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Abstract. The main goal of the article is testing a new classification algorithm. To this
end we apply it to a relevant problem of describing the integrable cases of a subclass of two-
dimensional lattices. By imposing the cut-off conditions u_; = ¢y and uy 1 = ¢1 we reduce
the lattice up -y = a(unﬂ,un,un,l)un’wun’y to a finite system of hyperbolic type PDE.
Assuming that for each natural N the obtained system is integrable in the sense of Darboux
we look for a.. To detect the Darboux integrability of the hyperbolic type system we use an
algebraic criterion of Darboux integrability which claims that the characteristic Lie rings of
such a system must be of finite dimension. We prove that up to the point transformations
only one lattice in the studied class passes the test. The lattice coincides with the earlier
found Ferapontov—Shabat—Yamilov equation. The one-dimensional reduction z = y of this
lattice passes also the symmetry integrability test.

Key words: two-dimensional integrable lattice; cut-off boundary condition; open chain;
Darboux integrable system; characteristic Lie ring
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1 Introduction

In the present article we study the classification problem for the following class of two-dimen-
sional lattices

Un,zy = a(un—l-l’ Un, un—l)un,mun,y- (11>

Here the sought function u = u,(z,y) depends on real x, y and on integer n. Function o =
(U 41, Up, Up—1) 18 assumed to be analytical in a domain D C C3. We request also that the
80‘(“"%’“:1’“”‘1) and 6‘)‘(“”5;’“_"1’“"‘1) do not vanish identically.

Constraint uy, = cop where ¢y is a constant parameter defines a boundary condition which

cuts off the lattice (1.1) into two independent semi-infinite lattices

derivatives

Unzy = O(Ung1, Un, Un—1)Un,2lny, for n>mny (n<ngp),
Uy = C0- (1.2)

Any solutions of the lattice located on the semiaxis n > ng does not depend on the solutions of
that located on n < ng and vice versa. Turning to the general case of the lattices recall that the
boundary conditions (or cut-off constraints) having such a property are called degenerate. It is
well known that the degenerate boundary conditions are admitted by any integrable nonlinear
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lattice. They are compatible with the whole hierarchy of the higher symmetries [1, 8]. In the
literature they are met in the connection with the so-called open chains (see, for instance, [15]).
Since the symmetry approach which is a powerful classification tool in the dimension 1 + 1
(see, for instance, [2, 11, 13]) loses its efficiency in higher dimensions (an explanation can be
found in [14]) it became clear years ago that it is necessary to look for alternative classification
algorithms. Since then different approaches to the integrable multidimensional models have
been invented (see, for instance, [3, 5, 6, 12, 16, 17, 18, 24]).

In 1994 A.B. Shabat posed a problem of creating a classification algorithm by combining the
concepts of the degenerate boundary condition, open chain and the characteristic Lie algebra.
It is worth mentioning as an important step in this direction the article [19] where the structure
of the Lie algebra was described for the two-dimensional Toda lattice. Some progress toward
creating the classification method was done in [9]. It was observed that any finitely generated
subring of the characteristic Lie ring for the integrable case is of finite dimension. The statement
was verified for a large class of the known integrable lattices.

Our interest to the Shabat’s problem was stimulated by the success of the method of the
hydrodynamic type reductions in the multidimensionality proposed in [5, 6]. State-of-the-art for
the subject and the references can be found in [16].

In the present article the lattice (1.1) is used as a touchstone for the created algorithm.
Our aim is to explain the core of the method and approve its efficiency by solving a relevant
classification problem.

Boundary condition of the form (1.2) imposed at two different integers n = N and n = Ny
(take N1 < Ny — 1) reduces the lattice (1.1) into a finite system of hyperbolic type equations
(open chain)

un; = C1,
Un,xy = a(un+17un7un—1)un,a}un,y7 N <n < Ny, (13)
UNy = C2.

Initiated by the article [9], where a large class of two-dimensional lattices is discussed we use
the following

Definition 1.1. We call the lattice (1.1) integrable if the hyperbolic type system (1.3) obtained
from (1.1) by imposing degenerate boundary conditions is Darboux integrable for any choice of
the integers Ny, Ns.

