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Abstract. The main goal of the article is testing a new classification algorithm. To this
end we apply it to a relevant problem of describing the integrable cases of a subclass of two-
dimensional lattices. By imposing the cut-off conditions u−1 = c0 and uN+1 = c1 we reduce
the lattice un,xy = α(un+1, un, un−1)un,xun,y to a finite system of hyperbolic type PDE.
Assuming that for each natural N the obtained system is integrable in the sense of Darboux
we look for α. To detect the Darboux integrability of the hyperbolic type system we use an
algebraic criterion of Darboux integrability which claims that the characteristic Lie rings of
such a system must be of finite dimension. We prove that up to the point transformations
only one lattice in the studied class passes the test. The lattice coincides with the earlier
found Ferapontov–Shabat–Yamilov equation. The one-dimensional reduction x = y of this
lattice passes also the symmetry integrability test.

Key words: two-dimensional integrable lattice; cut-off boundary condition; open chain;
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1 Introduction

In the present article we study the classification problem for the following class of two-dimen-
sional lattices

un,xy = α(un+1, un, un−1)un,xun,y. (1.1)

Here the sought function u = un(x, y) depends on real x, y and on integer n. Function α =
α(un+1, un, un−1) is assumed to be analytical in a domain D ⊂ C3. We request also that the

derivatives ∂α(un+1,un,un−1)
∂un+1

and ∂α(un+1,un,un−1)
∂un−1

do not vanish identically.
Constraint un0 = c0 where c0 is a constant parameter defines a boundary condition which

cuts off the lattice (1.1) into two independent semi-infinite lattices

un,xy = α(un+1, un, un−1)un,xun,y, for n > n0 (n < n0),

un0 = c0. (1.2)

Any solutions of the lattice located on the semiaxis n > n0 does not depend on the solutions of
that located on n < n0 and vice versa. Turning to the general case of the lattices recall that the
boundary conditions (or cut-off constraints) having such a property are called degenerate. It is
well known that the degenerate boundary conditions are admitted by any integrable nonlinear
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lattice. They are compatible with the whole hierarchy of the higher symmetries [1, 8]. In the
literature they are met in the connection with the so-called open chains (see, for instance, [15]).
Since the symmetry approach which is a powerful classification tool in the dimension 1 + 1
(see, for instance, [2, 11, 13]) loses its efficiency in higher dimensions (an explanation can be
found in [14]) it became clear years ago that it is necessary to look for alternative classification
algorithms. Since then different approaches to the integrable multidimensional models have
been invented (see, for instance, [3, 5, 6, 12, 16, 17, 18, 24]).

In 1994 A.B. Shabat posed a problem of creating a classification algorithm by combining the
concepts of the degenerate boundary condition, open chain and the characteristic Lie algebra.
It is worth mentioning as an important step in this direction the article [19] where the structure
of the Lie algebra was described for the two-dimensional Toda lattice. Some progress toward
creating the classification method was done in [9]. It was observed that any finitely generated
subring of the characteristic Lie ring for the integrable case is of finite dimension. The statement
was verified for a large class of the known integrable lattices.

Our interest to the Shabat’s problem was stimulated by the success of the method of the
hydrodynamic type reductions in the multidimensionality proposed in [5, 6]. State-of-the-art for
the subject and the references can be found in [16].

In the present article the lattice (1.1) is used as a touchstone for the created algorithm.
Our aim is to explain the core of the method and approve its efficiency by solving a relevant
classification problem.

Boundary condition of the form (1.2) imposed at two different integers n = N1 and n = N2

(take N1 < N2 − 1) reduces the lattice (1.1) into a finite system of hyperbolic type equations
(open chain)

uN1 = c1,

un,xy = α(un+1, un, un−1)un,xun,y, N1 < n < N2, (1.3)

uN2 = c2.

Initiated by the article [9], where a large class of two-dimensional lattices is discussed we use
the following

Definition 1.1. We call the lattice (1.1) integrable if the hyperbolic type system (1.3) obtained
from (1.1) by imposing degenerate boundary conditions is Darboux integrable for any choice of
the integers N1, N2.

Recall that a system (1.3) of the hyperbolic type partial differential equations is Darboux
integrable if it admits the complete set of functionally independent integrals in both of x and y
directions. Function I of a finite number of the dynamical variables u,ux,uy, . . . is a y-integral if
it satisfies the condition DyI = 0, where Dy is the operator of the total derivative with respect
to the variable y and u is a vector with the coordinates uN1+1, uN1+2, . . . , uN2−1 coinciding
with the field variables. Since the system (1.3) is autonomous we can restrict ourselves by
considering only autonomous nontrivial integrals. It can be verified that the y-integral does
not depend on uy,uyy, . . .. In what follows we are interested only on nontrivial y-integrals,
i.e., integrals containing dependence on at least one dynamical variable u,ux, . . .. Note that
currently the Darboux integrable discrete and continuous models are intensively studied (see,
[7, 9, 10, 21, 22, 25, 26, 27, 28, 29]).

We justify Definition 1.1 by the following reasoning. The problem of finding general solution
to the Darboux integrable system is reduced to a problem of solving a system of the ordinary
differential equations. Usually these ODE are explicitly solved. On the other hand side any
solution to the considered hyperbolic system (1.3) is easily prolonged outside the interval [N1, N2]
and generates a solution of the corresponding lattice (1.1). Therefore in this case the lattice (1.1)
has a large set of the explicit solutions and is definitely integrable.
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Let us briefly discuss on the content of the article. In Section 2 we recall the necessary
definitions and study the main properties of the characteristic Lie ring which is a basic implement
in the theory of the Darboux integrable systems. The goal of Section 3 consists in deriving some
differential equations on the unknown α (it is reasonable to call them integrability conditions)
from the finite-dimensionality property of the characteristic Lie ring. To this end we used two
test sequences. In Section 4 by summarizing the integrability conditions we found the final
form of the searched function α. It is remarkable that two test sequences turned out to be
enough to complete the classification. The classification result is formulated in Theorem 5.1
(see Section 5) which claims: any lattice (1.1) integrable in the sense of Definition 1.1 can be
reduced by an appropriate point transformation v = p(u) to the following one, found earlier
in [4] and, independently, in [20]

vn,xy = vn,xvn,y

(
1

vn − vn−1
− 1

vn+1 − vn

)
. (1.4)

We obtained also a new result concerned to the lattice (1.4) by proving that for any choice of
the integer N ≥ 0 the system of the hyperbolic type equations

v−1 = c0,

vn,xy = vn,xvn,y

(
1

vn − vn−1
− 1

vn+1 − vn

)
, (1.5)

vN+1 = c1, 0 ≤ n ≤ N

admits a complete set of functionally independent x- and y-integrals for any constant parame-
ters c0, c1, i.e., is Darboux integrable. This fact follows immediately from Theorem 5.2 proved
in Appendix A, which states that the characteristic Lie rings in both characteristic directions x
and y for the system (1.5) are of finite dimension. In the particular case when N = 1 for the
corresponding system

v0,xy = v0,xv0,y

(
1

v0 − c0
− 1

v1 − v0

)
, v1,xy = v1,xv1,y

(
1

v1 − v0
− 1

c1 − v1

)
we give the y- and x-integrals in an explicit form

I1 =
v0,xv1,x

(v0 − c0)(v1 − v0)(c1 − v1)
, I2 =

v1,xx
v1,x

+
v0,x(v1 − c0)

(v0 − c0)(v1 − v0)
+

2v1,x
c1 − v1

,

J1 =
v0,yv1,y

(v0 − c0)(v1 − v0)(c1 − v1)
, J2 =

v1,yy
v1,y

+
v0,y(v1 − c0)

(v0 − c0)(v1 − v0)
+

2v1,y
c1 − v1

.

2 Characteristic Lie rings

Since the lattice (1.1) is invariant under the shift of the variable n we can without loss of
generality take N1 = −1 and concentrate on the system

u−1 = c0,

un,xy = αnun,xun,y, 0 ≤ n ≤ N, (2.1)

uN+1 = c1.

Here αn = α(un−1, un, un+1). Assume that system (2.1) is Darboux integrable and that
I(u,ux, . . .) is its nontrivial integral. Let us evaluate DyI in the equation DyI = 0 and get
due to the chain rule an equation Y I = 0, where

Y =
N∑
i=0

(
ui,y

∂

∂ui
+ fi

∂

∂ui,x
+ fi,x

∂

∂ui,xx
+ · · ·

)
. (2.2)
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Here fi = αiui,xui,y. Since the coefficients of the equation Y I = 0 depend on ui,y while
its solution I does not depend on them we have a system of several linear equations for one
unknown I

Y I = 0, XjI = 0, j = 1, . . . , N, (2.3)

with Xi =
∂

∂ui,y
. It follows from (2.3) that for ∀ i the operator Yi = [Xi, Y ] = XiY − Y Xi also

annihilates I. Let us give the explicit form of the operator Yi

Yi =
∂

∂ui
+Xi(fi)

∂

∂ui,x
+Xi(Difi)

∂

∂ui,xx
+ · · · .

