+ x3)2 + |γ|2
(
x21 + x22

)
.

The degeneracies occur at e3, the north pole, when A = −1 and at −e3, the south pole, when
A = 1. From the eigenvalue equation for Hsemi-quantum, we obtain in two ways the eigenvectors
associated with µ+:

|v+up〉 =
1

Ñ+
up

(
γ̄(x1 − ix2)
µ+ − (A+ x3)

)
, Ñ+

up =
√

2µ+(µ+ − (A+ x3)),
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|v+down〉 =
1

Ñ+
down

(
µ+ +A+ x3
γ(x1 + ix2)

)
, Ñ+

down =
√

2µ+(µ+ +A+ x3).

The exceptional points for |v+up〉 and |v+down〉 (i.e., points where eigenvectors are not defined) are
determined by the equations {x1 = x2 = 0, µ+−(A+x3) = 0} and {x1 = x2 = 0, µ+ +A+x3 =
0}, respectively. The exceptional points are listed as follows:

A < −1 A = −1 −1 < A < 1 A = 1 A > 1

except. pts. for |v+up〉 no

(
e3

deg. pt.

)
e3 e3 ±e3

except. pts. for |v+down〉 ±e3 −e3 −e3

(
−e3

deg. pt.

)
no

(3.6)

If an eigenvector is globally defined on the sphere, the eigenline bundle is trivial. If the bundle
is not trivial, eigenvectors are defined locally and the locally defined eigenvectors are related
together by a structure group (or a gauge group). The existence of exceptional points usually
means that the locally defined eigenvector can not be extended continuously on the whole two-
sphere.

Table (3.6) shows that for A < −1 the eigenvector |v+up〉 is globally defined and for A > 1 the

eigenvector |v+down〉 is globally defined, so that the eigenline bundle associated with µ+ is trivial
for A < −1 and for A > 1 and hence the Chern number of the eigenline bundle in question
is zero. However, the eigenline bundle associated with µ+ is non-trivial for −1 < A < 1. The
eigenvectors |v+up〉 and |v+down〉 are related on the intersection of their domains by

|v+up〉 = η|v+down〉, η =
γ̄(x1 − ix2)
|γ|
√
x21 + x22

.

To calculate the Chern numbers of the eigenline bundle associated with µ+ for −1 < A < 1,
we introduce the local connection forms A+

up/down [44] which are defined through

d|v+up〉 = |v+up〉A+
up, d|v+down〉 = |v+down〉A+

down,

and related by

A+
up = A+

down + η−1dη.

Since η−1dη is closed, the curvature form F+ is globally defined through

F+
up = dA+

up = dA+
down = F+

down.

Finally, the Chern number is calculated by integrating the curvature F+ by the use of the Stokes
theorem,∫

S2

F+ =

∫
S2
−

dA+
up +

∫
S2
+

dA+
down =

∫
−C

A+
up +

∫
C
A+

down

=

∫
C

(
A+

down −A+
up

)
= −

∫
C
η−1dη = 2πi,

where S2
+ and S2

− are the north and the south hemispheres, respectively, and C is the equator
with orientation in keeping with the natural orientation of S2

+. Hence, the Chern number of the
eigenline bundle associated with µ+ for −1 < A < 1 is

i

2π

∫
S2

F+ = −1.

The Chern number of the eigenline bundle associated with µ− is +1 accordingly.
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3.1.2 Chern numbers for Hsemi-quantum with d = 0, δ = −1

In case of δ < 0, the Chern numbers of the eigenline bundle associated with µ± for −1 < A < 1
are inversed in sign respectively. The calculation for δ = −1 runs in parallel to the case of δ = 1,
while the exceptional points ±e3 given in table (3.6) are interchanged into ∓e3, respectively. We
denote by Ch± the Chern numbers associated with µ±. Then the above results are summed up
to say that the Chern numbers in the interval, −1 < A < 1, of the control parameter are given
by Ch± = ∓1 for δ > 0 and Ch± = ±1 for δ < 0. These Chern numbers can be linked to the
number of energy levels in the bands for the quantum Hamiltonian (2.1) with the intermediate
parameter values −1 < A < 1, where L is normalized to be L = 1 and d = 0 and δ = ±1. To
make the correspondence easy to see, we assign the upper and lower bands by the sign ±, and
denote the number of energy levels in each band by N±. Then one has N± = 2L+ 1−Ch± for
−1 < A < 1, independently of the sign of δ. This relation is valid also for A with |A| > 1, since
Ch± = 0 and N± = 2L+ 1 for |A| > 1. Hence, the relation

N± = 2L+ 1− Ch± (3.7)

holds for A 6= ±1, independently of the sign of δ. This relation means that the integers from the
analysis of the quantum system are evaluated by using topological invariants from the analysis
of the semi-quantum system. On account of topological nature, the present relation between
the Chern numbers and the numbers of energy levels in the energy bands may be extended
to be valid for arbitrary phenomenological and control parameters and even for an arbitrary
number of bands, S � L, as long as the bands are isolated and there are no degeneracy points
of eigenvalues so that the Chern numbers are defined.

3.2 Chern numbers for Hsemi-quantum with d = 1, δ = 0

The eigenvalues of Hsemi-quantum with d = 1, δ = 0 are given by

λ± = ±
√(

A+ x23
)2

+ |γ|2
(
x21 + x22

)
.

This implies that a degeneracy in the eigenvalues occurs for γ 6= 0 if and only if

x1 = x2 = 0, A+ x23 = 0.

If x1 = x2 = 0 then x23 = 1 and the degeneracy occurs when A = −1, at ±e3, the north and the
south poles of the unit sphere. The eigenline bundles are then defined for A 6= −1.

In a way similar to the previous subsection, we find the normalized eigenvector associated
with λ+ in two ways,

|u+up〉 =
1

N+
up

(
γ̄(x1 − ix2)

λ+ −
(
A+ x23

)) , N+
up =

√
2λ+

(
λ+ −

(
A+ x23

))
,

|u+down〉 =
1

N+
down

(
λ+ +A+ x23
γ(x1 + ix2)

)
, N+

down =
√

2λ+
(
λ+ +A+ x23

)
.

The exceptional points for |u+up〉 and |u+down〉 are determined by the equations {x1 = x2 = 0,
λ+ − (A+ x23) = 0} and {x1 = x2 = 0, λ+ +A+ x23 = 0}, respectively, and then listed in table:

A < −1 A = −1 A > −1

except. pts. for |u+up〉 no

(
±e3

deg. pts.

)
±e3

except. pts. for |u+down〉 ±e3

(
±e3

deg. pts.

)
no

(3.8)
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Figure 5. Schematic representation of the evolution of the two eigenline bundles of Hsemi-quantum Hamil-

tonian (S = 1
2 ). (a) Case of δ > 0. (b) Case of δ = 0. Note that the two local delta-Cherns associated

with degeneracies at south and north poles remain non-zero, but they are summed up to give a global

delta-Chern with zero value. For δ < 0 the Chern numbers Ch = ±1 should be interchanged. For further

comments see text.

Table (3.8) implies that the eigenvectors |u+up〉 and |u+down〉 are globally defined for A < −1 and
for A > −1, respectively. Hence the eigenline bundle associated with λ+ is trivial for A 6= −1.
In a similar manner, the eigenline bundle associated with λ− proves to be trivial for A 6= −1. It
then turns out that the Chern numbers of the eigenline bundles associated with λ± are zero for
A 6= −1.

Fig. 5 shows schematically the evolution of two bands along with the variation of the control
parameter A, which are represented by solid lines together with the associated Chern numbers.
The dashed lines symbolize the formation of the degeneracy points between the two eigenvalues
of the semi-quantum Hamiltonian.

