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Abstract. In this work, we show that an autonomous dynamical system defined by a non-
vanishing vector field on an orientable three-dimensional manifold is globally bi-Hamiltonian
if and only if the first Chern class of the normal bundle of the given vector field vanishes.
Furthermore, the bi-Hamiltonian structure is globally compatible if and only if the Bott
class of the complex codimension one foliation defined by the given vector field vanishes.
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1 Introduction

An autonomous dynamical system on a manifold M

ẋ(t) = v(x(t)) (1.1)

is determined by a vector field v(x) on a manifold up to time reparametrization. Important
geometric quantities related to a dynamical system are functions I which are invariant under
the flow of the vector field

LvI = 0.

It is sometimes possible to relate the vector field to an invariant function via a Poisson struc-
ture J , which is a bivector field on M

J : Λ1(M)→ X(M)

satisfying the Jacobi identity condition

[J ,J ]SN = 0,

where [ , ]SN is the Schouten–Nijenhuis bracket. The local structure of such manifolds was first
introduced in [13]. The invariants satisfying the condition

v = J (dI) (1.2)

are called Hamiltonian functions of (1.1). Given a dynamical system on M defined by the vector
field v, the vector field v is called a Hamiltonian vector field if there exists a Poisson bivector J
and a smooth function I such that equation (1.2) holds.
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Given a vector field v onM , finding a Poisson structure according to which the vector field be-
comes Hamiltonian may not be an easy task in general. However, if a given dynamical system can
be put into Hamiltonian form then, there may be more than one Poisson structure which makes
it into a Hamiltonian system. In [9], a bi-Hamiltonian system is introduced for the analysis of
certain infinite-dimensional soliton equations. In such a case, there arises the question of the re-
lation between these Poisson structures, which is called compatibility. Although there are at least
two different approaches to compatibility [11], by following [10] we adapt the definitions below:

Definition 1.1. A dynamical system is called bi-Hamiltonian if it can be written in Hamiltonian
form in two distinct ways:

v = J1(dH2) = J2(dH1), (1.3)

such that J1 and J2 are nowhere multiples of each other. This bi-Hamiltonian structure is
compatible if J1 + J2 is also a Poisson structure.

In this paper we confine ourselves to dynamical systems on three-dimensional orientable
manifolds. For three-dimensional manifolds, where there is no symplectic structure for dimen-
sional reasons, Poisson structures have a simple form. Poisson structures of dynamical systems
on three manifolds are extensively studied first in [4] and then also in [5] and [8]. Following
the definitions in [4], choosing any Riemannian metric g on M , a Poisson bivector field, which
is skew-symmetric, can be associated to a vector field by using the Lie algebra isomorphism
so(3) ' R3

J = Jmnem ∧ en = εmnk Jkem ∧ en,

and the vector field

J = Jkek

is called the Poisson vector field on M .
Then, the Jacobi identity has the form

J · (∇× J) = 0, (1.4)

and equation (1.3) becomes

v = J1 ×∇H2 = J2 ×∇H1. (1.5)

Since J1 and J2 are not multiples of each other by definition, we have

J1 × J2 6= 0 (1.6)

and

Ji · v = 0 (1.7)

for i = 1, 2.
This work is focused on the bi-Hamiltonian structure of dynamical systems defined by nonva-

nishing vector fields on orientable three-dimensional manifolds, or equivalently vector fields on
three-dimensional manifolds whose supports are orientable three-dimensional manifolds. Since
all orientable three-dimensional manifolds are parallelizable [12], there is no topological ob-
struction to the global existence of a nonvanishing vector field. Then, by the bi-Hamiltonian
form (1.5)–(1.7), {v, J1, J2} forms a local frame field. Therefore, whenever the system is globally
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bi-Hamiltonian, {v, J1, J2} becomes a global frame field on M . For example, for M = R3 and
v = ∂x0 we have Ji = ∂xi and {∂x0 , ∂x1 , ∂x2} forms such a global frame field. However, the global
existence of the frame field {v, J1, J2} is by no means guaranteed. The simplest counterexample
is the gradient flow of the S2 in R3 \ {0}. Here, a frame field {v, J1, J2} cannot be defined
globally since J1, J2 are sections of the tangent bundle of S2 which is not trivial and does not
admit two nonvanishing linearly independent vector fields.