Recall that a system (1.3) of the hyperbolic type partial differential equations is Darboux
integrable if it admits the complete set of functionally independent integrals in both of = and y

directions. Function I of a finite number of the dynamical variables u,u,, uy, ... is a y-integral if
it satisfies the condition D,I = 0, where D, is the operator of the total derivative with respect
to the variable y and u is a vector with the coordinates upn,+1,un,+2,...,UN,—1 coinciding

with the field variables. Since the system (1.3) is autonomous we can restrict ourselves by
considering only autonomous nontrivial integrals. It can be verified that the y-integral does
not depend on uy,uyy,.... In what follows we are interested only on nontrivial y-integrals,
i.e., integrals containing dependence on at least one dynamical variable u,u,,.... Note that
currently the Darboux integrable discrete and continuous models are intensively studied (see,
[7,9, 10, 21, 22, 25, 26, 27, 28, 29)]).

We justify Definition 1.1 by the following reasoning. The problem of finding general solution
to the Darboux integrable system is reduced to a problem of solving a system of the ordinary
differential equations. Usually these ODE are explicitly solved. On the other hand side any
solution to the considered hyperbolic system (1.3) is easily prolonged outside the interval [Ny, Na]
and generates a solution of the corresponding lattice (1.1). Therefore in this case the lattice (1.1)
has a large set of the explicit solutions and is definitely integrable.
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Let us briefly discuss on the content of the article. In Section 2 we recall the necessary
definitions and study the main properties of the characteristic Lie ring which is a basic implement
in the theory of the Darboux integrable systems. The goal of Section 3 consists in deriving some
differential equations on the unknown « (it is reasonable to call them integrability conditions)
from the finite-dimensionality property of the characteristic Lie ring. To this end we used two
test sequences. In Section 4 by summarizing the integrability conditions we found the final
form of the searched function «. It is remarkable that two test sequences turned out to be
enough to complete the classification. The classification result is formulated in Theorem 5.1
(see Section 5) which claims: any lattice (1.1) integrable in the sense of Definition 1.1 can be
reduced by an appropriate point transformation v = p(u) to the following one, found earlier
in [4] and, independently, in [20]

1 1
Un,zy = Un,zUny ( - > . (14)

Un — Un—1 Un+1 — Un

We obtained also a new result concerned to the lattice (1.4) by proving that for any choice of
the integer N > 0 the system of the hyperbolic type equations

V-1 = Cp,

1 1
Un,zy = Un,aUny ( - > , (1.5)

Unp — Up—1 Un+1 — Un

UN41 = C1, 0<n<N

admits a complete set of functionally independent x- and y-integrals for any constant parame-
ters cg, c1, i.e., is Darboux integrable. This fact follows immediately from Theorem 5.2 proved
in Appendix A, which states that the characteristic Lie rings in both characteristic directions x
and y for the system (1.5) are of finite dimension. In the particular case when N = 1 for the
corresponding system

1 1 1 1
00,2y = 0,200,y - ) Vl,zy = V1,2V1y -
Vo — Co U1 — Vo U1 — Vo 1 —U

we give the y- and z-integrals in an explicit form

I = V0,2V1,x I = Utz UOJ(Ul — CO) 21}1795
Y (w0 — co) (o1 — vo)(e1 —01) T e | (wo—co)(vr—wo) e — i’
7, — Yo,yV1y Jo = 2Ly 4 voy(v1 — co) + 2v1y
- —w)le—u) T vy (wo—a)(vr —w) e —wr

2 Characteristic Lie rings

Since the lattice (1.1) is invariant under the shift of the variable n we can without loss of

generality take N = —1 and concentrate on the system
u_1 = Co,
Un,zy = Opln zln,y, 0<n<N, (2.1)
UN+1 = C1-

Here ay, = a(up—1,un,unt1). Assume that system (2.1) is Darboux integrable and that

I(u,u,,...) is its nontrivial integral. Let us evaluate D,I in the equation D,I = 0 and get
due to the chain rule an equation Y I = 0, where

N
0 0 0
i=0 ¢

8ui,x 8“1’,5{::{;
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Here f; = a;u;q.u;y. Since the coefficients of the equation YI = 0 depend on w;, while
its solution I does not depend on them we have a system of several linear equations for one
unknown 1

YI=0, X, =0, j=1,...,N, (2.3)
with X; = %. It follows from (2.3) that for Vi the operator V; = [X;,Y] = X;Y — Y X; also
annihilates I. Let us give the explicit form of the operator Y;