Due to the relation Dk
xfi = ui,yXi(D

k
xfi) we represent (2.2) as

Y =

N∑
i=0

ui,y

(
∂

∂ui
+Xi(fi)

∂

∂ui,x
+Xi(Dxfi)

∂

∂ui,xx
+ · · ·

)
=

N∑
i=0

ui,yYi. (2.4)

The last equation together with (2.3) implies
N∑
i=0

ui,yYiI = 0. Since the variables ui,y are in-

dependent the coefficients of this decomposition all vanish. Now we use the evident relation
[Xk, Ys] = 0 valid for ∀ k, s. The condition XiI = 0 is satisfied automatically. Thus we arrive at
the statement: function I is a y-integral of the system (2.1) if and only if it solves the following
system of equations

YiI = 0 for i = 0, 1, . . . , N. (2.5)

Consider the set R0(y,N) of all multiple commutators of the characteristic vector fields
Y0, Y1, . . . , YN . Denote through R(y,N) the minimal ring containing R0(y,N). We refer to
R(y,N) as the characteristic Lie ring of the system (2.1) in y-direction. In a similar way one
can define the characteristic Lie ring in the direction of x. Thus we have a complete description
of the set of the linear first order partial differential equations the y-integral should satisfy to.
Now the task is to find a subset of the linearly independent equations such that all the other
equations can be represented as linear combinations of those ones.

We say that the ring R(y,N) is of finite dimension if there exists a finite subset {Z1, Z2, . . . ,
ZL} ⊂ R(y,N) which defines a basis in R(y,N) such that

1) every element Z ∈ R(y,N) is represented in the form Z = λ1Z1 + · · · + λLZL with the
coefficients λ1, . . . , λL which might depend on a finite number of the dynamical variables,

2) relation λ1Z1 + · · ·+ λLZL = 0 implies that λ1 = · · · = λL = 0.

Let us formulate now an effective algebraic criterion (see, for instance [27, 28]) of solvability
of the system (2.5).

Theorem 2.1. The system (2.1) is Darboux integrable if and only if both characteristic Lie
rings R(x,N), R(y,N) are of finite dimension.

Corollary 2.2. The system (2.5) has a nontrivial solution if and only if the ring R(y,N) is of
finite dimension.

For the sake of convenience we introduce the following notation adX(Z) := [X,Z]. We stress
that in our further study the operator adDx plays a crucial role. Below we apply Dx to smooth
functions of the dynamical variables u,ux,uxx, . . .. As it was demonstrated above on this class
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of functions the operators Dy and Y coincide. Therefore relation [Dx, Dy] = 0 immediately gives
[Dx, Y ] = 0. Replace now Y due to (2.4) and get

[Dx, Y ] =

N∑
i=0

ui,y(αiui,xYi + [Dx, Yi]) = 0. (2.6)

Since in (2.6) the variables {ui,y}Ni=0 are linearly independent, the coefficients should vanish.
Consequently we have

[Dx, Yi] = −αiui,xYi. (2.7)

From this formula we can easily obtain that adDx : R(y,N) → R(y,N). The following lemma
describes the kernel of this map (see also [19])

Lemma 2.3. If the vector field

Z =
∑
i

z1,i
∂

∂ui,x
+ z2,i

∂

∂ui,xx
+ · · ·

satisfies the condition [Dx, Z] = 0 then Z = 0.

3 Method of the test sequences

We call a sequence of the operators W0,W1,W2, . . . in R(y,N) a test sequence if the following
condition is satisfied for ∀m

[Dx,Wm] =
m∑
j=0

wj,mWj .

The test sequence allows one to derive integrability conditions for the hyperbolic type sys-
tem (2.1) (see [10, 27, 28]). Indeed, let us assume that (2.1) is Darboux integrable. Then the
ring R(y,N) is of finite dimension. Therefore there exists an integer k such that the operators
W0, . . . ,Wk are linearly independent while the operator Wk+1 is expressed through them as
follows

Wk+1 = λkWk + · · ·+ λ0W0. (3.1)

Let us apply the operator adDx to both sides of (3.1). As a result we find

k∑
j=0

wj,k+1Wj + wk+1,k+1

k∑
j=0

λjWj

=
k∑
j=0

Dx(λj)Wj + λk

k∑
j=0

wj,kWj + λk−1

k−1∑
j=0

wj,k−1Wj + · · ·+ λ0w0,0W0.

By collecting the coefficients before the independent operators we obtain a system of the
differential equations for the coefficients λ0, λ1, . . . , λk. The system is overdetermined since
all of the coefficients λj are functions of a finite number of the dynamical variables u,ux, . . ..
The consistency conditions of this overdetermined system generate integrability conditions for
the hyperbolic type system (2.1). For instance, collecting the coefficients before Wk we find the
first equation of the mentioned system

Dx(λk) = λk(wk+1,k+1 − wk,k) + wk,k+1, (3.2)

which is also overdetermined.
Below we use two different samples of the test sequences in order to find the function αn.
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3.1 The first test sequence

Define a sequence of the operators in R(y,N) due to the recurrent formula

Y0, Y1, W1 = [Y0, Y1], W2 = [Y0,W1], . . . , Wk+1 = [Y0,Wk], . . . . (3.3)

In the case of the first two members of the sequence we have already deduced commutation
relations (see (2.7) above) which are important for our further studies

[Dx, Y0] = −α0u0,xY0, [Dx, Y1] = −α1u1,xY1. (3.4)

By using these two relations and applying the Jacobi identity we get immediately

[Dx,W1] = −(α0u0,x + α1u1,x)W1 − Y0(α1u1,x)Y1 + Y1(α0u0,x)Y0. (3.5)

It can be proved by induction that (3.3) is really a test sequence. Moreover it is easily verified
that for k ≥ 2

[Dx,Wk] = pkWk + qkWk−1 + · · · ,

where the factors pk, qk are evaluated as follows

pk = −(α1u1,x + kα0u0,x), qk =
k − k2

2
Y0(α0u0,x)− Y0(α1u1,x)k.

Due to the assumption that R(y,N) is of finite dimension only a finite subset of the se-
quence (3.3) is linearly independent. So there exists M such that

WM = λWM−1 + · · · , (3.6)

where the operators Y0, Y1,W1, . . . ,WM−1 are linearly independent and the tail might contain
a linear combination of the operators Y0, Y1,W1, . . . ,WM−2. At the moment we are not interested
in that part in (3.6).

Lemma 3.1. The operators Y0, Y1, W1 are linearly independent.

Proof. Assume that

λ1W1 + µ1Y1 + µ0Y0 = 0.

Since the operators Y0, Y1 are of the form Y0 = ∂
∂u0

+ · · · , Y1 = ∂
∂u1

+ · · · while W1 does not

contain summands like ∂
∂u0

and ∂
∂u1

then the factors µ1, µ0 vanish. If in addition λ1 6= 0 then
we have W1 = 0. Now by applying the operator adDx to both sides of this relation we get due
to (3.5) an equation

Y0(α1u1,x)Y1 − Y1(α0u0,x)Y0 = 0,

which yields two conditions: Y0(α1u1,x) = α1,u0u1,x = 0 and Y1(α0u0,x) = α0,u1u0,x = 0. Those

equalities contradict our assumption that ∂α(un+1,un,un−1)
∂un±1

6= 0. Lemma is proved. �

Lemma 3.2. If the expansion (3.6) holds then

α(u1, u0, u−1) =
P ′(u0)

P (u0) +Q(u−1)
+

1

M − 1

Q′(u0)

P (u1) +Q(u0)
− c1(u0).
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Proof. It is easy to check that equation (3.2) for the case of the sequence (3.3) takes the
following form

Dx(λ) = −α0u0,xλ−
M(M − 1)

2
Y0(α0u0,x)−MY0(α1u1,x). (3.7)

We simplify the formula (3.7) due to the relations

Y0(α0u0,x) =

(
∂

∂u0
+ α0u0,x

∂

∂u0,x

)
α0u0,x =

(
α0,u0 + α2

0

)
u0x,

Y0(α1u1,x) = α1,u0u1,x.

A simple analysis of the equation (3.7) gives that λ = λ(u0, u1). Therefore (3.7) gives rise to
the equation

λu0u0,x + λu1u1,x = −
(
αλ+

M(M − 1)

2

(
α0,u0 + α2

0

))
u0,x −Mα1,u0u1,x.