The goal of this paper is to give necessary and sufficient conditions for a nonvanishing
vector field on an orientable three-dimensional manifold to admit a compatible bi-Hamiltonian
structure. The paper is organized as follows: In Section 2, the local existence of bi-Hamiltonian
systems is investigated in a neighbourhood of a point, possibly refined by the existence conditions
of solutions of certain ODE’s related with the problem, and it is shown in Theorem 2.7 that it is
always possible to find a pair of compatible Poisson structures such that the system defined by
the nonvanishing vector field becomes bi-Hamiltonian. In Section 3, obstructions to the global
existence of a pair of Poisson structures are studied. In Section 3.2 the primary obstruction for
the existence of a global pair of Poisson structures is investigated, and it is shown in Theorem 3.6
that such a pair, which is not necessarily compatible, exists if and only if the first Chern class
of the normal bundle vanishes. Finally, the global compatibility of this pair is investigated
in Section 3.3 and it is shown in Theorem 3.8 that under the assumption of global existence,
the vanishing of the Bott class of the complex codimension one foliation is the necessary and
sufficient condition for the global compatibility of the pair of Poisson structures.

Throughout the work, bivectors are denoted by calligraphic and forms are denoted by bold
letters.

2 Local existence of bi-Hamiltonian structure in 3D

For this purpose, we will first analyze the local solutions of the equation (1.4) defining Poisson
vectors, which is also studied in [6]. Let M be an orientable three-dimensional manifold with
an arbitrary Riemannian metric g, and v be a nonvanishing vector field. Let

ê1 =
v

‖v‖

and extend this vector field to a local orthonormal frame field {ê1, ê2, ê3}. Define the structure
functions (Ckij(x)) via the relation

[êi, êj ] = Ckij(x)êk. (2.1)

Proposition 2.1. A nonvanishing vector field v admits two independent local Poisson structures
on M .

Proof. Adopting the frame defined above and using (1.7), we have the Poisson vector field

J = αê2 + βê3, (2.2)

and its curl is given by

∇× J = ∇α× ê2 + α∇× ê2 +∇β × ê3 + β∇× ê3. (2.3)

Now the Jacobi identity (1.4) is obtained by taking the dot product of (2.2) with (2.3), and
using triple vector product identities we get

βê1 · ∇α− αê1 · ∇β − α2C2
31 − αβ

(
C3
31 + C2

12

)
− β2C3

12 = 0. (2.4)
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If J = 0 then ‖v‖ = 0 and hence v = 0, which contradicts with our assumption that the
vector field is nonvanishing. Therefore, we assume

J 6= 0,

which means that α 6= 0 or β 6= 0. Now we assume α 6= 0, while the case β 6= 0 is similar and
amounts to a rotation of the frame fields. Defining

µ =
β

α

and dividing (2.4) by α2, we get

ê1 · ∇µ = −C2
31 − µ

(
C3
31 + C2

12

)
− µ2C3

12, (2.5)

whose characteristic curve is the integral curve of (1.1) in arclength parametrization and

dµ

ds
= −C2

31 − µ
(
C3
31 + C2

12

)
− µ2C3

12 (2.6)

in the arclength variable s. The Riccati equation (2.6) is equivalent to a linear second order
equation and hence, possesses two linearly independent solutions leading to two Poisson vector
fields. Since the vector field v is assumed to be nonvanishing, for each x0 ∈ R3 it is possible
to find a neighborhood foliated by the integral curves of v which are nothing but characteristic
curves of (2.5). Therefore, solutions of (2.6) can be extended to a possibly smaller neighborhood
on which the Riccati equation has two independent solutions which we call µi for i = 1, 2. Hence,
we have two Poisson vector fields

Ji = αi
(
ê2 + µiê3

)
, (2.7)

where the coefficients αi are arbitrary. �

Note that, (2.5) determines µi alone, but not αi. Taking the advantage of the freedom of
choosing arbitrary scaling factors we may restrict these factors by imposing compatibility on
our Poisson vector fields.