Fig. 5(a) corresponds to the Hamiltonian with δ > 0. The difference of A values for the
two degeneracy points is proportional to the δ parameter. From table (3.6) and Fig. 5(a),
we see that when the value of A passes the critical value A = −1, the Chern number of the
eigenline bundle associated with µ+ changes from 0 to −1 because of the existence of the de-
generacy point +e3, and when A passes A = +1, the Chern number changes from −1 to 0
because of the existence of the degeneracy point −e3. We here define the local delta-Chern
assigned to a degeneracy point, when the parameter takes a critical value, to be the contri-
bution to the change in the Chern number in the positive direction of the parameter A and
the delta-Chern to be the sum of local delta-Cherns from all degeneracy points. Then, for µ+

we may assign the local delta-Chern −1 to +e3 when A = −1 and the local delta-Chern +1
(= 0− (−1)) to −e3 when A = +1. Since the degeneracy point is +e3 only when A = −1
and since the degeneracy point is −e3 only when A = +1, the delta-Cherns when A = ∓1 are
∓1, respectively. The total variation of the Chern number for the whole range of A is the sum
(−1) + 1 = 0.

Fig. 5(b) corresponds to the semi-quantum Hamiltonian with δ = 0. In this case, there appear
two isolated degeneracy points ±e3 simultaneously when A = −1. The local contribution to
the modification of Chern numbers from the degeneracy points ±e3 (see (3.8)) have the same
absolute values with opposite signs, so that the sum of the delta-Cherns is 1 + (−1) = 0, and
hence no change is found in the Chern number, as is seen in Fig. 5(b).

Figs. 2 and 5 are in mutual correspondence. In Fig. 2(b) and in Fig. 5(b), we observe that
the band rearrangement and the modification of Chern number take place at a critical value
of A (though the number of levels belonging to each band is invariant and though the total
change of the Chern number is +1 + (−1) = 0). In Fig. 2(a) and Fig. 5(a), we see that there
is an intermediate region II of A values for which in the full quantum model [Fig. 2(a)] the
quantum energy bands consist of a different number of energy levels and for semi-quantum
model [Fig. 5(a)] the Chern numbers for the eigenline bundles associated with µ+ and µ− are
non-zero.
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3.3 Generalization to N -bands

In correspondence to the band inversion treated quantum mechanically in Section 2.2, the semi-
quantum version of the Hamiltonian (2.2) in the case of an arbitrary number of bands, i.e., in
the case of an arbitrary pseudo-spin number S, is expected to exhibit a corresponding inversion
of the band structure when the system of eigenvalues is compared in the two limits as A → ∞
and as A→ −∞. This is anticipated from the expression in the semi-quantum Hamiltonian

Hsemi-quantum = 2Sz
(
A+ δx3 + dx23

)
+ γS−(x1 + ix2) + γ̄S+(x1 − ix2). (3.9)

3.3.1 Numbers of energy levels and Chern numbers

The relation (3.7) between the Chern number and the number of energy levels for a two-band
system can be generalized to the N -band case with N = 2S+ 1. For an N -band system, a semi-
quantum Hamiltonian is generically described as a Hermitian N ×N matrix. The degeneracies
of the eigenvalues of such a matrix are of codimension 3. Each matrix element of the semi-
quantum Hamiltonian is defined on the two-dimensional base space and depends furthermore on
the external control parameter A. As a consequence, degeneracy is generically allowed between
two neighboring eigenvalues only. Near each such degeneracy, the relation between the number of
quantum states in the band and the Chern number for the eigenline bundle of the semi-quantum
Hamiltonian is valid. Consequently, the relation (3.7) remains valid for an arbitrary sequence of
rearrangements associated with the formation of degeneracy points between two bands.

However, the Hamiltonian (3.9) does not exhibit a typical rearrangement of the band struc-
ture under the variation of one control parameter, which is already stated above. The present
Hamiltonian admits a multiple degeneracy among several eigenvalues simultaneously, but by
a small deformation of the Hamiltonian (for example, by adding terms of higher degrees in Sα),
it is possible to unfold the multiple degeneracy into a sequence of generic degeneracies between
only two neighboring energy levels. After such a deformation, we can apply again a sequence
of relations (3.7). With this in mind, we can keep only linear in Sα terms introduced in (3.9)
and study the evolution of the Chern numbers of the eigenline bundles of the semi-quantum
Hamiltonian against the control parameter A.

3.3.2 Chern numbers for an arbitrary number N = 2S + 1 of bands

The corresponding semi-quantum Hamiltonian (3.9) has the following tridiagonal form for arbi-
trary S:

Hs-q(x;A) =


H1,1(x;A) H2,1(x;A)∗ · · · 0 0
H2,1(x;A) H2,2(x;A) · · · 0 0

...
...

. . .
...

...
0 0 · · · H2S,2S(x;A) H2S+1,2S(x;A)∗

0 0 · · · H2S+1,2S(x;A) H2S+1,2S+1(x;A)

 , (3.10)

where

Hi,i(x;A) = 2(S + 1− i)f(x3;A),

Hi+1,i(x;A) =
√
S(S + 1)− (S + 1− i)(S − i)γ(x1 + ix2).

The Hamiltonian (3.10) has degeneracy points of eigenvalues only at x = ±e3, the north and
the south poles of the unit sphere, owing to the rotational symmetry. Evaluated at ±e3, the
Hamiltonian is expressed as

Hs−q(±e3;A) = 2f(x3;A) diag(S, (S − 1), . . . ,−(S − 1), S), x3 = ±1.
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The present form of Hamiltonian immediately gives the eigenvalues evaluated at ±e3, from
which it turns out that the degeneracy of eigenvalues is N -fold with N = 2S+ 1 and the N -fold
degeneracy in eigenvalues occurs at e3 and at −e3 when A = −(δ + d) and when A = δ − d,
respectively.

The whole range of the control parameter A is broken up into three disjoint open subsets,
the iso-Chern domains, on which the Chern numbers of the eigenline bundles associated with
the eigenvalues of Hamiltonian (3.9) are constant. The eigenline bundles are trivial (so that
the Chern numbers for respective bands are zero) for the two extremal intervals of the control
parameter, which are denoted by the domain I with A < −d − |δ| and the domain III with
A > −d+|δ|. The eigenline bundles are non-trivial in the intermediate domain II with −d−|δ| <
A < −d+ |δ|. The width of the intermediate domain II is 2|δ|, independent of the parameter d.
The parameter d shifts only the position of the domain II in the whole range of the control
parameter A. Hence, in evaluating the Chern number of an eigenline bundle in the domain II,
one may choose d = 0 without changing the value of the Chern number. Then, the domain II
is shifted to −|δ| < A < |δ|. In what follows, we first consider the case δ > 0. Since the value
of the Chern number is independent of δ, we may choose δ = 1 and take the point A = 0 to
evaluate the Chern number. Furthermore, the Chern number is independent of γ, so that one
can set γ = 1. Then, the semi-quantum Hamiltonian (3.9) reduces to

H = 2(x1Sx + x2Sy + x3Sz).

From the representation theory of SU(2), the pseudo-spin operator Sz receives the transformation
under the action by D(g),

D(g)2SzD(g)† = 2
[

cos θSz + sin θ(Sx cosφ+ Sy sinφ)
]
,

where D(g) denotes the unitary representation matrix

D(g) = e−iφSze−iθSye−iψSz ,

and where (θ, φ, ψ) are the Euler angles. This equation implies that the unitary matrix D(g)
diagonalizes the Hamiltonian H defined on the sphere S2,

H = 2D(g)†SzD(g).