By comparing the coefficients before the independent variables u0,x, u1,x we deduce an overde-
termined system of the differential equations for λ

λu0 = −α0λ−
M(M − 1)

2

(
α0,u0 + α2

0

)
, λu1 = −Mα1,u0 . (3.8)

Let us derive and investigate the consistency conditions of the system (3.8). We differentiate
the first equation with respect to u−1 and find

λ = −M(M − 1)

2

α0,u0u−1 + 2α0α0,u−1

α0,u−1

. (3.9)

Since λu−1 = 0 we have

(logα0,u−1)u0u−1 + 2α0,u−1 = 0. (3.10)

Now we introduce a new variable z due to the relation α0,u−1 = −1
2e
z and reduce (3.10) to the

Liouville equation zu0u−1 = ez for which we have the general solution

ez =
2P ′(u0)Q

′(u−1)

(P (u0) +Q(u−1))2
,

where P (u0) and Q(u−1) are arbitrary differentiable functions. Thus for α0 we can obtain the
following explicit expression

α0 = −
1

2

∫
ezdu−1 =

P ′(u0)

P (u0) +Q(u−1)
+H(u0, u1), (3.11)

where H(u0, u1) is to be determined. Now we can find λ from the second equation in (3.8)

λ = −M
∫
α1,u0du1 = −M

Q′(u0)

P (u1) +Q(u0)
+Mc(u0). (3.12)

Let us specify H(u0, u1) by replacing in (3.9) α0 and λ in virtue of (3.11), (3.12). As a result
we obtain

H(u0, u1) =
1

M − 1

Q′(u0)

P (u1) +Q(u0)
− 1

M − 1
c(u0)−

1

2

P ′′(u0)

P ′(u0)
.

Summarizing the reasonings we can conclude that

α(u1, u0, u−1) =
P ′(u0)

P (u0) +Q(u−1)
+

1

M − 1

Q′(u0)

P (u1) +Q(u0)
− c1(u0), (3.13)

where the functions of one variable P (u0), Q(u0), c1(u0) =
1

M−1c(u0)+
1
2
P ′′(u0)
P ′(u0)

and the integerM
are to be found. �
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The next step requires some additional integrability conditions. In what follows we derive
them by constructing another test sequence.

3.2 The second test sequence

Now we concentrate on a test sequence generated by the operators Y0, Y1, Y2 and their multiple
commutators. It is more complicated than the previous sequence

Z0 = Y0, Z1 = Y1, Z2 = Y2, Z3 = [Y1, Y0], Z4 = [Y2, Y1],

Z5 = [Y2, Z3], Z6 = [Y1, Z3], Z7 = [Y1, Z4], Z8 = [Y1, Z5]. (3.14)

The members Zm of the sequence for m > 8 are defined due to the recurrence Zm = [Y1, Zm−3].
Note that it is the simplest test sequence generated by the iterations of the map Z → [Y1, Z]
which contains the operator [Y2, [Y1, Y0]] = Z5.

Lemma 3.3. Operators Z0, Z1, . . . , Z5 constitute a linearly independent set.

Proof. Firstly we note that the operators Z0, Z1, . . . , Z4 are linearly independent. It can be
verified by using reasonings similar to those from the proof of Lemma 3.2. We prove the lemma
by contradiction. Assume that

Z5 =
4∑
j=0

λjZj . (3.15)

Now we specify the action of the operator adDx on the operators Zi. For i = 0, 1, 2 it is obtained
from the relation

[Dx, Yi] = −αiui,xYi.

Recall that αi = α(ui−1, ui, ui+1). For i = 3, 4, 5 we have

[Dx, Z3] = −(a1 + a0)Z3 + · · · ,
[Dx, Z4] = −(a2 + a1)Z4 + · · · ,
[Dx, Z5] = −(a0 + a1 + a2)Z5 + Y0(a1)Z4 − Y2(a1)Z3 + · · · .

Here ai = αiui,x. Let us apply the operator adDx to both sides of (3.15) and obtain

−(a0 + a1 + a2)(λ4Z4 + λ3Z3 + · · · ) + Y0(a1)Z4 − Y2(a1)Z3 + · · ·
= λ4,xZ4 + λ3,xZ3 − λ4(a1 + a2)Z4 − λ3(a0 + a1)Z3 + · · · . (3.16)

By comparing the coefficients before Z4 in (3.16) we obtain the following equation

λ4,x = −α0u0,xλ4 − α1,u0u1,x. (3.17)

A simple analysis of the equation (3.17) shows that λ = λ(u0, u1). Hence the equation (3.17)
splits down into two equations λ4,u0 = −α0λ4 and λ4,u1 = −α1,u0 . The former shows that
λ4 = 0. Indeed if λ4 6= 0 then we obtain an expression for α0: α0 = − (log λ4)u0 which shows that
(α0)u−1 = 0. It contradicts the assumption that α(u1, u0, u−1) depends essentially on u1 and u−1,
therefore λ4 = 0. Then (3.17) implies α1,u0 = 0 and it leads again to a contradiction. �

Turn back to the sequence (3.14). For the further study it is necessary to specify the action
of the operator adDx on the members of this sequence. It is convenient to divide the sequence
into three subsequences and study them separately {Z3m}, {Z3m+1}, and {Z3m+2}.
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Lemma 3.4. Action of the operator adDx on the sequence (3.14) is given by the following
relations

[Dx, Z3m] = −(α0u0,x +mα1u1,x)Z3m

+

(
m−m2

2
Y1(α1u1,x)−mY1(α0u0,x)

)
Z3m−3 + · · · ,

[Dx, Z3m+1] = −(α2u2,x +mα1u1,x)Z3m+1

+

(
m−m2

2
Y1(α1u1,x)−mY1(α2u2,x)

)
Z3m−2 + · · · ,

[Dx, Z3m+2] = −(α0u0,x +mα1u1,x + α2u2,x)Z3m+2 + Y0(α1u1,x)Z3m+1 + Y2(α1u1,x)Z3m

− (m− 1)
(m
2
Y1(α1u1,x) + Y1(α0u0,x + α2u2,x)

)
Z3m−1 + · · · .

Lemma 3.4 is easily proved by induction. Since the proof is quite technical we omit it.

Theorem 3.5. Assume that Z3k+2 is represented as a linear combination

Z3k+2 = λkZ3k+1 + µkZ3k + νkZ3k−1 + · · · (3.18)

of the previous members of the sequence (3.14) and neither of the operators Z3j+2 with j < k is
a linear combination of Zs with s < 3j +2. Then the coefficient νk is a solution to the equation

Dx(νk) = −α1u1,xνk −
k(k − 1)

2
Y1(α1u1,x)− (k − 1)Y1(α0u0,x + α2u2,x). (3.19)

Lemma 3.6. Suppose that all of the conditions of the theorem are satisfied. In addition assume
that the operator Z3k (operator Z3k+1) is linearly expressed in terms of the operator Zi with
i < 3k. Then in this decomposition the coefficient before Z3k−1 vanishes.

Proof. Assume in contrary that λ 6= 0 in the formula

Z3k = λZ3k−1 + · · · . (3.20)

Let us apply adDx to (3.20). As a result we find due to Lemma 3.4

−(α0u0,x + kα1u1,x)λZ3k−1 + · · ·
= Dx(λ)Z3k−1 − λ(α0u0,x + (k − 1)α1u1,x + α2u2,x)Z3k−1 + · · · . (3.21)

Collect the coefficients before Z3k−1 and obtain an equation the coefficient λ must satisfy to

Dx(λ) = λ(α2u2,x − α1u1,x).

Due to our assumption above λ does not vanish and hence

Dx(log λ) = α2u2,x − α1u1,x. (3.22)

Since λ depends on a finite number of the dynamical variables then due to equation (3.22)
λ might depend only on u1 and u2. Therefore (3.21) yields

(log λ)u1u1,x + (log λ)u2u2,x = α2u2,x − α1u1,x.

The variables u1,x, u2,x are independent, so the last equation implies α1 = −(log λ)u1 , α2 =
(log λ)u2 . Thus α1 = α1(u1, u2) depends only on u1, u2. It contradicts our assumption that α1

depends essentially on u0. The contradiction shows that assumption λ 6= 0 is not true. That
completes the proof. �
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Now in order to prove Theorem 3.5 we apply the operator adDx to both sides of (3.18) and
then simplify due to the relation from Lemma 3.4. Comparison of the coefficients before Z3k−1
implies equation (3.19).

Let us find the explicit expressions for the coefficients of the equation (3.19)

Y1(α0u0,x) = α0,u1u0,x, Y1(α2u2,x) = α2,u1u2,x, Y1(α1u1,x) =
(
α1,u1 + α2

1

)
u1,x

and substitute them into (3.19)

Dx(νk) = −α1νku1,x −
k(k − 1)

2

(
α1,u1 + α2

1

)
u1,x − (k − 1)(α0,u1ux + α2,u1u2,x). (3.23)

A simple analysis of (3.23) convinces that νk might depend only on the variables u0, u1, u2.
Therefore

Dx(νk) = νk,u0u0,x + νk,u1u1,x + νk,u2u2,x. (3.24)

From the equations (3.23), (3.24) we obtain a system of the equations for the coefficient νk

νk,u0 = −(k − 1)α0,u1 , (3.25)

νk,u1 = −α1νk −
k(k − 1)

2

(
α1,u1 + α2

1

)
, (3.26)

νk,u2 = −(k − 1)α2,u1 . (3.27)

Substitute the preliminary expression for the function α given by the formula (3.13) into the
equation (3.25) and get

νk,u0 =
k − 1

M − 1

P ′(u1)Q
′(u0)

(P (u1) +Q(u0))2
.