Proposition 2.2. Two Poisson structures obtained in (2.5) are compatible iff

ê1 · ∇ ln
αi
αj

= C3
12(µi − µj). (2.8)

Proof. Let

J = J1 + J2

Using (1.4) for J1, J2 and J

(∇× J) · J = (∇× J2) · J1 + (∇× J1) · J2 = 0. (2.9)

For the Poisson vector fields defined in (2.5), taking the dot product of both sides of (2.3) by Jj ,
leads to

(∇× Ji) · Jj = αiαj(µi − µj)
(
C2
12 + C3

12µi − ê1 · ∇ lnαi
)
. (2.10)

Therefore, the compatibility condition (2.9) implies that

C2
12 + C3

12µi − ê1 · ∇ lnαi = C2
12 + C3

12µj − ê1 · ∇ lnαj ,
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and hence, we get

ê1 · ∇ ln
αi
αj

= C3
12(µi − µj), (2.11)

whose characteristic curve is the solution curve of (1.1) in arclength parametrization

d

ds
ln
αi
αj

= C3
12(µi − µj). (2.12)

By a similar line of reasoning as above, the solutions of (2.12) can also be extended to the whole
neighborhood, and the proposition follows. �

However, having a pair of Poisson structures obtained in (2.5) and even a compatible pair
satisfying (2.11) do not guarantee the existence of Hamiltonian functions even locally.

Proposition 2.3. The dynamical system (1.1) is locally bi-Hamiltonian with the pair of Poisson
structures obtained in (2.7) if and only if

ê1 · ∇ ln
αi
‖v‖

= C3
31 + µiC

3
12. (2.13)

Proof. For this purpose we first need to write down the equations for the Hamiltonian functions.
The invariance condition of Hamiltonian functions under the flow generated by v implies

ê1 · ∇Hi = 0, (2.14)

so the gradients of Hamiltonian functions are linear combinations of ê2 and ê3. Then, inser-
ting (2.7) into (1.5) we get another condition

ê3 · ∇Hj − µiê2 · ∇Hj =
‖v‖
αi

(2.15)

or by defining

ui = −µiê2 + ê3

(2.15) can be written as

ui · ∇Hj =
‖v‖
αi

. (2.16)

Equations (2.14) and (2.16) for Hamiltonian functions are subject to the integrability condition

ê1(ui(Hj))− ui
(
ê1(Hj)

)
=
[
ê1, ui

]
(Hj).

Using the commutation relations given in (2.1) and (2.5), we obtain

[ê1, ui] = −
(
C1
31 + µiC

1
12

)
ê1 −

(
C3
31 + µiC

3
12

)
ui. (2.17)

Applying Hj to both sides of (2.17) and using two equations (2.14) and (2.16) for Hamiltonian
functions, we get

[
ê1, ui

]
(Hj) = −

(
C3
31 + µiC

3
12

)‖v‖
αi

.
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Therefore, our integrability condition for Hamiltonian functions becomes

ê1 · ∇
(
‖v‖
αi

)
= −

(
C3
31 + µiC

3
12

)‖v‖
αi

,

hence,

ê1 · ∇ ln

(
αi
‖v‖

)
= µiC

3
12 + C3

31 (2.18)

and the proposition follows. �

Corollary 2.4. The pair of Poisson structures Ji = αi
(
ê2+µiê3

)
where αi’s are defined by (2.18)

and µi’s are defined by (2.5) are compatible.

Proof. What we need is to show that (2.8) is satisfied. Indeed, writing (2.18) for αi and αj
and subtracting the second from the first, the corollary follows. �

Note that, for a pair of compatible Poisson structures, J1 and J2, the dilatation symmetry
J → fJ and the additive symmetry J1 + J2 do not imply that J1 + fJ2 is a Poisson structure.
Indeed, if we apply the Jacobi identity condition and using triple vector identity

(J1 + fJ2) · ∇ × (J1 + fJ2) = −∇f · (J1 × J2) = 0,

which implies that

ê1 · ∇f = 0.

Now we try to describe the relation between the pair of compatible Poisson structures and
Hamiltonian functions. But first, we need the following lemma to describe this relation.