This also means that the eigenvalues of H are given by 2r with |r| ≤ S.
The eigenvector associated with the eigenvalue 2r of H is given by

D(g)|S, r〉 = e−iφSze−iθSye−iψSz |S, r〉,

for any value of ψ. In order to describe the eigenvectors as vector-functions on the two-sphere,
we need to choose ψ as a function on the two-sphere. An easy way to do so is to take ψ = ±φ.
If ψ = −φ, we have

e−iφSze−iθSyeiφSz |S, r〉.

If we let θ tend to 0, this eigenvector tends to |S, r〉, which means that the limit eigenvector is
uniquely determined irrespective of φ, so that this eigenvector is defined at the north pole of
the sphere. In contrast to this, if we let θ → π, the limit is not determined irrespective of φ,
e−iφSze−iπSyeiφSz |S, r〉, so that the eigenvector of the present form is not defined at the south
pole. Put another way, the south pole is an exceptional point. Thus, we have obtained an
expression of the eigenvector associated with the eigenvalue 2r,

|ur(x)+〉 = e−iφSze−iθSyeiφSz |S, r〉, U+ = S2 − {−e3}.
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Another expression of the eigenvalue is given by setting ψ = φ,

e−iφSze−iθSye−iφSz |S, r〉.

If we let θ tend to 0, we have e−2iφSz |S, r〉, which means that the limit is not unique, so that this
eigenvalue is not defined at the north pole. Contrary to this, if we let θ → π, we have a unique
limit e−iφSze−iπSye−iφSz |S, r〉 = e−iπSy |S, r〉. Put another way, this eigenvector is defined at the
south pole. Thus, we have found another expression of the eigenvector,

|ur(x)−〉 = e−iφSze−iθSye−iφSz |S, r〉, U− = S2 − {e3}.

By using the expression of the matrix e−iφSze−iθSye−iφSz with respect to the canonical basis
|S, r〉, we find that the eigenvectors expressed in two ways are related by

e−2irφ|ur(x)+〉 = |ur(x)−〉 on U+ ∩ U−.

The local connection forms A
(r)
± on U± are defined to be

A
(r)
± = 〈ur(x)±|d|ur(x)±〉 on U±,

where the superscript (r) indicates that these forms are assigned to the eigenline bundle associ-
ated with the eigenvalue 2r of H. These local connection forms are shown to be related

A
(r)
+ − 2ir dφ = A

(r)
− on U+ ∩ U−.

The local curvature forms are defined to be

F
(r)
± = dA

(r)
± on U±,

which are put together to define the global curvature form F (r).
Now the calculation of the Chern number is straightforward, which runs as follows:∫

S2

F (r) =

∫
S2
+

dA
(r)
+ +

∫
S2
−

dA
(r)
− =

∫
C
A

(r)
+ +

∫
−C

A
(r)
−

=

∫
C

(
A

(r)
+ −A

(r)
−
)

= 2ir

∫
C
dφ = 4πir.

Thus, the Chern number of the eigenline bundle associated with the eigenvalue 2r is

i

2π

∫
S2

F (r) = −2r.

To sum up the discussion on the Chern numbers for an arbitrary number of bands, the
N -dimensional vector of Chern numbers is subject to the following changes for δ > 0:

0
0
...
0
0


︸ ︷︷ ︸

domain I

wall between

domains I and II
−−−−−−−−−−−→


−2S

−2(S − 1)
...

2(S − 1)
2S


︸ ︷︷ ︸

domain II

wall between

domains II and III
−−−−−−−−−−−−→


0
0
...
0
0


︸ ︷︷ ︸

domain III

, (3.11)

where the Chern numbers are ordered in such a manner that the top ones (0, −2S, and 0 in
their respective columns) are associated with the highest energy eigenvalue and the second top
ones with the second highest eigenvalue, downward to the bottom ones (0, 2S, 0 in the three
columns) with the lowest eigenvalue.

If δ is negative, then the same calculation leads to the conclusion that the Chern numbers in
the second column change sign.
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4 Completely classical version and energy-momentum map

The redistribution of energy levels bears the marks even in the completely classical limit of
the Hamiltonian (2.2). In this limit, all dynamical variables are treated as classical variables.
For notational simplicity, we use the same symbols Sα and Lα as classical variables. However,
they are assumed to be subject to the conditions that |L|2 = L2

x + L2
y + L2

z = const and
|S|2 = S2

x + S2
y + S2

z = const. Then, the phase space for the classical system is the direct
product, S2 × S2, of two two-dimensional spheres with the radii given by the constants |L|
and |S|, respectively. The group SO(2) acts on S2 × S2 in the manner such that the SO(2)
group action is a simultaneous rotation about the z-axis of each factor space S2.2 The phase
space S2×S2 is endowed with the canonical symplectic structure which is alternatively described
in terms of the Poisson brackets among Sa and Lb, a, b ∈ {x, y, z},

{Sa, Sb} =
∑

εabcSc, {La, Lb} =
∑

εabcLc, {Sa, Lb} = 0.

The corresponding classical Hamiltonian is called Hclassical. By denoting the real and imaginary
parts of γ by γr and γi, respectively and by introducing the SO(2)-invariant polynomials

τ = SxLx + SyLy, σ = SxLy − SyLx,

the present Hamiltonian is rewritten as

Hclassical = 2Sz
(
A+ δLz + dL2

z

)
+ 2γrτ − 2γiσ. (4.1)

On account of the SO(2) symmetry of Hclassical, the quantity Jz = Lz + Sz is an integral of
motion, {Jz, Hclassical} = 0, so that the present Hamiltonian system is completely integrable.
We note that dynamical models with the S2 × S2 phase space and with a SO(2) invariance
symmetry appear in molecular problems in quite different contexts, such as the coupling of
angular momenta [27, 53], the hydrogen atom in weak external fields [21, 22], the rotational
structure of bending modes in quasi-linear molecules [10, 66], or the internal structure of vi-
brational polyads formed by two doubly degenerate vibrational modes in linear molecules, like
acetylene C2H2 [32, 60].

The reduction of such dynamical systems by the SO(2) symmetry has been discussed on
several occasions [13, 21, 53]. Our discussion below follows essentially [53]. To describe the
space of orbits of the SO(2) group action on the phase space S2 × S2, we use the SO(2)-
invariant polynomials, Lz, Sz, τ , and σ, among which the polynomials Lz, Sz, τ are algebraically
independent and any linear combination of these polynomials can be equally used, and the
polynomial σ is an auxiliary polynomial, i.e., it is only linearly independent and related by the
following syzygy to the basic independent polynomials [43]:

σ2 =
(
|S|2 − S2

z

)(
|L|2 − L2

z

)
− τ2. (4.2)

Since σ2 ≥ 0, the right-hand side of equation (4.2) determines in the space {Sz, Lz, τ} a finite
volume representing the space of orbits through

τ2 ≤
(
|S|2 − S2

z

)(
|L|2 − L2

z

)
.

Every point on the boundary of this space of orbits corresponds to one orbit with σ = 0, whereas
every internal point corresponds to two orbits distinguished by the sign of σ. That is why the
graphical representation of the space of orbits in Fig. 6 consists of two bodies and the respective
points in the boundary of these two bodies should be identified. There are four singular points at
{Sz = ±|S|, Lz = ±|L|}. These points are isolated orbits of the SO(2) action with the stabilizer
being the SO(2) group itself.

2For more general weighted action and its relevance to physical examples, see [21, 30, 38, 45].



20 G. Dhont, T. Iwai and B. Zhilinskíı

(a)
σ ≤ 0

Lz Sz

τ

− |L|

|L||S|
− |S|

− |L| |S|

|L| |S|

(b)
σ ≥ 0

Lz Sz

τ

− |L|

|L||S|
− |S|

− |L| |S|

|L| |S|

Figure 6. Space of orbits of the SO(2) group action on S2 × S2. The boundaries of the respective solid

bodies are glued together at corresponding points.