Integration of the latter with respect to u0 yields

νk = −
k − 1

M − 1

P ′(u1)

P (u1) +Q(u0)
+H(u1, u2).

Since νk,u2 = Hu2 the equation (3.27) gives rise to the relation

Hu2 = (k − 1)
P ′(u2)Q

′(u1)

(P (u2) +Q(u1))2
.

Now by integration we obtain an explicit formula for H

H = −(k − 1)

(
Q′(u1)

P (u2) +Q(u1)
+A(u1)

)
,

which produces

νk = −(k − 1)

(
1

M − 1

P ′(u1)

P (u1) +Q(u0)
+

Q′(u1)

P (u2) +Q(u1)
+A(u1)

)
.
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Let us substitute the values of α and νk found into the equation (3.26). We get a huge equation

−(k − 1)

M − 1

(
P ′′(u1)

P (u1) +Q(u0)
− P ′2(u1)

(P (u1) +Q(u0))2

)
− (k − 1)

(
Q′′(u1)

P (u2) +Q(u1)
− Q′2(u1)

(P (u2) +Q(u1))2
+A′(u1)

)
= (k − 1)

(
P ′(u1)

P (u1) +Q(u0)
+

1

M − 1

Q′(u1)

P (u2) +Q(u1)
− c1(u1)

)
×
(

1

M − 1

P ′(u1)

P (u1) +Q(u0)
+

Q′(u1)

P (u2) +Q(u1)
+A(u1)

)
− k(k − 1)

2

(
P ′′(u1)

P (u1) +Q(u0)
+

1

M − 1

Q′′(u1)

P (u2) +Q(u1)

− 1

M − 1

Q′2(u1)

(P (u2) +Q(u1))2
+

1

M − 1

2Q′(u1)P
′(u1)

(P (u1) +Q(u0))(P (u2) +Q(u1))

+
1

(M − 1)2
Q′2(u1)

(P (u2) +Q(u1))2

− c′1(u1)− 2c1(u1)

(
P ′(u1)

P (u1) +Q(u0)
+

1

M − 1

Q′(u1)

P (u2) +Q(u1)

)
+ c21(u1)

)
. (3.28)

Evidently due to our assumption ∂
∂u1

α(u1, u0, u−1) 6= 0, ∂
∂u−1

α(u1, u0, u−1) 6= 0 the func-

tions P ′(u2) and Q
′(u0) do not vanish. Therefore the variables

Q′2(u1)

(P (u2) +Q(u1))2
,

P ′2(u1)

(P (u1) +Q(u0))2
,

P ′(u1)Q
′(u1)

(P (u1) +Q(u0))(P (u2) +Q(u1))

are independent. By gathering the coefficients before these variables in (3.28) we get a system
of two equations(

1− 1

M − 1

)(
1− k

2(M − 1)

)
= 0, 1 +

1

(M − 1)2
=

k

M − 1
. (3.29)

There are two solutions to the system (3.29): M = 0, k = −2 and M = 2, k = 2. The former
does not fit since k should be positive, so we have the only possibility M = 2, k = 2. This
finishes the proof of Theorem 3.5.

4 Finding the functions P , Q and c1

In this section we specify the function α given by (3.13). For this aim we should consider
expansions (3.6), (3.18) using the fact that M = 2, k = 2.

Let us rewrite the expansion (3.6) in the complete form

W2 = λW1 + σY1 + δY0. (4.1)

Theorem 4.1. Expansion (4.1) holds if and only if the function α in (1.1) is of the following
form

α(un+1, un, un−1) =
P ′(un)

P (un) +Q(un−1)
+

Q′(un)

P (un+1) +Q(un)
− 1

2

(
logQ′(un)P

′(un)
)′
, (4.2)

where the functions P (un), Q(un) are connected with each other by the differential constraint

−3Q′′2P ′2 − 2P ′′′P ′Q′2 + 3P ′′2Q′2 + 2P ′2Q′′′Q′ = 0. (4.3)
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Proof. Firstly by using relations (3.4), (3.5) and applying the Jacobi identity we get

[Dx,W2] = −(2a0 + a1)W2 − Y0(a0 + 2a1)W1 + (2Y0Y1(a0)− Y1Y0(a0))Y0 − Y0Y0(a1)Y1.

Evidently only one summand in (4.1) contains the term ∂
∂u1

, namely σY1, and only one

summand contains the term ∂
∂u0

, namely δY0. Hence σ = 0, δ = 0 and we have

W2 = λW1.

Now by applying the operator adDx to both sides of this relation we obtain

−(2a0 + a1)W2 − Y0(a0 + 2a1)W1 + (2Y0Y1(a0)− Y1Y0(a0))Y0 − Y0Y0(a1)Y1
= Dx(λ)W1 + λ(−(a0 + a1)W1 + Y1(a0)Y0 − Y0(a1)Y1).

Collecting the coefficients before W2, W1, Y1, and Y0 we find the following system

Dx(λ) = −a0λ− Y0(a0 + 2a1), (4.4)

−Y0Y0(a1) = −λY0(a1), (4.5)

2Y0Y1(a0)− Y1Y0(a0) = λY1(a0). (4.6)

Setting M = 2 in (3.7) we obtain equation (4.4). The overdetermined system (3.8) takes the
form

λu0 = −α0λ−
(
α0,u0 + α2

0

)
, (4.7)

λu1 = −2α1,u0 .

Thus

λ = −2 Q′(u0)

P (u1) +Q(u0)
+ 2c(u0), (4.8)

α(u1, u0, u−1) =
P ′(u0)

P (u0) +Q(u−1)
+

Q′(u0)

P (u1) +Q(u0)
− 1

2

P ′′(u0)

P ′(u0)
− c(u0). (4.9)

We rewrite (4.5), (4.6) due to the relations

Y0(a0) =

(
∂

∂u0
+ α0u0,x

∂

∂u0,x
+ · · ·

)
(α0u0,x) =

(
α0,u0 + α2

0

)
u0,x,

Y0(a1) =

(
∂

∂u0
+ α0u0,x

∂

∂u0,x
+ · · ·

)
(α1u1,x) = α1,u0u1,x,

Y0(a0 + 2a1) = Y0(a0) + 2Y0(a1) =
(
α0,u0 + α2

0

)
u0,x + 2α1,u0u1,x,

Y0Y0(a1) =

(
∂

∂u0
+ α0u0,x

∂

∂u0,x
+ · · ·

)
(α1,u0u1,x) = α1,u0u0u1,x,

Y1(a0) =

(
∂

∂u1
+ α1u1,x

∂

∂u1,x
+ · · ·

)
(α0u0,x) = α0,u1u0,x,

Y0Y1(a0) =

(
∂

∂u0
+ α0u0,x

∂

∂u0,x
+ · · ·

)
(α0,u1u0,x) =

(
α0,u0u1 + α0α0,u1

)
ux,

Y1Y0(a0) =

(
∂

∂u1
+ α1u1,x

∂

∂u1,x
+ · · ·

)((
α0,u0 + α2

0

)
u0,x

)
=
(
α0,u0u1 + 2α0α0,u1

)
u0,x

as follows

α1,u0u0 = λα1,u0 , α0,u0u1 = λα0,u1 . (4.10)
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We substitute (4.8), (4.9) into (4.10) and find that c(u0) =
1
2
Q′′(u0)
Q′(u0)

. So we find that functions

(4.8), (4.9) are given by

λ(R) = λ(u0, u1) = −2
Q′(u0)

P (u1) +Q(u0)
+
Q′′(u0)

Q′(u0)
, (4.11)

α(u1, u0, u−1) =
P ′(u0)

P (u0) +Q(u−1)
+

Q′(u0)

P (u1) +Q(u0)
− 1

2

P ′′(u0)

P ′(u0)
− 1

2

Q′′(u0)

Q′(u0)
. (4.12)

Substituting (4.11), (4.12) into (4.7) we obtain that the functions P , Q must satisfy the equality

−3Q′′2P ′2 − 2P ′′′P ′Q′2 + 3P ′′2Q′2 + 2P ′2Q′′′Q′ = 0.

Thus we have proved that if the expansion (3.6) holds then it should be of the form

W2 = λ(R)W1.

Or the same

[Y0, [Y1, Y0]] = λ(R)[Y1, Y0]. �

Let us define a sequence of the operators in R(y,N) due to the following recurrent formula

Y0, Y1, W̃1 = [Y1, Y0], W̃2 = [Y1,W1], . . . , W̃k+1 = [Y1, W̃k], . . . .

It slightly differs from (3.3) and can be studied in a similar way. We can easily check that the
conditions (4.2), (4.3) provide the representation

W̃2 = λ(L)W̃1.

Or the same

[Y1, [Y1, Y0]] = λ(L)[Y1, Y0] (4.13)

with the coefficient

λ(L) = −
2P ′(u1)

P (u1) +Q(u0)
+
P ′′(u1)

P ′(u1)
.