Lemma 2.5. For the bi-Hamiltonian system with a pair of compatible Poisson structures defined
above,

∇ · ê1 = ê1 · ∇ ln
α1α2(µ2 − µ1)

‖v‖2
.

Proof. Adding the equations for integrability conditions of Hamiltonian functions (2.18) for
i = 1, 2, we get

ê1 · ∇ ln(α1α2) = ê1 · ∇ ln
(
‖v‖2

)
+ 2C3

31 + (µ1 + µ2)C
3
12. (2.19)

On the other hand, subtracting the equations (2.5) satisfied by µ1 and µ2, and dividing by
(µ2 − µ1),

ê1 · ∇ ln(µ2 − µ1) = −
(
C3
31 + C2

12

)
− (µ1 + µ2)C

3
12. (2.20)

Adding (2.19) to (2.20) and using

∇ · ê1 = Cii1,

we get

ê1 · ∇ ln(α1α2(µ2 − µ1)) = ê1 · ∇ ln
(
‖v‖2

)
+∇ · ê1,

and the lemma follows. �
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Proposition 2.6. Given a bi-Hamiltonian system with a pair of compatible Poisson structures,
there exists a canonical pair of compatible Poisson structures K1, K2 with the same Hamiltonian
functions H1, H2 such that

Ki = (−1)i+1φ∇Hi,

where

φ =
α1α2(µ2 − µ1)

‖v‖
.

Proof. Since Poisson vector fields are linearly independent, one could write Hamiltonians in
terms of Poisson vector fields as

∇Hi = σji Jj .

By using (1.5), we get

σ22 = −σ11 =
‖v‖

α1α2(µ2 − µ1)
.

On the other hand, we have

∇×∇Hi = ∇σji × Jj + σji∇× Jj = 0.

Taking the dot product of both sides with J1 and J2, and using the compatibility condition, we
obtain

ê1 · ∇ lnσij =
J1 · (∇× J2)
α1α2(µ2 − µ1)

. (2.21)

Inserting (2.13) into (2.10) and using (2.21),

ê1 · ∇ lnσij = −ê1 · ∇ lnφ,

which leads to

σij =
Ψi
j

φ
,

where

ê1 · ∇Ψi
j = 0.

Therefore, we have

∇H1 =
1

φ

(
Ψ1

1J1 + Ψ2
1J2
)
, ∇H2 =

1

φ

(
Ψ1

2J1 −Ψ1
1J2
)
. (2.22)

Inserting (2.22) into (1.5), we get

Ψ1
1 = −1,

and finally,

∇H1 = − ‖v‖
α1α2(µ2 − µ1)

(
J1 −Ψ2

1J2
)
, ∇H2 =

‖v‖
α1α2(µ2 − µ1)

(
Ψ1

2J1 + J2
)
.
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Note that,

∇H1 ×∇H2 = −
(
1 + Ψ1

2Ψ
2
1

) ‖v‖2

α1α2(µ2 − µ1)
ê1. (2.23)

For the Hamiltonians to be functionally independent, r.h.s. of (2.23) must not vanish, i.e.,

1 + Ψ1
2Ψ

2
1 6= 0.

Now let us define

K1 =
J1 −Ψ2

1J2
1 + Ψ1

2Ψ
2
1

= − α1α2(µ2 − µ1)(
1 + Ψ1

2Ψ
2
1

)
‖v‖
∇H1, K2 =

J2 + Ψ1
2J1

1 + Ψ1
2Ψ

2
1

=
α1α2(µ2 − µ1)(
1 + Ψ1

2Ψ
2
1

)
‖v‖
∇H2.

By (1.5), we get

K1 ×∇H1 = K2 ×∇H2 = 0, K2 ×∇H1 = K1 ×∇H2 = v.

Choosing Ki’s to be our new Poisson vector fields, the proposition follows. �

Consequently, we can write the local existence theorem of bi-Hamiltonian systems in three
dimensions.

Theorem 2.7. Any three-dimensional dynamical system

ẋ(t) = v(x(t)) (2.24)

has a pair of compatible Poisson structures

Ji = αi
(
ê2 + µiê3

)
,

in which µi’s are determined by the equation

ê1 · ∇µi = −C2
31 − µi

(
C3
31 + C2

12

)
− µ2iC3

12,

and αi’s are determined by the equation

ê1 · ∇ ln
αi
‖v‖

= C3
31 + µiC

3
12.