Lz Sz

τ

− |L|

|L| |S|

− |S|
− |L| |S|

|L| |S|

Figure 7. Space of orbits sliced by Jz = const planes. Black curves: boundary curves of the intersection

of the space of orbit (with σ ≥ 0 of σ 6= 0) with Jz = const planes, which contains only regular points.

Red curves: boundary curves of the intersection of the space of orbits with Jz = const planes, which

contains a singular point.

The reduced phase space assigned by the condition Jz = const can be geometrically obtained
by cutting each part of the space of orbits by the Jz = const plane as in Fig. 7 and by identifying
respective points on the boundary of the two obtained sections. The result of such a construction
is generically a topological sphere (see Fig. 8(a)). In particular, for Jz = ±(|L|+|S|), the reduced
phase space becomes a singular point and for Jz = ±(|L|−|S|) it becomes a sphere with a singular
point on it (see Fig. 8(b)). Using the SO(2)-invariant polynomials τ , Kz = Sz−Lz and σ as coor-
dinates instead of Lz, Sz, and τ , we can describe the reduced phase space as a topological sphere.

The reduced phase space is the base space of a fiber bundle whose fiber is a SO(2) orbit
which is generically a circle. The intersection of this fiber bundle with an energy H = const
surface gives generically a two-dimensional torus. When this section passes through a critical
value, i.e., through one of the points with {Lz = |L|, Sz = −|S|} or {Lz = −|L|, Sz = |S|},
the intersection in question becomes a singly pinched torus instead of a regular two-dimensional
torus, since one circle is shrunk to a point. This singly pinched torus corresponds to a critical
value of the energy-momentum map, often called a monodromy point.
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(a)

Kz

σ

τ

(b)

Kz

σ

τ

Figure 8. (a) Regular reduced phase space for Jz = 0. (b) Singular reduced phase space for Jz = |S|−|L|.

Jz
|L|+|S|−|L|−|S|−|L|+|S| |L|−|S|

Jz
−|L|+|S|−|L|−|S| |L|−|S| |L|+|S|

Jz
−|L|+|S| |L|+|S|−|L|−|S| |L|−|S|

Ẽ E Ẽ

A → −∞ A ∼ 0 A → ∞

Figure 9. Image of the energy-momentum map for Hamiltonian Hclassical (4.1) with δ ≈ 0, d ≈ 0, γi ≈ 0.

The blue arrows show the displacement of the critical values with increasing A. (a) Limit A → −∞.

(b) A ∼ 0. (c) Limit A→∞.

In the case of |L| = |S|, the Jz = 0 section of the space of orbits is a sphere with two singular
points and a doubly pinched tori can appear for some Hamiltonians. This is the case for effective
Hamiltonians describing the internal structure of the perturbed hydrogen atom shell (see [21]
and references therein).

In order to see the correspondence between the redistribution of energy levels occurring in the
quantum system under the variation of the control parameter A and the qualitative modifications
to appear in the corresponding completely classical system, we study the evolution of the image of
the energy-momentum map for the completely classical integrable system with Hamiltonian (4.1)
under the variation of A.

The images of the energy-momentum map for the present Hamiltonian system with very
big negative A and very big positive A are shown in the leftmost and the rightmost panels of
Fig. 9, respectively. The middle panel shows the image of the energy-momentum map for an
intermediate value of A. The shape of the image of the energy-momentum map for big |A|
follows immediately from the fact that for big |A| the Hamiltonian can be approximated by
Hclassical ≈ 2ASz. There are four isolated critical values of the energy-momentum map, which
are shown by black dots. For big |A|, those critical points belong to the boundary of the image.
The inverse image of each of the regular points on the boundary under the energy-momentum
map is a one-dimensional torus (circle) in the total phase space S2 × S2. For each of regular
internal points of the image of the energy-momentum map, the inverse image is a regular two-
dimensional torus in S2 × S2.

We now look into the evolution of the image of the energy-momentum map accompanying the
variation in the control parameter A from big negative to big positive values. The figure in the
leftmost panel of Fig. 9 transforms to that in the rightmost panel of Fig. 9, taking a shape like
that shown in the middle panel of Fig. 9. The axial symmetry of the problem is conserved during
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Jz

V

|L|+|S||L|−|S|−|L|+|S|−|L|−|S|

Figure 10. Volume of the reduced phase space V as function of the integral of motion Jz for a classical

dynamical system defined over the S2 × S2 classical phase space in the presence of axial symmetry.

the evolution, and the critical values of the energy-momentum map keep belonging to respective
sections with Jz ∈ {−|L| − |S|, −|L|+ |S|, |L| − |S|, |L|+ |S|}. For intermediate A values, the
image of the energy-momentum map may be more complicated than that shown in the middle
panel of Fig. 9 in the case of the appearance of additional critical values. However, as long as
we are interested in the transition between A→ −∞ and A→∞ limits, it is sufficient to study
the correlation between the two limits, so that we can adopt the simplest possible scenario for
such a transition. For this reason, we can put δ = d = γi = 0 and keep γr 6= 0 in order to avoid
the collapse of the image of energy-momentum map for A = 0, and the middle panel of Fig. 9 is
drawn with this selection of parameters. For such a simplified family of effective Hamiltonians
depending on one control parameter A, isolated critical values appear as singular points within
the domain of regular values. The inverse image of such an isolated critical value is a singly
pinched torus in S2 × S2 [13]. The middle panel of Fig. 9 schematically shows that two critical
values move from one boundary of the image of the energy-momentum map to another boundary
in opposite directions, accompanying the variation of A. We note in addition that the existence
of singular values means also that the action-angle variables are not globally defined and that
the system exhibits Hamiltonian monodromy [16].

A reason for the Hamiltonian Hclassical with δ = 0 to be of special interest is that the corre-
sponding quantum Hamiltonian with δ = 0 satisfies the energy-reflection symmetry condition.
For the complete classical problem (4.1) with δ = 0, the image of the energy-momentum map
has additional symmetry. If the point (E, Jz) belongs to the image of the energy-momentum
map, then the point (−E,−Jz) also belongs to the image of the map, and the inverse images
of these two points are equivalent. This is because in correspondence to the energy-reflection
symmetry transformation the classical variables Sz, S+ and S− are subject to the transforma-
tion Sz 7→ −Sz, S+ 7→ S−, and S− 7→ S+ and the classical variables Lz, L+, and L− to the
transformation like (2.7), so that the transformation (E, Jz) 7→ (−E,−Jz) follows immedia-
tely.

Returning to the initial problem with non-zero phenomenological parameter values, we remark
that the values of A at which the critical value of the energy-momentum map passes from the
boundary of the image to the inside of the image depend on the phenomenological parameters
d, δ, γ and correspond to the Hamiltonian Hopf bifurcation [20]. The topological character of
the qualitative modifications of the image of the energy-momentum map follows immediately
from the different topology of the inverse images of the critical values at different values of the
control parameter A.

A further observation on the present classical integrable dynamical system is obtained by
applying the Duistermaat–Heckman theorem [17, 28], which says (in the concrete case we are
studying) that the volume of the reduced phase space is a piecewise linear function of the
integral of motion. The discontinuity of the first derivative of the reduced volume with respect
to the integral of the motion value occurs at Jz values corresponding to critical values of the
energy-momentum map, as is seen in Fig. 10.
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5 Returning to the quantum picture: comparison
with the semi-quantum and the classical point of views

So far we have independently studied quantum, semi-quantum, and classical Hamiltonians with
an interest in the band rearrangements and the corresponding topological phase transitions. We
now return to the quantum problem by passing from the image of the classical energy-momentum
map of Section 4 to a representation of a joint spectrum of commuting quantum observables or
the lattice of quantum states. This rather simple procedure applied to the complete classical
model leads to results which helps the interpretation of the rearrangement of energy levels in
terms of evolution of the energy-momentum map. To this end, it is instructive to look for the
evolution of the lattice of the quantum states for low S values, assuming the existence of 2S+ 1
energy bands separated in the ideal case by energy gaps.