Let us consider expansion (3.18) setting k = 2,

Z8 = λZ7 + µZ6 + νZ5 + ρZ4 + κZ3 + σZ2 + δZ1 + ηZ0. (4.14)

Theorem 4.2. Expansions (4.1), (4.14) hold if and only if the function α in (1.1) is of one of
the forms

α0 = α(u1, u0, u−1) =
P ′(u0)

P (u0) + c1P (u−1) + c2
+

c1P
′(u0)

P (u1) + c1P (u0) + c2
− P ′′(u0)

P ′(u0)
, (4.15)

α0 = α(u1, u0, u−1) =
c3r(u−1)r

′(u0)

c3r(u0)r(u−1) + c4r(u−1)− c1 + c2r(u−1)

+
c1r
′(u0)

r(u0)
(
c3r(u1)r(u0) + c4r(u0)− c1 + c2r(u0)

) − r′′(u0)r(u0)− r′2(u0)
r(u0)r′(u0)

, (4.16)

where P (u0) and r(u0) are arbitrary smooth functions, c1 6= 0, c3 6= 0, c2, and c4 are arbitrary
constants.
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Proof. By taking k = 2 in the statement of Lemma 3.4 we get

[Dx, Z6] = −(α0u0,x + 2α1u1,x)Z6 + · · · , (4.17)

[Dx, Z7] = −(α2u2,x + 2α1u1,x)Z7 − (Y1(α1u1,x) + 2Y1(α2u2,x))Z4 + · · · , (4.18)

[Dx, Z8] = −(α0u0,x + 2α1u1,x + α2u2,x)Z8 + Y0(α1u1,x)Z7 + Y2(α1u1,x)Z6

−
(
Y1(α1u1,x) + Y1(α0u0,x + α2u2,x)

)
Z5 + · · · . (4.19)

Now we apply the operator adDx to both sides of (4.14) and then simplify due to the relations
(4.17), (4.18), (4.19). Comparison of the coefficients before Z7 and Z6 implies λ = 0 and µ = 0.
Thus formula (4.14) is simplified

Z8 = νZ5 + ρZ4 + κZ3 + σZ2 + δZ1 + ηZ0. (4.20)

In what follows we will use the following commutativity relations

[Dx, Z8] = −(a2 + 2a1 + a0)Z8 + Y0(a1)Z7 − Y2(a1)Z6 − Y1(a2 + a1 + a0)Z5

+ Y1Y0(a1)Z4 − Y1Y2(a1)Z3 + (Y1Y2Y0(a1) + Z5(a1))Z1, (4.21)

[Dx, Z5] = −(a0 + a1 + a2)Z5 + Y0(a1)Z4 − Y2(a1)Z3 + Y2Y0(a1)Z1. (4.22)

Let us apply adDx to (4.20) then simplify by using (4.21), (4.22), (4.20) and gather the coeffi-
cients at Z5

−(a2 + 2a1 + a0)ν − Y1(a2 + a1 + a0) = Dx(ν)− (a2 + a1 + a0)ν

or the same

Dx(ν) = −a1ν − Y1(a2 + a1 + a0). (4.23)

Equation (4.23) implies that ν depends on three variables ν = ν(u, u1, u2) and splits down into
three equations as follows

νu = −α0,u1 , (4.24)

νu1 = −α1ν − α1,u1 − α2
1, (4.25)

νu2 = −α2,u1 . (4.26)

Substituting α defined by (4.12) into (4.24) and integrating with respect to u, we obtain

ν = − P ′(u1)

P (u1) +Q(u0)
+H(u1, u2). (4.27)

From equation (4.26) we find

ν = − Q′(u1)

P (u2) +Q(u1)
+R(u0, u1). (4.28)

Comparison of (4.27) and (4.28) yields

− P ′(u1)

P (u1) +Q(u0)
+H(u1, u2) = −

Q′(u1)

P (u2) +Q(u1)
+R(u, u1).

Due to the fact that variables u0, u1, u2 are independent we obtain

− P ′(u1)

P (u1) +Q(u0)
−R(u0, u1) = −

Q′(u1)

P (u2) +Q(u1)
−H(u1, u2) = −A(u1).
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Hence

H(u1, u2) = −
Q′(u1)

P (u2) +Q(u1)
+A(u1)

and then

ν = − P ′(u1)

P (u1) +Q(u0)
− Q′(u1)

P (u2) +Q(u1)
+A(u1). (4.29)

Note that λ(R) defined by (4.11) satisfies the equation (4.7), i.e.,

λ(R),u = −α0λ(R) − α0,u0 − α2
0.

Then

λ(R)1,u1 = −α1λ(R)1 − α1,u1 − α2
1, (4.30)

where λ(R)1 = Dn(λ(R)). Here Dn is a shift operator Dnuk = uk+1. Let us subtract (4.30)
from (4.25)(

ν − λ(R)1

)
u1

= −α1

(
ν − λ(R)1

)
.

Substituting functions (4.11) and (4.29) into the last equation we arrive at the equality

− P ′(u1)B(u1)

P (u1) +Q(u0)
− Q′(u1)B(u1)

P (u2) +Q(u1)

+
1

2

(
logQ′(u1)P

′(u1)
)′( Q′(u1)

P (u2) +Q(u1)
− P ′(u1)

P (u1) +Q(u0)
+B(u1)

)
=

Q′′(u1)

P (u2) +Q(u1)
− P ′′(u1)

P (u1) +Q(u0)
+B′(u1),

where B(u1) = A(u1)− Q′′(u1)
Q′(u1)

. This equality is satisfied only if the following conditions hold

Q′′(u1) = −Q′(u1)B(u1) +
1

2
Q′(u1)

(
logQ′(u1)P

′(u1)
)′
, (4.31)

P ′′(u1) = P ′(u1)B(u1) +
1

2
P ′(u1)

(
logQ′(u1)P

′(u1)
)′
, (4.32)

B′(u1) =
1

2
B(u1)

(
logQ′(u1)P

′(u1)
)′
. (4.33)

The equation (4.33) is satisfied if B(u1) = 0 or

(logB(u1))
′ =

1

2
(logQ′(u1)P

′(u1))
′. (4.34)

If B(u1) = 0 then Q(u1) = c1P (u1) + c2 and

α0 =
P ′(u0)

P (u0) + c1P (u−1) + c2
+

c1P
′(u0)

P (u1) + c1P (u0) + c2
− P ′′(u0)

P ′(u0)
,

λ(M) := ν = − P ′(u1)

P (u1) + c1P (u0) + c2
− c1P

′(u1)

P (u2) + c1P (u1) + c2
+
Q′′(u1)

Q′(u1)
, (4.35)

λ(R) = −
2c1P

′(u0)

P (u1) + c1P (u0) + c2
+
P ′′(u0)

P ′(u0)
, (4.36)

λ(L) = −
2P ′(u1)

P (u1) + c1P (u0) + c2
+
P ′′(u1)

P ′(u1)
. (4.37)

Here c1 6= 0.



16 I. Habibullin and M. Poptsova

If B(u1) 6= 0 then from the system of equations (4.31), (4.32), and (4.34) we obtain that
Q(u1) = − c1

r(u1)
+ c2, P (u1) = c3r(u1) + c4 and

α0 =
c3r(u−1)r

′(u0)

c3r(u0)r(u−1) + c4r(u−1)− c1 + c2r(u−1)

+
c1r
′(u0)

r(u0)
(
c3r(u1)r(u0) + c4r(u0)− c1 + c2r(u0)

) − r′′(u0)r(u0)− r′2(u0)
r(u0)r′(u0)

,

λ(M) := ν = − c3r(u0)r
′(u1)

c3r(u1)r(u0) + c4r(u0)− c1 + c2r(u0)

− c1r
′(u1)

r(u1)
(
c3r(u2)r(u1) + c4r(u1)− c1 + c2r(u1)

)
+
r′(u1)

r(u1)
− 2r′2(u1)− r′′(u1)r(u1)

r(u1)r′(u1)
, (4.38)

λ(R) = −
2c1r

′(u0)

r(u0)
(
c3r(u1)r(u0) + c4r(u0)− c1 + c2r(u0)

) + r′′(u0)r(u0)− 2r′2(u0)

r(u0)r′(u0)
, (4.39)

λ(L) =
−2c3r(u0)r′(u1)(

c3r(u1)r(u0) + c4r(u0)− c1 + c2r(u0)
) + r′′(u1)

r′(u1)
. (4.40)

Now let us apply adDx to (4.20) using (4.21), (4.22), (2.7) and the facts that Z4 = Dn(Z3) and
[Z1, Z4] = Dn[Z0, Z3] = −Dn(W2) = −Dn(λ(R))W1 = Dn(λ(R))Z4 and write down coefficients
before Z4

−(a2 + 2a1 + a0)ρ+ Y1Y0(a1) + Y0(a1)Dn(λ(R)) = νY0(a1) +Dx(ρ)− (a1 + a2)ρ.