Furthermore, (2.24) is a locally bi-Hamiltonian system with a pair of local Hamiltonian functions
determined by

Ji = (−1)i+1φ∇Hi, (2.25)

where

φ =
α1α2(µ2 − µ1)

‖v‖
. (2.26)

3 Global existence of compatible bi-Hamiltonian
structure in 3D

In this section, we investigate the conditions for which the local existence theorem holds globally.
To study the global properties of the vector field v by topological means, we relate the vector
field with its normal bundle. Let E be the one-dimensional subbundle of TM generated by v.
Let Q = TM/E be the normal bundle of v. By using the cross product with ê1, we can define
a complex structure Λ on the fibers of Q→M , and Q becomes a complex line bundle over M .
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3.1 Bi-Hamiltonian structure in 3D with differential forms

In order to obtain and express the obstructions to the global existence of bi-Hamiltonian struc-
tures on orientable three manifolds by certain cohomology groups and characteristic classes, we
will reformulate the problem by using differential forms. For this purpose, let Ω be the volume
form associated to the Riemannian metric g of M . Then, there is a local one-form J associated
with a local Poisson bivector field J ,

J = ıJΩ,

which is called the local Poisson one-form. The bi-Hamiltonian system (1.5) can be written as

ιvΩ = J1 ∧ dH2 = J2 ∧ dH1. (3.1)

Note that, although the l.h.s. of this equality is globally defined, r.h.s. is defined only locally,
therefore it holds only locally. Now the Jacobi identity is given by

J i ∧ dJ i = 0 for i = 1, 2, (3.2)

and compatibility amounts to

J1 ∧ dJ2 = −J2 ∧ dJ1.

By (2.25), J1 and J2 can be chosen to be proportional to dH1 and dH2, respectively, and
hence (3.1) takes the form

ιvΩ = φdH1 ∧ dH2.

The Jacobi identity for Poisson 1-forms (3.2) implies the existence of 1-forms βi such that

dJ i = βi ∧ J i (3.3)

for each i = 1, 2. In the next proposition we are going to show that the compatibility of Poisson
structures allows us to combine β1 and β2 into a single one.

Proposition 3.1. There is a 1-form β such that

dJ i = β ∧ J i

for each i = 1, 2.

Proof. Applying (3.3) to the compatibility condition

J1 ∧ dJ2 + J2 ∧ dJ1 = 0,

we get

(β1 − β2) ∧ J1 ∧ J2 = 0,

which implies that

β1 − β2 = b1J1 + b2J2,

and therefore, we define

β = β1 − b1J1 = β2 + b2J2.

Hence

β ∧ J i = βi ∧ J i = dJ i,

and the proposition follows. �
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Note that β is a TM -valued 1-form. Namely,

ιê1β 6= 0

in general. Now we are going to show that by an appropriate change of Poisson forms, we may
reduce it to a connection 1-form on Q.

Lemma 3.2.

ιê1β = ιê1(d lnφ),

where φ is the function defined in (2.26).

Proof. For the proof, we carry out the computation with Poisson vector fields, then transform
the result to differential forms. The Jacobi identity (1.4) implies that ∇×Ji is orthogonal to Ji
and therefore, we get

∇× Ji = ai1ê1 + ai2ê1 × Ji. (3.4)

By the definition of Poisson vector fields, we have

J1 × J2 = φ‖v‖ê1.

We can rewrite (3.4) in the form

∇× Ji =
ai1
φ‖v‖

J1 × J2 + ai2ê1 × Ji. (3.5)

Using the compatibility condition (2.9), we obtain

ai1 = (∇× Ji) · ê1, ai2 =
(∇× J1) · J2

φ‖v‖
.

Now we define

ξ =
a21J1 − a11J2 + ((∇× J1) · J2)ê1

φ‖−→v ‖
,

and (3.5) becomes

∇× Ji = ξ × Ji.

After a bit of computation it is possible to show that

ξ = ∇ lnφ+ ê1 ×
(

[ê1 × J1, ê1 × J2]
φ‖v‖

− ê1 ×∇ ln ‖v‖
)
.