In order to see better the correspondence between the lattice of quantum states and the
quantum results represented in Figs. 2 and 3, it is preferable to use an alternative presentation
of the quantum results by plotting for several discrete values of control parameters the joint
spectrum of two commuting observables, the energy E and the integral of motion Jz. Applying
this procedure with S = 1

2 and S = 1 to the evolution of the classical energy-momentum map,
we obtain Fig. 11, which shows that the rearrangement of the band structure (a set of levels
located in the same green region defines a band) is done through the edge states Jz = L + 1

2
(one level) and Jz = −L− 1

2 (one level) for S = 1
2 and Jz = L+ 1 (one level), Jz = −L− 1 (one

level), Jz = L (two levels), and Jz = −L (two levels) for S = 1. For a fixed value of the integral
of motion Jz, the number of edge states is a linear function of Jz while it is constant to 2S + 1
for the bulk states (see Fig. 10 for comparison). The part of the energy levels responsible for
the reorganization is small in comparison to the total number of energy levels if L� S and this
assumption is quite natural as far as we treat Lα as classical variables whereas the number of
quantum levels for the fast subsystem is supposed to be small.

The left column of Fig. 11 shows joint spectra for S = 1
2 , δ > 0 and for five different values of

the control parameter A, for exactly the same effective Hamiltonian that was used in Fig. 2(a).
In fact, Figs. 11(a-e) and 2(a) display in two different ways the same set of quantum energy
levels originally living in the three-dimensional space of energy E, projection of the total angular
momentum Jz, and control parameter A. Fig. 2(a) gives the projection of this three-dimensional
set on a Jz = const plane. Figs. 11(a–e) represent discrete sections of the three-dimensional
pattern by A = const sections. Figs. 11(a,c,e) indicate that the band structures in domains I, II,
and III, calculated at AI, AII, and AIII, are different. The band structure in Fig. 11(a) consists
of two bands of 2L+ 1 energy levels; the Jz = L+ 1

2 edge state belongs to the lower band, the
Jz = L− 1

2 edge state belongs to the upper band. The position of the edge states is exchanged
in Fig. 11(e). In Fig. 11(c), the lower band has 2L levels (bulk states only) and the upper
band has 2L+ 2 levels (bulk states and the two edge states). Figs. 11(b,d) are associated with
a topological phase transition where the edge states cannot be assigned to a particular band.

The middle column of Fig. 11 is associated with S = 1, δ > 0. We clearly see the three
different band structures at AI = −30 (domain I), AII = −17.5 (domain II) and AIII = 0
(domain III). At AI = −30, we distinguish three distinct bands of 2L + 1 levels each. The
Jz = L+ 1, L, L, −L, −L, and −L− 1 levels respectively belong to: the lower band, the lower
and middle band, the middle and upper band, and the upper band. When A increases, the
Jz = L + 1 and Jz = L edge states in the small rectangle in the right part of panels (f), (g)
and (h) move upwards. The band structure in the intermediate domain II can be seen at
A = −15.0. Due to the displacement of the Jz = L + 1 and Jz = L edge states, we see three
bands but the number of quantum energy levels in each band has changed with respect to the
situation in domain I: two edge states left the lower band which has now only 2L − 1 levels.
One edge state left the middle band to join the upper band and an other one left the lower
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band to join the middle band so the middle band has still 2L+ 1 levels. The upper band gained
two levels and has 2L + 3 levels. In panel (g), it becomes impossible to state to which bands
belong the edge states and the bands only contain the bulk states. This redistribution of energy
levels among the bands is correlated to a triple degeneracy in the semi-quantum model. Another
redistribution is shown in the dashed rectangle in the left part of panels (h), (i) and (j), where
the Jz = −L − 1 and Jz = −L edge states are going downwards. The association of the edge
states to the bands is not possible. Finally, at AIII = 0, there is again three well-defined bands,
each band with 2L + 1 quantum energy levels. The Jz = L + 1, L, L, −L, −L, and −L − 1
levels now respectively belong to: the upper band, the middle and upper band, the lower and
middle band, and the lower band. This series of figures clearly confirm that the edge states are
responsible for the redistribution of the energy levels between bands.

The right column of Fig. 11 is again described with S = 1 and the same Hamiltonian param-
eters as in the middle column, except that the sign of the δ parameter is reversed. We see that
the band structures for A → −∞ and A → +∞ do not change. The main difference occurs in
the domain II: we see that the lower, middle and upper bands have respectively 2L+ 3, 2L+ 1
and 2L − 1 levels. In particular, the comparison between Fig. 11(h) and Fig. 11(m) shows us
that the edge energy levels with Jz = L + 1 and L have shifted upward for δ > 0 but the edge
state levels with Jz = −L − 1, −L have shifted downward for δ < 0. The comparison between
Fig. 11(j) and Fig. 11(o) indicates that the energy levels with Jz = −L− 1 and −L have shifted
downward for δ > 0 but the energy levels with Jz = L+ 1, L have shifted upward for δ < 0.

The comparison of the redistribution of the energy levels between bands for the quantum
problem with the qualitative modification of the lattice of quantum states in the image of the
energy-momentum map leads us to the following qualitative picture of band rearrangement.
If quantum states form a few number of energy bands (separated by gaps) with some initial
distribution of energy levels between bands, the variation in the control parameter modifies the
quantum states, and accordingly the set of all energy levels can be split into two subsets, one
of which is the subset of bulk states and the other is the subset of edge states. The bulk states
belong to the same band during the variation of the control parameter and the edge states go
from one band to another. In the transition, the edge state(s) belong equally to two bands and
have properties qualitatively different from the bulk states of each band.

For the complete classical problem, a qualitative modification of the image of the energy-
momentum map manifests itself as a modification of the system of critical values. In our example,
the critical values take different positions on the boundary in the limit case as |A| → ∞ and
in an intermediate situation, some of the critical values appear as the isolated monodromy
points inside the regular domain of the energy-momentum map. From the point of view of
quantum interpretation, the presence of monodromy points is associated with a “transition”
state between two qualitatively different band structures. From a complete classical perspective,
the “transition” regime is another qualitatively different dynamical regime.

In the rest of this section, we make a remark on the lattice of quantum states. It is known
that the elementary Hamiltonian monodromy of an integrable classical problem manifests itself
as a lattice defect for the corresponding quantum problem [63, 70].