Then

Dx(ρ) = −(a1 + a0)ρ+ Y1Y0(a1) + Y0(a1)Dn(λ(R))− νY0(a1). (4.41)

The equation (4.41) implies that ρ = ρ(u, u1, u2) and splits down into three equations as follows

ρu2 = 0, −α0ρ = ρu0 , −α1ρ+ α1,u0u1 + α1α1,u0 + α1,u0Dn(λ(R))− να1,u0 = ρu1 .

If α0, ν, and λ(R) are defined by the formulas (4.15), (4.35), and (4.36) or by the formulas (4.16),
(4.38), and (4.39) correspondingly then ρ = 0 and the last equations are satisfied.

Now let us apply adDx to (4.20) using (4.21), (4.22), (2.7), (4.13) and write down coefficients
before Z3

−(a2 + 2a1 + a0)κ− Y1Y2(a1)− Y2(a1)λ(L) = −νY2(a1) +Dx(κ)− (a1 + a2)κ.

Then

Dx(κ) = −(a2 + a1)κ− Y1Y2(a1)− Y2(a1)λ(L) + νY2(a1). (4.42)

The equations (4.42) implies that κ = κ(u1, u2) and splits down into two equations as follows

κu2 = −α2κ, κu1 = −α1κ− α1,u2u1 − α1α1,u2 − α1,u2λ(L) + να1,u2 .

If α0, ν, and λ(L) are defined by the formulas (4.15), (4.35), and (4.37) or by the formulas (4.16),
(4.38), and (4.40) correspondingly then κ = 0 and the last equations are satisfied.
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Apply adDx to (4.20) taking into account that ρ = κ = 0 and write down coefficients before
operators Z2, Z1 and Z0

Dx(σ) = −(2a1 + a0)σ,

Dx(δ) = −(a2 + a1 + a0)δ − Y1Y2Y0(a1) + λY2Y0(a1),

Dx(η) = −(a2 + 2a1).

From these equations we obtain that σ = δ = η = 0.

Thus we have proved that if the expansions (4.1), (4.14) hold then (4.14) should be as follows

Z8 = λ(M)Z5.

Or the same

[Y1, [Y2, [Y1, Y0]]] = λ(M)[Y2, [Y1, Y0]], (4.43)

where λM defined by the formula (4.35) or (4.38) and α0, λ(R), and λ(L) are defined by the for-
mulas (4.15), (4.36), and (4.37) or by the formulas (4.16), (4.39), and (4.40) correspondingly. �

Corollary of Theorems 4.1 and 4.2:

Corollary 4.3. In both cases Q(u1) = − c1
r(u1)

+c2, P (u1) = c3r(u1)+c4 and Q(u1) = c1P (u1)+c2
the constraint (4.3) is satisfied identically.

In a similar way we check that the same conditions (4.15), (4.16) provides the representations

[Y0, [Y2, [Y1, Y0]]t] = λ(R)[Y2, [Y1, Y0]],

[Y2, [Y2, [Y1, Y0]]] = Dn(λ(L)[Y2, [Y1, Y0]].

5 Comments on the classif ication result

In this section we briefly discuss the statements of Theorems 4.2 and 5.2 (see below) claiming
that the lattice (1.1) is integrable in the sense of Definition 1.1 only for two choices of the
function α given by (4.15) and (4.16). In both cases the lattice has a functional freedom which
is removed by an appropriate point transformation. Therefore we have

Theorem 5.1. Any lattice (1.1) integrable in the sense above is reduced by the point transfor-
mation v = p(u) to the following lattice

vn,xy = vn,xvn,y

(
1

vn − vn−1
− 1

vn+1 − vn

)
. (5.1)

Specify the point transformations1 applied to the lattices. Change of the variables w = P (u)
reduces (4.15) to

wn,xy = wn,xwn,y

(
1

wn + c1wn−1 + c2
+

c1
wn+1 + c1wn + c2

)
. (5.2)

The latter is connected with (5.1) by the change of the variables vn = (−c1)nwn− c2
1+c1

if c1 6= −1
and by vn = wn − c2n in the special case c1 = −1.

1We are glad to acknowledge that these transformations are found by R.I. Yamilov and R.N. Garifullin (private
communication).
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Change of the variables v = r(u) reduces (4.16) to

vn,xy = vn,xvn,y

(
vn−1

vnvn−1 + βvn−1 − γ
+

vn+1 + β

vnvn+1 + βvn − γ

)
, (5.3)

where we denote β = c2+c4
c3

, γ = c1/c3. Then change of the variables v = β
(
1
w+c

)
, γ = β2(c2+c)

reduces (5.3) to

wn,xy =
1

wn +
c
c+1wn−1 +

1
c+1

+
c
c+1

wn+1 +
c
c+1wn +

1
c+1

.

The latter coincides with (5.2) if c1 =
c
c+1 , c2 =

1
c+1 .

Note that equation (5.1) coincides with the Ferapontov–Shabat–Yamilov equation found
in [20] and [4].

Theorem 5.2. The characteristic Lie rings in x- and y-directions for the following system of
hyperbolic type equations

v−1 = c0,

vn,xy = vn,xvn,y

(
1

vn − vn−1
− 1

vn+1 − vn

)
, 0 ≤ n ≤ N, (5.4)

vN+1 = c1,

are of finite dimension.

The proof of Theorem 5.2 can be found in Appendix A.

Corollary 5.3. The system (5.4) is Darboux integrable.

Remark 5.4. The following lattice (see [20])

qn,xy = qn,xqn,y
(
f(qn+1 − qn)− f(qn − qn−1)

)
,

f ′ = f2 − b2

is reduced by the point transformation to (5.1). Namely if b 6= 0 then f(q) = b tan(b(q + c)) =
−ib tanh(ib(q + c)), where c is the constant of integration, i is the imaginary unit. So we have
the lattice

qn,xy = qn,xqn,y(−ib)
(
tanh(ib(qn+1 − qn + c))− tanh(ib(qn − qn−1 + c))

)
.

The change of variables qn = − i
bvn−nc reduces the last lattice to (5.1). If b = 0 then f(q) = 1

q+c .
By the change of variables qn = vn − nc we obtain (5.1).

6 Conclusion

In [9] it was conjectured that any nonlinear integrable two-dimensional lattice of the form

un,xy = g(un+1, un, un−1, un,x, un,y) (6.1)

admits cut-off conditions reducing the lattice to a finite system of the hyperbolic type partial
differential equations being integrable in the sense of Darboux when they are imposed at two
points n = N1 and N2 chosen arbitrary.
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In the present article we discussed the classification algorithm based on that conjecture.
Actually we solved a problem of the complete description of the lattices (1.1) satisfying the
suggested requirement. The lattice (1.1) is a particular case of the lattice (6.1) for which the
mentioned cut-off condition is easily found: uN1 = c0, uN2 = c1. This circumstance essentially
simplifies the situation. Nevertheless even in general when a priori the cut-off condition is
also unknown the algorithm might be effective since the assumption on the existence of such
boundary conditions puts severe restrictions on the characteristic operators.

We show that the class of integrable lattices of the form (1.1) contains only one model
up to the point transformations. This model coincides with the Ferapontov–Shabat–Yamilov
equation. The one-dimensional reduction x = y of this lattice satisfies completely also the
symmetry integrability conditions (see [23]).

A Appendix

The goal of the appendix is to prove Theorem 5.2. Let us introduce a special notation Yik,...,i0
for the multiple commutators. It is defined consecutively

Yik,...,i0 = [Yik , Yik−1,...,i0 ]. (A.1)

Number k is called the order of the operator (A.1).
In order to prove Theorem 5.2 we show that the ring R(y,N) is of finite dimension. Actually

we construct the basis in R(y,N) containing the operators

{Yi}Ni=0, {Yi+1,i}N−1i=0 , {Yi+2,i+1,i}N−2i=0 , . . . , YN,N−1,...,0. (A.2)

A.1 The base case of the mathematical induction

In the previous section we have proved that

[Y0, Y10] = λ(R)Y10, [Y1, Y10] = λ(L)Y10, (A.3)

[Y0, Y210] = λ(R)Y210, [Y1, Y210] = λ(M)Y210, [Y2, Y210] = Dn(λ(L)Y210. (A.4)

In what follows we will use the following relations which are easily verified

[Dx, Y3210] = −(a3 + a2 + a1 + a0)Y3210 − Y3(a2)Y210 + Y0(a1)Y321, (A.5)

[Dx, [Y0, Y3210]] = −(a3 + a2 + a1 + 2a0)[Y0, Y3210]

− Y0(2a1 + a0)Y3210 − Y3(a2)[Y0, Y210] + Y0Y0(a1)Y321, (A.6)

[Dx, [Y1, Y3210]] = −(a3 + a2 + 2a1 + a0)[Y1, Y3210]− Y1(a2 + a1 + a0)Y3210

− Y1Y3(a2)Y210 − Y3(a2)[Y1, Y210] + Y1Y0(a1)Y321

+ Y0(a1)[Y1, Y321], (A.7)

[Dx, [Y2, Y3210]] = −(a3 + 2a2 + a1 + a0)[Y2, Y3210]− Y2(a3 + a2 + a1)Y3210

− Y2Y3(a2)Y210 − Y3(a2)[Y2, Y210] + Y2Y0(a1)Y321

+ Y0(a1)[Y2, Y321], (A.8)

[Dx, [Y3, Y3210]] = −(2a3 + a2 + a1 + a0)[Y3, Y3210]− Y3(a3 + 2a2)Y3210

− Y3Y3(a2)Y210 + Y0(a1)[Y3, Y321]. (A.9)

We prove the theorem by the mathematical induction. The base case consists in proving
a lot of the formulas concerned to small order commutators up to order six. When constructing
a linear expression for a given element in R(y,N) as a linear combination of those from (A.2)
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we always use Lemma 2.3. That is why we need in explicit expressions for [Dx, Yik,...,i0 ]. In the
base case we prove a large set of the equalities. Since they all are proved by one and the same
way we concentrate on one of them.