Hence, we have

ê1 · ξ = ê1 · ∇ lnφ

and defining

β = ∗ιξΩ,

the lemma follows. �
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Now we define new Poisson 1-forms Ki

J i = φKi.

Taking the exterior derivatives of both sides

dJ i = dφ ∧Ki + φdKi = β ∧ φKi

and dividing both sides by φ,

dKi = (β − d lnφ) ∧Ki.

Let

γ = β − d lnφ.

Now, by the lemma above,

ιê1γ = ιê1β − ιê1(d lnφ) = 0, (3.6)

therefore,

dKi = γ ∧Ki, (3.7)

where γ is a connection on Q.

3.2 The first obstruction: the Chern class of Q

Now we try to find conditions for which a nonvanishing vector field v satisfies

w = ιvΩ = φdH1 ∧ dH2 (3.8)

for some globally defined functions φ, H1 and H2. For a two-form to be decomposed into the
form (3.8), first of all, the two-form must be written as a product of two globally defined, linearly
independent nonvanishing factors. However, such a decomposition may not exist globally. Then,
the question is to decompose w into a product of two globally defined one forms ρ1 and ρ2

w = ρ1 ∧ ρ2. (3.9)

Since v is a nonvanishing vector field, w is a 2-form of constant rank 2. If we let Sw to be
the sub-bundle of TM on which w is of maximal rank, then we have Sw ∼= Q defined above.
The following theorem states the necessary and sufficient conditions for the decomposition of
a two-form of constant rank 2s in the large.

Theorem 3.3. Let Σ be an Rn-bundle over a connected base space M . Let w be a 2-form on Σ
of constant rank 2s. Let Sw be the subbundle of Σ on which w is of maximal rank. w decomposes
if and only if

i) Sw is a trivial bundle.

ii) The representation of its normalization as a map w1 : M → SO(2s)/U(s) arising from any
trivialization of Sw lifts to SO(2s) [3].
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In our case, when s = 1, since U(1) ∼= SO(2), then SO(2)/U(1) is a point and it lifts to SO(2)
trivially, therefore the second condition in the theorem is satisfied. Hence, the necessary and
sufficient condition of decomposition is the triviality of Sw ∼= Q. Since Q is a complex line
bundle, it is trivial if and only if c1(Q) = 0, or equivalently it has a global section. Since the
decomposition of the 2-form w into globally defined 1-forms ρ1 and ρ2 is a necessary condition
for the existence of a global bi-Hamiltonian structure, the vanishing of the first Chern class of Q
becomes a necessary condition.

However, this may not be sufficient since the existence of a decomposition in the form (3.9)
may not imply that the factors ρi satisfy

ρi ∧ dρi = 0.

In order to determine the effect of vanishing Chern class on the constructions made so far, we
are going to investigate the equation (2.5) defining the Poisson one-forms. Since our Poisson
one-forms and related integrability conditions are determined by the local solutions of (2.5),
they are defined locally on each chart. Let

{
Jpi
}

and
{
Jqi
}

be the Poisson vector fields in charts
(Up, xp) and (Uq, xq) around points p ∈ M and q ∈ M , respectively. Around the point p ∈ M ,
the Poisson vectors

{
Jpi
}

are determined by µpi , α
p
i and the local frame

{
êp2, ê

p
3

}
. Given the local

frame, we can write (2.5) whose solutions are µpi ’s, and using µpi ’s we can determine αpi ’s by the
equation (2.13). Now, if c1(Q) = 0, which is a necessary condition for the existence of global
bi-Hamiltonian structure, then we have a global section of Q, i.e., global vector fields normal
to v. By using the metric on M , normalize this global section of Q and take it as ê2, then
define ê3 = ê1 × ê2. So we have the global orthonormal frame field {ê1, ê2, ê3}. In order to
understand the relation between local Poisson one-forms obtained in two different coordinate
neighborhoods, we first need the following lemmas:

Lemma 3.4. If two solutions µ1(s) and µ2(s) of the Riccati equation

dµi
ds

= −C2
31 − µi

(
C3
31 + C2

12

)
− µ2iC3

12

are known, then the general solution µ(s) is given by

µ− µ1 = K(µ− µ2)e
∫
C3

12(µ2−µ1)ds,

where K is an arbitrary constant [7].