Fig. 12 shows the lattice of quantum states done for a Hamiltonian with δ = 0, d = 0, γ = 1,
A = 0, and S = 5. With such a choice of parameters, the defects associated with two critical
values of the energy-momentum map are located inside the regular domain and the evolution of
elementary cells along paths is clearly visible. As is described in [53], the quantum monodromy
matrix is linked to a change in the organization of the lattice of quantum states, which itself seems
to be related to the redistribution phenomenon of energy levels. Fig. 12 shows that the evolution
of an elementary quantum cell around each of the two defects of the quantum state lattice
(corresponding to the critical values of the classical energy-momentum map and to Hamiltonian
monodromy) leads in an appropriately chosen basis to the same quantum monodromy matrix,
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Figure 11. Alternative representations of the energy level patterns shown in Figs. 2(a) and 3(a). Discrete

points are the numerical solutions for the exact quantum Hamiltonian: the Hamiltonian commutes with

the Jz operator, so the former can be block diagonalized, where each block has a label given by a value

of the projection of the total angular momentum on the z axis. Then, each of these blocks is numerically

diagonalized to obtain the discrete joint spectrum. The energy levels in a green region are assigned to the

same band. The rectangles with full lines contain the edge states involved in the first iso-Chern domain

crossing. The rectangles with dashed lines contain the edge states involved in the second iso-Chern

domain crossing. Left column: evolution of the joint spectrum of the Hamiltonian (2.1) with S = 1
2 ,

L = 5, γ = 1 + 2i, d = 1, δ = 3. The different subfigures correspond respectively to different A values

with the A = −40 and A = −10 cases being associated respectively with the left and the right boundaries

of domain II in Fig. 2(a). Middle column: evolution of the joint spectrum of the Hamiltonian (2.2)

with L = 5, γ = 1 + 2i, d = 1
2 , δ = 1. The different subfigures correspond respectively to different A

values with the A = −17.5 and A = −7.5 cases being associated respectively with the left and the right

boundaries of domain II in Fig. 3. Right column: same as middle column, but with δ = −1.

(
1 0
−1 1

)
. At the same time the evolution of the elementary cell along a contour surrounding both

elementary defects leads to the monodromy matrix
(

1 0
−2 1

)
. This demonstrates the additivity of

several monodromy points with the same vanishing cycle [42], while the monodromy matrix pos-
sessing the off-diagonal element of the opposite sign in the same basis corresponds to completely
different defects composed of at least eleven elementary monodromy defects [14, 70].
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Figure 12. Numerically computed joint spectrum of the quantum states superposed on the image of

the energy-momentum map for Hamiltonian (4.1) with A = 0 = δ = d = 0, γ = 1, S = 5, L = 16. The

boundary of the image of the energy-momentum map is calculated purely classically. Two elementary

monodromy defects of the quantum state lattice become visible by following the evolution of an elementary

cell of the lattice along a path surrounding each elementary defect (green cells and blue cells). Evolution

of an elementary cell along a path surrounding both defects (red cells) shows that the two monodromy

points have the same sign.

We note, however, that the modification of the Chern numbers for the eigenline bundles in
the case of the two-band model has different sign for the two degeneracy points associated with
the two monodromy points of the completely classical model. The sign of the local delta-Chern
contribution is presumably related to the direction of displacement of the critical value on the
image of the energy-momentum map rather than with the fact itself of existence of an isolated
critical value.

6 Spectral flow and topological effects
in molecular energy patterns

6.1 Spectral flow in a system of bands

The qualitative rearrangement of the energy bands in a quantum molecular system under the
variation of a control parameter can be formalized by introducing the notion of spectral flow.
Originally, the spectral flow of a one-parameter family of self-adjoint operators is defined to be
the net number of eigenvalues passing through zero in the positive direction as the parameter
runs [6]. This definition is well-suited in the case of two bands. The extension of the concept to
a system of N -bands, N > 2, rather focuses on the local change of number of quantum states
in each band, which we discuss below.

The spectral flow is naturally discussed in the quantum mechanical setting where the quantum
levels of the Hamiltonian can be partitioned into bulk states that do not change band and edge
states that redistribute among the bands along the variation of the control parameter. The
assignment of the energy levels in term of bands is trivial for our Hamiltonian (2.2) in the
limits |A| → ∞. The situation for intermediate A values is less clear and the analysis of the
redistribution of the quantum levels from the pure quantum point of view is made easier by
introducing semi-quantum and classical arguments as in Section 5.

Typically, the behavior of the eigenvalues of the semi-quantum Hamiltonian (3.9) suggests
a decomposition of the control parameter space of the Hamiltonian in iso-Chern domains (where
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the semi-quantum eigenvalues are non-degenerate), each corresponding to a different band struc-
ture, separated by walls where the semi-quantum eigenvalues are degenerate [36, 37, 38, 39]. Let
us pick a representative point Ai in each iso-Chern domain. For a given control parameter Ai,
each quantum level, bulk or edge state, is assigned to one and only one band. We suppose
furthermore that the Ai’s are ordered, · · · < Ai−1 < Ai < Ai+1 < · · · such that there is only one
wall between the iso-Chern domain associated with Ai and the one related to Ai+1. We give here
definitions that are suitable when there is a redistribution of one or more eigenvalues among
several bands upon the modification of the control parameter. Let the bands be numbered from
bottom to top according to their energy: b = 0 is the band with the lowest energy, b = 2S is
the band of highest energy. When the control parameter increases from Ai to Ai+1, n quantum
energy levels leaving the band j and joining the band k contribute to the local redistribution
fj→k([Ai, Ai+1]) from band j to band k between Ai and Ai+1:

fj→k([Ai, Ai+1]) = +n.

This quantity is always positive by definition.

Definition 1. The local spectral flow between Ai and Ai+1 is the 2S + 1 component vector∆N2S([Ai, Ai+1])
...

∆N0([Ai, Ai+1])

 ,

of the local changes ∆Nb([Ai, Ai+1]), i.e., the differences between all the local redistributions
joining the band b and all those local redistributions leaving the band b between Ai and Ai+1:

∆Nb([Ai, Ai+1]) =
∑
k 6=b

{
fk→b([Ai, Ai+1])− fb→k([Ai, Ai+1])

}
.

The components of the local spectral flow can be negative, zero, or positive integers.

Definition 2. The global spectral flow of quantum energy levels is the cumulated sum of the
local spectral flows:∆N2S

...
∆N0

 =
∑
i

∆N2S([Ai, Ai+1])
...

∆N0([Ai, Ai+1])

 .

The components of the global spectral flow can be negative, zero, or positive integers.

6.2 Two bands

The A-dependent Hamiltonian (2.1) with δ > 0 has edge state quantum energy levels responsible
for the band rearrangement, to which we can assign local spectral flows. Let AI, AII and
AIII be three values of the control parameter respectively chosen in domains I, II, and III, see
Fig. 2. There is only one quantum energy level changing bands between AI and AII. The local
redistribution from the lower band b = 0 to the upper band b = 1, f0→1([AI, AII]) = 1, is assigned
to the edge state crossing the E = 0 level at A = −dL2 − δL and the local redistribution from
the upper band to the lower band f1→0([AII, AIII]) = 1 to the edge state crossing the E = 0 level
at A = −dL2 + δL.

The number of levels of the upper and the lower bands in the intermediate region II of the
control parameter −dL2 − |δ|L < A < −dL2 + |δ|L depends on the sign of δ. If δ is positive as
in Fig. 2, the upper band has (2L+ 1) + 1 level, and the lower band has (2L+ 1)− 1 level. If δ
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is negative, the numbers of quantum energy levels in each band are exchanged. If we compare
the number of levels between the A = ±∞ limits, we see that each band gains one level and
loses one level and the net result is no change in the number of quantum energy levels.

The Hamiltonian (2.1) with δ = 0 is a special case: the intermediate region II is re-
duced to zero. There is a simultaneous redistribution of the two quantum energy levels in
opposite directions which are synchronized due to the pseudo-symmetry of the Hamiltonian:
f0→1 ([AI, AIII]) = 1, f1→0 ([AI, AIII]) = 1.

For the two-level semi-quantum Hamiltonian, Fig. 5 showing the evolution of Chern numbers
against the control parameter is in marked correspondence with the local spectral flow men-
tioned above. In addition, both of these qualitative modifications occurring in the quantum and
the semi-quantum models correspond to qualitative modifications of the image of the energy-
momentum map for the complete classical version of the same problem. As far as the observed
modifications are topological for classical and semi-quantum versions, they cannot be removed
by a small deformation of Hamiltonian neither in classical nor in quantum picture.