Lemma A.1. We have

[Y0, Y3210] = λ(R)Y3210. (A.10)

Proof. By applying the operator adDx to Z = [Y0, Y3210]−λ(R)Y3210 and simplifying due to the
equations (A.5), (A.6) we obtain [Dx, Z] = 0. Evidently Z satisfies the settings of Lemma 2.3.
Due to this lemma we obtain Z = 0. Lemma A.1 is proved. �

In what follows we need in the formulas

[Y1, Y3210] = λ(M)Y3210, (A.11)

[Y2, Y3210] = Dn

(
λ(M)

)
Y3210, (A.12)

[Y3, Y3210] = D2
n

(
λ(L)

)
Y3210, (A.13)

which are some versions of the formula (A.10) from Lemma A.1.
Now using formulas

[Dx, Y43210] = −(a4 + a3 + a2 + a1 + a0)Y43210 − Y4(a3)Y3210 + Y0(a1)Y4321, (A.14)

[Dx, [Y0, Y43210]] = −(a4 + a3 + a2 + a1 + 2a0)[Y0, Y43210]

− Y0(2a1 + a0)Y43210 − Y4(a3)[Y0, Y3210] + Y0Y0(a1)Y4321, (A.15)

[Dx, [Y1, Y43210]] = −(a4 + a3 + a2 + 2a1 + a0)[Y1, Y43210]

− Y4(a3)[Y1, Y3210]− Y1(a2 + a1 + a0)Y43210 − Y1Y4(a3)Y3210
+ Y1Y0(a1)Y4321 + Y0(a1)[Y1, Y4321], (A.16)

[Dx, [Y2, Y43210]] = −(a4 + a3 + a2 + a1 + a0)[Y2, Y43210]

− Y2(a3 + a2 + a1)Y43210 − Y2Y4(a3)Y3210 − Y4(a3)[Y2, Y3210]
+ Y2Y0(a1)Y4321 + Y0(a1)[Y2, Y4321], (A.17)

[Dx, [Y3, Y43210]] = −(a4 + 2a3 + a2 + a1 + a0)[Y3, Y43210]

− Y3(a4 + a3 + a2)Y43210 − Y3Y4(a3)Y3210 − Y4(a3)[Y3, Y3210]
+ Y3Y0(a1)Y4321 + Y0(a1)[Y3, Y4321], (A.18)

[Dx, [Y4, Y43210]] = −(2a4 + a3 + a2 + a1 + a0)[Y4, Y43210]

− Y4(a4 + 2a3)Y43210 − Y4Y4(a3)Y3210 + Y0(a1)[Y4, Y4321] (A.19)

by direct calculations we prove that

[Y0, Y43210] = λ(R)Y43210, (A.20)

[Y1, Y43210] = λ(M)Y43210, (A.21)

[Y2, Y43210] = Dn

(
λ(M)

)
Y43210, (A.22)

[Y3, Y43210] = D2
n

(
λ(M)

)
Y43210, (A.23)

[Y4, Y43210] = D3
n

(
λ(L)

)
Y43210, (A.24)

where λ(R), λ(M), and λ(L) are defined by the formulas (4.36), (4.35), and (4.37) or by the
formulas (4.39), (4.38), and (4.40) correspondingly.

Now, having explicit formulas for the small order commutators we are ready to work out an
induction hypothesis.
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A.2 Inductive step

Theorem A.2. For n > 1 the multi-commutators satisfy the following formulas

[Dx, Yn+1,n,...,0] = −

(
n+1∑
i=0

ai

)
Yn+1,n,...,0 − Yn+1(an)Yn,n−1,...,0 + Y0(a1)Yn+1,n,...,1, (A.25)

[Dx, [Y0, Yn+1,n,...,0]] = −(an+1 + · · ·+ a1 + 2a0)[Y0, Yn+1,n,...,0]− Y0(a0 + 2a1)Yn+1,n,...,0

− Yn+1(an)[Y0, Yn,n−1,...,0] + Y0Y0(a1)Yn+1,n,...,1, (A.26)

[Dx, [Yk, Yn+1,n,...,0]] = −(an+1 + · · ·+ 2ak + · · ·+ a0)[Yk, Yn+1,n,...,0]

− Yk

(
n+1∑
i=0

ai

)
Yn+1,n,...,0 − YkYn+1(an)Yn,n−1,...,0

− Yn+1(an)[Yk, Yn,n−1,...,0] + YkY0(a1)Yn+1,n,...,1

+ Y0(a1)[Yk, Yn+1,n,...,1], k = 1, 2, . . . , n, (A.27)

[Dx, [Yn+1, Yn+1,n,...,0]] = −(2an+1 + an + · · ·+ a0)[Yn+1, Yn+1,n,...,0]

− Yn+1(an+1 + 2an)Yn+1,n,...,0 − Yn+1Yn+1(an)Yn,n−1,...,0

+ Y0(a1)[Yn+1, Yn+1,n,...,1]. (A.28)

Proof by induction. For n = 2 and n = 3 formulas (A.25)–(A.28) are previously proved
(see (A.5)–(A.9) and (A.14)–(A.19)).

Assume that the multi-commutators satisfy the following formulas

[Dx, Yn,...,0] = −

(
n∑
i=0

ai

)
Yn,...,0 − Yn(an−1)Yn−1,...,0 + Y0(a1)Yn,...,1,

[Dx, [Y0, Yn,...,0]] = −(an + · · ·+ a1 + 2a0)[Y0, Yn,...,0]

− Y0(a0 + 2a1)Yn,...,0 − Yn(an−1)[Y0, Yn−1,...,0] + Y0Y0(a1)Yn,...,1,

[Dx, [Yk, Yn,...,0]] = −(an + · · ·+ 2ak + · · ·+ a0)[Yk, Yn,...,0]− Yk

(
n∑
i=0

ai

)
Yn,...,0

− YkYn(an−1)Yn−1,...,0 − Yn(an−1)[Yk, Yn−1,...,0] + YkY0(a1)Yn,...,1

+ Y0(a1)[Yk, Yn,...,1], k = 1, 2, . . . , n− 1,

[Dx, [Yn, Yn,...,0]] = −(2an + an−1 + · · ·+ a0)[Yn, Yn,...,0]

− Yn(an + 2an−1)Yn,...,0 − YnYn(an−1)Yn−1,...,0 + Y0(a1)[Yn, Yn,...,1].

Then from these assumptions we deduce similar equations for n+ 1

[Dx, Yn+1,n,...,0] = [Dx, [Yn+1, Yn,n−1,...,0]]

= [Yn+1, [Dx, Yn,n−1,...,0]]− [Yn,n−1,...,0, [Dx, Yn+1]]

= [Yn+1,−(an + an−1 + · · ·+ a0)Yn,n−1,...,0 − Yn(an−1)Yn−1,n−2,...,0
+ Y0(a1)Yn,n−1,...,1]− [Yn,n−1,...,0,−an+1Yn+1]

= −

(
n+1∑
i=0

ai

)
Yn+1,n,...,0 − Yn+1(an + an−1 + · · ·+ a0)Yn,n−1,...,0Yn,n−1,...,0

− Yn+1Yn(an−1)Yn−1,n−2,...,0 − Yn(an−1)[Yn+1, Yn−1,n−2,...,0]

+ Yn+1Y0(a1)Yn,n−1,...,1 + Y0(a1)Yn+1,n,...,1 + Yn,n−1,...,0(an+1)Yn+1. (A.29)

Note that

Yi(aj) = 0 if |i− j| > 1, (A.30)
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i.e., if i 6= j, i 6= j ± 1, and

[Ym, Yn,...,0] = 0 if m− n > 1

That is why the following terms in (A.29) are equal to zero

Yn+1(an−1 + · · ·+ a0) = 0, Yn+1Yn(an−1) = 0,

[Yn+1, Yn−1,n−2,...,0] = 0, Yn+1Y0(a1) = 0, Yn,n−1,...,0(an+1) = 0.

Thus the equality (A.29) takes the form (A.25).