Lemma 3.5. If c1(Q) = 0, then two pairs of compatible Poisson vector fields
{
Jpi
}

and
{
Jqi
}

on Up and Uq respectively, are related on Up ∩ Uq by

Jqi∥∥Jqi ∥∥ =
Jpi∥∥Jpi ∥∥ .

Proof. Given the global frame field {ê2, ê3} defined on coordinate neighborhoods Up and Uq,
Riccati equations for µi’s can be written as

ê1 · ∇µri = (∇× ê2) · ê2 + µri
(
(∇× ê2) · ê3 + (∇× ê3) · ê2

)
+
(
µri
)2(∇× ê3) · ê3

for r = p, q. Therefore, on Up ∩ Uq, µpi and µqi are four solutions of the same Riccati equation
for i = 1, 2. By the lemma above we have

µqi − µ
p
1 = Kpq

i

(
µqi − µ

p
2

)
e
∫
C3

12

(
µp2−µ

p
1

)
ds. (3.10)
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Now, using the compatibility condition (2.8),

C3
12

(
µp2 − µ

p
1

)
= ê1 · ∇ ln

αp2
αp1
,

(3.10) becomes

µqi − µ
p
1 = Kpq

i

(
µqi − µ

p
2

)αp2
αp1
, (3.11)

where

ê1 · ∇Kpq
i = 0. (3.12)

Multiplying both sides by αp1α
q
i in (3.11), gives

Jqi × J
p
1 = Kpq

i J
q
i × J

p
2 . (3.13)

Rearranging (3.13), we obtain

Jqi ×
(
Jp1 −K

pq
i J

p
2

)
= 0.

Using (3.12) and the compatibility, we can take

J̃pi = Jp1 −K
pq
i J

p
2

to be our new Poisson vector fields on the neighborhood Up, and obtain

Jqi × J̃
p
i = 0.

By compatibility these new Poisson vector fields J̃pi produce functionally dependent Hamilto-
nians and therefore, for the simplicity of notation, we will assume without restriction of generality
that

J̃pi = Jpi

and the lemma follows. �

Then, we have the following result:

Theorem 3.6. There exist two linearly independent global sections ĵi of Q satisfying

ĵi ·
(
∇× ĵi

)
= 0 (3.14)

if and only if c1(Q) = 0.

Proof. The forward part is trivial since the existence of a global section of the complex line
bundle Q implies that Q is trivial, and hence c1(Q) vanishes. For the converse, we define

ĵpi =
Jpi∥∥Jpi ∥∥

and the lemma implies that jpi = jqi on Up ∩ Uq and the theorem follows. �

The lemma above states the reason why one may fail to extend a local pair of compatible
Poisson vector fields into a global one, even if c1(Q) = 0. In order to do so one should have
Jqi = Jpi on Up ∩ Uq. However, not the Poisson vector fields but their unit vector fields can be
globalized. Since

ê1 · ∇
∥∥Jp2∥∥∥∥Jp1∥∥ 6= 0

in general, they may not lead to a pair of compatible Poisson structures. Now we take ĵ1 as our
first global Poisson vector field, and check whether we can find another global Poisson vector
field compatible with this one by rescaling ĵ2.
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3.3 Second obstruction: Bott class of the complex codimension 1 foliation

Since v is a nonvanishing vector field on M , it defines a real codimension two foliation on M
by orbits of v. Since Q = TM/E is a complex line bundle on M , this foliation has complex
codimension one. Now, by assuming our primary obstruction which is the vanishing of the Chern
class, we compute the Bott class of the complex codimension one foliation as defined in [2], which
is studied in detail in [1], and then show that the system admits two globally defined compatible
Poisson structures if and only if the Bott Class is trivial.