An important feature of the analyzed qualitative phenomenon characteristic of systems with
the energy-reflection symmetry is the special organization of the observed modifications. In
fact, we observe two local qualitative modifications which are generic for systems without
time-reversal invariance, one at the north pole of the sphere, the other one at the south pole.
These two phenomena occur simultaneously because of additional pseudo-symmetry (or energy-
reflection symmetry) of the Hamiltonian. Breaking this pseudo-symmetry (adding for example
the term δLz) results in the splitting of this non-local phenomenon into two local ones occurring
for different values of the control parameter.

6.3 N -bands

In the semi-quantum model, the redistribution phenomenon is related with degeneracy among
the eigenvalues of the Hamiltonian. When the degeneracy is generic, two and only two semi-
quantum eigenvalues are degenerate at a particular point of the base space. In such a case,
the quantum energy levels leaving one band join a neighboring band. When the degeneracy is
multiple, it may happen that a quantum level leaving one band joins a band that is farther than
its neighboring ones. For example, the quantum energy levels plotted in red in Fig. 3 change
bands by steps of two.

Let us observe from Fig. 3(a) with S = 1, δ > 0, that there is one energy level (upward red
line) that leaves the bottom band to join the top band. This level is represented by the Jz = L+1
red dot moving upwards in Figs. 11(f–j). In the semi-quantum model, the three eigenvalues of
the 3 × 3 matrix are degenerate at the north pole of the base space (a sphere). Fig. 3(b) is
an interpretation of the global change of bands between the A = −∞ and A = +∞ limits
when only the levels going upward are considered. It is remarkable that this figure has a local
interpretation too, between AI and AII. Section 5 discussed the problem of the redistribution
of energy levels between bands by looking at the evolution with the control parameter A of
the lattice of quantum states in the energy-momentum map, see Figs. 11(f–j). Looking at the
evolution of the edge states in Figs. 11(f–h), we understand that the transition of one energy
level from the lowest band to the highest band between AI and AII must be accompanied by
the transitions of two other levels: one level goes from the lower band to the middle band and
one level goes from the middle band to the upper band. These two levels are the levels in blue
in Fig. 3(a,b), going upwards with increasing A and the blue Jz = L dots in Figs. 11(f–h). As
a consequence, the local redistributions between AI and AII for δ > 0 are:

f0→2([AI, AII]) = 1, f0→1([AI, AII]) = f1→2([AI, AII]) = 1.
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The local spectral flow between AI and AII is then equal to:∆N2([AI, AII])
∆N1([AI, AII])
∆N0([AI, AII])

 =

 f0→2([AI, AII]) + f1→2([AI, AII])
f0→1([AI, AII])− f1→2([AI, AII])
−f0→2([AI, AII])− f0→1([AI, AII])

 =

 2
0
−2

 ,

consistent with the three-component vector of delta-Chern numbers (−2, 0,+2)T , see rela-
tions (3.7) and (3.11) for S = 1.

There is another triple degeneracy point in the semi-quantum model on the south pole for
the control parameter separating the iso-Chern domains II (intermediate domain) and III (large
values of A). Fig. 3(c) can be given two interpretations in a way similar to Fig. 3(b). First, it
gives the global redistribution of the levels moving downward between the A → −∞ limit and
the A → +∞ limit. It has a local interpretation between AII and AIII, too. Fig. 3(a) and the
dashed rectangles in Figs. 11(h–j) indicates that three levels are going downward between AII

and AIII for δ > 0: one level in red travels from the upper band to the lower band and two other
levels in blue shift downward by just one band:

f2→0([AII, AIII]) = 1, f1→0([AII, AIII]) = f2→1([AII, AIII]) = 1.

Between AII and AIII, the upper band has lost two quantum energy levels and the lower band
has gained two levels. The middle band is left and joined by one level, implying no change in the
number of energy levels in the middle band. If we compare the three bands for large negative
values of A and for large positive values of A, we can compute the global spectral flow:∆N2

∆N1

∆N0

 =

∆N2([AI, AII]) + ∆N2([AII, AIII])
∆N1([AI, AII]) + ∆N1([AII, AIII])
∆N0([AI, AII]) + ∆N0([AII, AIII])

 =

0
0
0

 .

Globally there is no change in the number of energy levels in each band. The three-component
vector of Chern numbers is (0, 0, 0)T , and is again consistent with relations (3.7) and (3.11).

The spectral flow mentioned above can be extended to the case of the band inversion for
the N -bands described by the effective Hamiltonian (2.2). In the general case for N -bands and
δ > 0, there is again three iso-Chern domains. The first redistribution of energy levels occurs
between AI and AII, where we see upward local redistributions fi→j([AI, AII]) = 1, j > i only.

There is
2S∑
b=0

(2S− b) = S(2S+ 1) such contributions between AI and AII. Then the local change

for band b is equal to:

∆Nb([AI, AII]) =
b−1∑
i=0

fi→b([AI, AII])−
2S∑

i=b+1

fb→i([AI, AII]) = −2(S − b).

The redistribution of the edge states between AI and AII is summarized in Table 1. The local
spectral flow is simply the next to last column, from which the delta-Chern contributions (last
column) can be easily deduced (sign change).

The second change in bands occurs between AII and AIII, with S(2S + 1) downward local
redistributions fi→j([AII, AIII]) = 1, j < i only and local changes:

∆Nb([AII, AIII]) =

2S∑
i=b+1

fi→b([AII, AIII])−
b−1∑
i=0

fb→i([AII, AIII]) = 2 (S − b) .

The redistribution of the edge states between AII and AIII is summarized in Table 2. As for
Table 1, the local spectral flow and the delta-Chern contributions can respectively be found in
the next to last and the last columns.
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Table 1. Redistribution of the edge states of Hamiltonian (2.2) between AI and AII for δ > 0.

band b going coming going coming ∆Nb([AI, AII]) delta-Chern
upward upward downward downward

from from from from

2S 0 2S 0 0 2S −2S
2S − 1 1 2S − 1 0 0 2 (S − 1) −2 (S − 1)

...
...

...
...

...
...

...
b 2S − b b 0 0 −2 (S − b) 2 (S − b)
...

...
...

...
...

...
...

1 2S − 1 1 0 0 −2 (S − 1) 2 (S − 1)
0 2S 0 0 0 −2S 2S

Table 2. Redistribution of the edge states of Hamiltonian (2.2) between AII and AIII for δ > 0.

band b going coming going coming ∆Nb([AII, AIII]) delta-Chern
upward upward downward downward

from from from from

2S 0 0 2S 0 −2S 2S
2S − 1 0 0 2S − 1 1 −2 (S − 1) 2 (S − 1)

...
...

...
...

...
...

...
b 0 0 b 2S − b 2 (S − b) −2 (S − b)
...

...
...

...
...

...
...

1 0 0 1 2S − 1 2 (S − 1) −2 (S − 1)
0 0 0 0 2S 2S −2S

As a consequence, the global change ∆Nb = ∆Nb([AI, AII]) + ∆Nb([AII, AIII]) over the pa-
rameter space is zero for any band. These results are consistent with relations (3.7) and (3.11).

Without reference to physical conditions, band rearrangement amounts to a partition problem

for the total number, (2S+1)(2L+1), of energy levels. In view of the fact that
2S∑
k=0

2(S−k) = 0,

we arrange (2S + 1)(2L+ 1) to obtain

(2S + 1)(2L+ 1) =
2S∑
k=0

(2L+ 1)−
2S∑
k=0

2(S − k) =
2S∑
k=0

[2(L− S + k) + 1].