Let us prove the formula (A.26),

[Dx, [Y0, Yn+1,n,...,0]] = [Y0, [Dx, Yn+1,n,...,0]]− [Yn+1,n,...,0, [Dx, Y0]]

=

[
Y0,−

(
n+1∑
i=0

ai

)
Yn+1,n,...,0 − Yn+1(an)Yn,n−1,...,0 + Y0(a1)Yn+1,n,...,1

]
− [Yn+1,n,...,0,−a0Y0].

From this equality using property of linearity of the commutators and the equations (A.30) we
obtain the formula (A.26). The formulas (A.27) and (A.28) are proved in a similar way.

Theorem A.3. For m ≥ 1 the multi-commutators satisfy the following formulas

[Y0, Ym+1,m,...,0] = λ(R)Ym+1,m,...,0, (A.31)

[Yk, Ym+1,m,...,0] = Dk−1
n

(
λ(M)

)
Ym+1,m,...,0, k = 1, . . . ,m, (A.32)

[Ym+1, Ym+1,m,...,0] = Dm
n

(
λ(L)

)
Ym+1,m,...,0. (A.33)

Proof by induction. For m = 1, 2, 3 formulas (A.31)–(A.33) are true (see (A.3), (A.4),
(4.43), (A.10), (A.11), (A.12), (A.13), (A.20)–(A.24)).

Assume that the multi-commutators satisfy the following formulas

[Y0, Ym,m−1,...,0] = λ(R)Ym,m−1,...,0, (A.34)

[Yk, Ym,m−1,...,0] = Dk−1
n

(
λ(M)

)
Ym,m−1,...,0, k = 1, . . . ,m− 1, (A.35)

[Ym, Ym,m−1,...,0] = Dm−1
n

(
λ(L)

)
Ym,m−1,...,0. (A.36)

Let us first prove the formula (A.31). The proof is rather tricky: we assume the expansion
with undetermined coefficients

[Y0, Ym+1,m,...,0] = λYm+1,m,...,0 + µYm+1,m,...,1 + νYm,m−1,...,0 + εYm+1,m,...,2

+ ηYm,m−1,...,1 + ζYm−1,m−2,...,0 + · · ·
+ θYm+1,m + · · ·+ ξY10 + σYm+1 + · · ·+ δY0, (A.37)

and then evaluate the coefficients consecutively in the following way. We apply the opera-
tor adDx to (A.37) and gather the coefficients before the linearly independent operators. For
instance, by comparing the coefficients before the multi-commutator Ym+1,m,...,0 and then using
formulas from Theorem 2.1 with n = m− 1 we find

Dx(λ) = −a0λ− Y0(a0 + 2a1).

The latter coincides with the equation (4.4) and, therefore, we can conclude that λ = λ(R).
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Compare now the coefficients before Ym+1,m,...,1 to get an equation for determining µ. Note
that by Theorem A.2 we have

[Dx, Ym+1,m,...,1] = Dn[Dx, Ym,m−1,...,0] = |Theorem A.2|

= Dn

(
−

(
m∑
i=0

ai

)
Ym,m−1,...,0 − Ym(am−1)Ym−1,m−2,...,0 + Y0(a1)Ym,m−1,...,1

)

= −

(
m+1∑
i=1

ai

)
Ym+1,m,...,1 − Ym+1(am)Ym,m−1,...,1 + Y1(a2)Ym+1,m,...,2. (A.38)

Due to the relation (A.38) the desired equation reduces to the form

Dx(µ) = −2a0µ+ Y0Y0(a1)− λY0(a1).

It is easily checked that the equation has the only solution µ = 0. Continuing this way we
can prove that all of the other coefficients ν, ε, . . . , δ in (A.37) vanish. Now for the operator
Z = [Y0, Ym+1,m,...,0]−λ(R)Ym+1,m,...,0 we have [Dx, Z] = 0. Due to Lemma 2.3 it implies Z = 0.
That completes the proof of the formula (A.31).

Now we prove the formula (A.32). To this end we assume that the equation holds

[Yk, Ym+1,m,...,0] = λYm+1,m,...,0 + µYm+1,m,...,1 + νYm,m−1,...,0 + εYm+1,m,...,2

+ ηYm,m−1,...,1 + ζYm−1,m−2,...,0 + · · ·
+ θYm+1,m + · · ·+ ξY10 + σYm+1 + · · ·+ δY0 (A.39)

with the coefficients to be determined.

Let us apply adDx to (A.39) and write down the coefficients before the operator Ym+1,m,...,0

Dx(λ) = −akλ− Yk

(
m+1∑
i=0

ai

)
.

Apply D
−(k−1)
n to the last equation

Dx

(
D−(k−1)n (λ)

)
= −a1D−(k−1)n (λ)− Y1(a2 + a1 + a0).

This equation coincides with the equation (4.23) then D
−(k−1)
n (λ) = λ(M) and

λ = Dk−1
n

(
λ(M)

)
.

Note that due to the formula (A.35) we have

[Yk, Ym+1,m,...,1] = Dn[Yk−1, Ym,m−1,...,0]

= Dn

(
Dk−2
n (λ(M))Ym,m−1,...,0

)
= Dk−1

n

(
λ(M)

)
Ym+1,m,...,1. (A.40)

Apply adDx to (A.39) using the formulas from Theorem A.2 and the formula (A.40) and write
down the coefficients before the multi-commutator Ym+1,m,...,1

−(am+1 + · · ·+ 2ak + · · ·+ a0)µ+ YkY0(a1) + Y0(a1)D
k−1
n (λ(M)

= λY0(a1) +Dx(µ)−

(
m+1∑
i=1

)
µ.
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Since λ = Dk−1
n (λ(M)) the latter can be brought to the form

Dx(µ) = −(a0 + ak)µ+ YkY0(a1). (A.41)

Evaluate the action of the product of the operators

YkY0(a1) =

(
∂

∂uk
+ αkuk,x

∂

∂uk,x

)
(α1,uu1,x) =


α1,uu1u1,x + α1α1,uu1,x, k = 1,

α1,uu2u1,x, k = 2,

0, k > 2.

Thus if k = 1 then the equality (A.41) takes the form

Dx(µ) = −(α0ux + α1u1,x)µ+ (α1,uu1 + α1α1,u)u1,x.

This equation implies that µ = µ(u, u1) and splits down into two equations as follows

µu = −α0µ, µu1 = −α1µ+ α1,uu1 + α1α1,u.

Then we can prove that µ = 0.
If k = 2 then the equality (A.41) takes the form

Dx(µ) = −(α0ux + α2u2,x)µ+ α1,uu2u1,x.

This equation implies that µ = µ(u, u1, u2) and splits down into three equations as follows

µu = −α0µ, µu1 = α1,uu2 , µu2 = −α2µ.

And then again µ = 0.
If k > 2 then the equality (A.41) takes the form

Dx(µ) = −(α0ux + αkuk,x)µ.

This equation implies that µ = µ(u, uk) and splits down into two equations as follows

µu = −α0µ, µuk = −αkµ.

Then µ = 0.
In a similar way we can verify that all of the coefficients in (A.39) vanish except λ. Thus

due to Lemma 2.3 formula (A.32) is correct.
Now we check the formula (A.33). First we assume that the following decomposition takes

place

[Ym+1, Ym+1,m,...,0] = λYm+1,m,...,0 + µYm+1,m,...,1 + νYm,m−1,...,0 + εYm+1,m,...,2

+ ηYm,m−1,...,1 + ζYm−1,m−2,...,0 + · · ·+ θYm+1,m + · · ·
+ ξY10 + σYm+1 + · · ·+ δY0 (A.42)

with undefined factors.
Let us apply adDx to (A.42) and write down the coefficients before the multi-commutator

Ym+1,m,...,0

Dx(λ) = −am+1λ− Ym+1(am+1 + 2am).

Apply D−mn to this equation

Dx

(
D−mn (λ)

)
= −a1D−mn (λ)− Y1(a1 + 2a0).

This equation coincides with (4.4) then D−mn (λ) = λ(L) and λ = Dm
n (λ(L)).
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Let us apply adDx to (A.42) and write down the coefficients before the multi-commutator
Ym+1,m,...,1

−(2am+1 + am + · · ·+ a0)µ+ Y0(a1)D
m
n (λ(L)) = λY0(a1) +Dx(µ)−

(
m+1∑
i=1

ai

)
µ.

Note that λ = Dm
n (λ(L)) then the last equality takes the form

Dx(µ) = −(am+1 + a0)µ.

Then µ = 0.
Let us apply adDx to (A.42) and write down the coefficients before the multi-commutator

Ym,m−1,...,0

Dx(ν) = −2am+1ν − Ym+1Ym+1(am) + λYm+1(am). (A.43)

Note that

λYm+1(am)− Ym+1Ym+1(am)

= Dm
n (λ(L))Ym+1(am)− Ym+1Ym+1(am) = Dm(λ(L))Y1(a0)− Y1Y1(a0)) = 0.

Then the equation (A.43) takes the form Dx(ν) = −2am+1ν and we obtain that ν = 0.
In a similar way we can prove the vanishing of the other coefficients in (A.42). Now by

applying Lemma 2.3 it is easy to complete the proof of the formula (A.33). Theorem A.3 is
proved.
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