For the rest of our work, we will assume that Q and its dual Q∗ are trivial bundles. By (3.14),
Q∗ has two global sections ĵi = (∗ıĵiΩ) satisfying

dĵi = Γi ∧ ĵi (3.15)

for globally defined Γi’s. These ĵi’s are related with the local Poisson one-forms Jpi by

Jpi =
∥∥Jpi ∥∥ĵi. (3.16)

By (3.7), we have

dJpi = γp ∧ Jpi . (3.17)

Inserting (3.16) and (3.17) into (3.15), we also have

dĵi =
(
γp − d ln

∥∥Jpi ∥∥) ∧ ĵi. (3.18)

Redefining Γi’s if necessary, comparing (3.15) with (3.18), we get

Γi = γp − d ln
∥∥Jpi ∥∥. (3.19)

Proposition 3.7. Let κ be the curvature two-form of Q. There exists a compatible pair of global
Poisson structures if and only if

Ξ = (Γ1 − Γ2) ∧ κ

is exact.

Proof. Since ĵ1 and ĵ2 may not be compatible, we introduce a local Poisson form jp defined
on the coordinate neighborhood Up of p ∈ M , which is compatible with ĵ1 and parallel to ĵ2
i.e.,

jp = fpĵ2 (3.20)

and

ĵ1 ∧ djp + jp ∧ dĵ1 = 0. (3.21)

Now (3.20) implies that

djp =
(
Γ2 + d ln fp

)
∧ jp. (3.22)

Putting (3.15) and (3.22) into (3.21) and using (3.20), we get(
Γ1 − Γ2 − d ln fp

)
∧ ĵ1 ∧ jp = 0

which implies

(Γ1 − Γ2) ∧ ĵ1 ∧ ĵ2 = d ln fp ∧ ĵ1 ∧ ĵ2. (3.23)
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Our aim here is to find the obstruction to extending fp to M , or for (3.23) to hold globally.
For this purpose, we consider the connections on Q defined by Γi’s. By (3.19), we define the
curvature of these connections to be

κ = dΓi = dγp.

Taking the exterior derivative of (3.17) and using (3.16), we get

dγp ∧ Jpi = dγp ∧ ĵi = 0,

which leads to

κ = dγp = ϕĵ1 ∧ ĵ2. (3.24)

Now multiplying both sides of (3.23) with ϕ,

(Γ1 − Γ2) ∧ κ = d ln fp ∧ κ = d
((

ln fp
)
κ
)

and the proposition follows. �

Now we are going to show that the cohomology class of Ξ vanishes if and only if the Bott
class of the complex codimension 1 foliation vanishes. Since Q is a complex line bundle we have

c1(Q) = [κ]

and the vanishing of c1(Q) is a necessary condition

c1 = dh1.

So we have

c1 = [κ] =
[
dγp

]
,

which implies that on Up

h1 = γp + d lnhp.

Then, the Bott class [2] becomes

h1 ∧ c1 =
(
γp + d lnhp

)
∧ dγp = d lnhp ∧ κ+ γp ∧ dγp.

Now by (3.6) and (3.24) we have

γp ∧ dγp = 0,

and therefore,

h1 ∧ c1 = d
((

lnhp
)
κ
)
.

Since h1 is globally defined, on Up ∩ Uq we have

h1 = γp + d lnhp = γq + d lnhq

and

γp − γq = d ln
hq

hp
. (3.25)

Now we have the following theorem:
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Theorem 3.8. The cohomology class of Ξ vanishes if and only if the Bott class of the complex
codimension one foliation defined by the nonvanishing vector field vanishes.

Proof. If the Bott class vanishes, then we have a globally defined function h such that

d((lnh)κ) = 0.

Then, choosing f = h leads to a compatible pair of global Poisson structures. Conversely, if
there is a pair of globally defined compatible Poisson structures, then γ becomes a global form,
and by (3.25) we have

d ln
hq

hp
= 0

on Up ∩ Uq. Therefore,

lnhq − lnhp = cqp,

where cqp is a constant on Up ∩ Uq. Now, fixing a point x0 ∈ Up ∩ Uq

cqp = lnhq(x0)− lnhp(x0) = ln cq − ln cp,

we obtain

hp

cp
=
hq

cq
= h,

where h is a globally defined function, and

d lnh = d lnhp.

Therefore,

[h1 ∧ c1] = [d((lnh)κ)] = 0

and the theorem follows. �
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