This is exactly the same as the relation among the dimensions of representation spaces for the
Clebsch–Gordan formula, VS ⊗ VL ' VL−S ⊕ · · · ⊕ VL+S with S < L. This conformity with
the Clebsh–Gordan formula is viewed as a consequence of the fact that the Hamiltonian (2.2) is
a variant of the spin-orbit coupling Hamiltonian.

Furthermore, on denoting the Chern numbers by Chk = −2(S − k) or by Ch′r = 2(S − r)
with r = 2S − k, the above equation is rewritten as

(2S + 1)(2L+ 1) =

2S∑
k=0

(2L+ 1 + Chk) =

2S∑
r=0

(2L+ 1 + Ch′r).

Each term of the right-hand side of this equation is a generalization of equation (3.7). The idea
of the relation between band rearrangement and Chern number dates back to an early paper [23].
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6.4 Symmetries

In conclusion of this section, we make remarks on discrete symmetry related to the spectral flow
and the Chern number. The pseudo-symmetry treated in equation (2.8) and in equation (3.4) (or
equivalently called the particle-hole symmetry in Dirac theory) implies that a local redistribution
between Ai and Ai+1 from band i to band j is compensated by a local redistribution in the same
interval but from band j to band i. As a consequence, the number of levels in the different
bands is invariant and correspondingly the modification of Chern number is zero.

Being interested in another discrete symmetry, we take up the time-reversal symmetry, which
is considered as a reality condition imposed on the effective Hamiltonian. Under the presence
of the time-reversal symmetry, two local phenomena occurring at different points of base space
give the same delta-Chern contribution under the variation of a control parameter and the same
redistribution of energy levels between energy bands. This leads to the conclusion that the
components of the local spectral flow and the modification of the Chern number should be even
for time-reversal invariant problems [24].

7 Conclusion

We started by studying a generic phenomenon of the rearrangement of energy levels between
two bands in the presence of the axial symmetry and the energy-reflection symmetry and have
reached the study of the band inversion phenomenon for an arbitrary number of energy bands,
which is characterized globally by using the correlation between the initial and final system of
bands without entering into details of rearrangement process (see Fig. 4). The simultaneous
analysis of the full quantum problem, its semi-quantum analog, and its complete classical ver-
sion, demonstrates that there exist perfect analogies among them. In particular, as far as band
rearrangement is concerned, the evolution of the lattice of quantum states offers another point of
view for the interpretation of the redistribution of energy levels between bands. This allows us to
apply the notion of topological phase transition for the qualitative phenomenon of the redistri-
bution of energy levels between bands and to relate these transitions with explicitly calculated
topological invariants for semi-quantum and classical models. In contrast to other studies of
topological effects in molecular systems related with the formation of conical intersections in
configuration space [34, 67] or in momentum space [41, 61] our analysis is based on topological
effects manifested in the classical phase space associated with the quantum problem under study
within the semi-quantum description and looked upon as a qualitative modification of the dy-
namical behavior through the recoupling of different degrees of freedom and the reorganization
of the energy band structure. At the same time, it is important to note the similarity of the con-
sidered effect of the energy band reorganization in finite particle quantum systems with other
physically quite different but mathematically close phenomena. The most direct relation is with
topological insulators in solid state physics [31]. A crucial point in energy bands treated in topo-
logical insulators is that there exists an energy level that closes a band gap. This corresponds
to the energy level redistribution or band rearrangement discussed in our theory. Although the
concept itself of topological insulators has been developed after the appearance of the first paper
on energy level redistribution between energy bands in molecules [50], even before that, there
were a number of publications serving as a prerequisite to the formulation of the qualitative theo-
ry of molecular band rearrangements. Along with the quantum Hall effect and Berry’s phase
discussions [56, 57, 59] there appeared the topological ideas developed by S.P. Novikov during
the description of a non-relativistic electron in a magnetic field [49]3 and by G. Volovik et al. in
their works on singularities associated with gap nodes in superfluid 3He [26, 61]. Appearance of
topological singularities in band structures of solids was discussed by Herring [33] almost at the

3For further development of this direction see [25].
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beginning of the quantum mechanics. Further implications to the existence of new topological
phases were suggested, for example, in [1] and studied from the point of view of a mathematically
much more elaborated approach in [35]. It is quite interesting also to compare the description of
the Adler–Bell–Jackiw chiral anomaly by Nielsen and Ninomiya made in 1983 [48] (see especially
their Fig. 2) on the basis of their previous works in particle physics on possible development of
fermion theories on a lattice [46, 47] with the figures representing the contact of the conduction
band and the valence band at a single point. Recent experimental study of Adler–Bell–Jackiw
anomaly [68] confirms the universality of the topological mathematical models in different do-
mains of physics. Authors hope that the present paper will stimulate interest of a rather large
physical community in the applications of topological ideas to molecular physics problems.

A natural continuation of the present work is the extension of the present qualitative ana-
lysis to the redistribution of energy levels between energy bands of molecular quaternionic sys-
tems [7, 19], i.e., molecular systems with an half integer spin invariant under time-reversal,
and comparison of the corresponding topological transitions with the physical description of
the AII class of topological insulators and with the mathematical description of the unfor-
mal mathematical trinity between mathematical models over real, complex, and quaternionic
coefficients [4, 5, 15].
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[70] Zhilinskíı B., Hamiltonian monodromy as lattice defect, in Topology in Condensed Matter, Springer Series
in Solid-State Sciences, Vol. 150, Springer, Berlin – Heidelberg, 2006, 165–186, quant-ph/0303181.

https://doi.org/10.1007/s00023-006-0278-4
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1209/0295-5075/6/7/001
https://doi.org/10.1103/PhysRevA.77.032115
https://doi.org/10.1088/1367-2630/12/6/065010
https://arxiv.org/abs/0912.2157
https://doi.org/10.1016/S0375-9601(99)00229-7
https://doi.org/10.1103/PhysRevB.78.195125
https://arxiv.org/abs/0803.2786
https://doi.org/10.1142/0613
https://doi.org/10.1103/PhysRevLett.51.2167
https://doi.org/10.1016/j.aop.2014.03.006
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1063/1.3264686
https://doi.org/10.1016/j.aim.2006.04.004
https://arxiv.org/abs/math.SG/0504165
https://doi.org/10.1016/j.physleta.2010.08.008
https://arxiv.org/abs/0909.2169
https://doi.org/10.1103/PhysRevLett.95.243002
https://doi.org/10.1103/RevModPhys.68.985
https://doi.org/10.1038/ncomms10735
https://arxiv.org/abs/1601.04208
https://doi.org/10.1016/S0370-1573(00)00089-2
https://doi.org/10.1007/3-540-31264-1_8
https://doi.org/10.1007/3-540-31264-1_8
https://arxiv.org/abs/quant-ph/0303181

	1 Introduction
	2 Quantum Hamiltonian and its symmetry
	2.1 Additional finite symmetry and pseudo-symmetry
	2.2 Band inversion for an arbitrary number of bands

	3 Semi-quantum model and Chern numbers
	3.1 Chern numbers for Hsemi-quantum with d=0
	3.1.1 Chern numbers for Hsemi-quantum with d=0, =1
	3.1.2 Chern numbers for Hsemi-quantum with d=0, =-1

	3.2 Chern numbers for Hsemi-quantum with d=1, =0
	3.3 Generalization to N-bands
	3.3.1 Numbers of energy levels and Chern numbers
	3.3.2 Chern numbers for an arbitrary number N=2S+1 of bands


	4 Completely classical version and energy-momentum map
	5 Returning to the quantum picture: comparison with the semi-quantum and the classical point of views
	6 Spectral flow and topological effects in molecular energy patterns
	6.1 Spectral flow in a system of bands
	6.2 Two bands
	6.3 N-bands
	6.4 Symmetries

	7 Conclusion
	References