0 0 0

Xi(fi)g— + Xi(Difi) 5— + -+ .
e+ X o+ XD g +

Y, =

Due to the relation Df f; = u; , X;(DE f;) we represent (2.2) as

N N
0 0 0
Y = Zui,y <8u + Xi(fi) 57— + Xz‘(Dxfi)aT + - > = Zuszz (2.4)
i=0 ! LEe i=0

811,1‘,;5

N

The last equation together with (2.3) implies ) w;,Y;I = 0. Since the variables u;, are in-
i=0

dependent the coefficients of this decomposition all vanish. Now we use the evident relation

[ Xk, Ys] = 0 valid for V&, s. The condition X;I = 0 is satisfied automatically. Thus we arrive at
the statement: function I is a y-integral of the system (2.1) if and only if it solves the following
system of equations

YiI=0 for i=0,1,...,N. (2.5)

Consider the set Ry(y,N) of all multiple commutators of the characteristic vector fields
Yo,Y1,...,Yn. Denote through R(y, N) the minimal ring containing Ry(y, N). We refer to
R(y, N) as the characteristic Lie ring of the system (2.1) in y-direction. In a similar way one
can define the characteristic Lie ring in the direction of x. Thus we have a complete description
of the set of the linear first order partial differential equations the y-integral should satisfy to.
Now the task is to find a subset of the linearly independent equations such that all the other
equations can be represented as linear combinations of those ones.

We say that the ring R(y, N) is of finite dimension if there exists a finite subset {Z, Zs, .. .,
Zr} C R(y, N) which defines a basis in R(y, N) such that

1) every element Z € R(y,N) is represented in the form Z = A\ Z; + -+ + A\ Zy, with the
coefficients A1, ..., A, which might depend on a finite number of the dynamical variables,

2) relation A\1Zy + - -+ + A Zr = 0 implies that \; = --- = A, = 0.

Let us formulate now an effective algebraic criterion (see, for instance [27, 28]) of solvability
of the system (2.5).

Theorem 2.1. The system (2.1) is Darboux integrable if and only if both characteristic Lie
rings R(x, N), R(y, N) are of finite dimension.

Corollary 2.2. The system (2.5) has a nontrivial solution if and only if the ring R(y, N) is of
finite dimension.

For the sake of convenience we introduce the following notation adx (Z) := [X, Z]. We stress
that in our further study the operator adp, plays a crucial role. Below we apply D, to smooth
functions of the dynamical variables u, uz, uz,,.... As it was demonstrated above on this class
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of functions the operators D, and Y coincide. Therefore relation [D,, D,] = 0 immediately gives
[D;,Y] = 0. Replace now Y due to (2.4) and get

N
(D2, Y] =Y tiy(eiui oY + D, Yi]) = 0. (2.6)
=0

Since in (2.6) the variables {u;,}Y , are linearly independent, the coefficients should vanish.
Consequently we have

[D:cayz] = _aiui,xifi- (27)

From this formula we can easily obtain that adp,: R(y, N) — R(y,N). The following lemma
describes the kernel of this map (see also [19])

Lemma 2.3. If the vector field

satisfies the condition [Dy, Z] = 0 then Z = 0.

3 Method of the test sequences

We call a sequence of the operators Wy, Wi, Wa, ... in R(y, N) a test sequence if the following
condition is satisfied for Vm

(D, Win] = > wjmWj.
§=0

The test sequence allows one to derive integrability conditions for the hyperbolic type sys-
tem (2.1) (see [10, 27, 28]). Indeed, let us assume that (2.1) is Darboux integrable. Then the
ring R(y, N) is of finite dimension. Therefore there exists an integer k such that the operators

Wo, ..., Wy are linearly independent while the operator Wi, is expressed through them as
follows
Wii1 = Wi + -+ + AoWo. (3.1)
Let us apply the operator adp, to both sides of (3.1). As a result we find
k k
Z W ke 1 Wi+ Wi 1 1 Z AW
j=0 j=0
k k k—1
= Z Dz()\j)Wj + Ak Z w; kWi + Ap—1 ij’k_lvvj + - 4 Aowo,oWo.
j=0 j=0 j=0

By collecting the coefficients before the independent operators we obtain a system of the
differential equations for the coefficients Ao, A\1,...,Ax. The system is overdetermined since
all of the coefficients \; are functions of a finite number of the dynamical variables u,u,,....
The consistency conditions of this overdetermined system generate integrability conditions for
the hyperbolic type system (2.1). For instance, collecting the coefficients before Wy, we find the
first equation of the mentioned system

Dy( M) = Me(Wht1 k41 — Wh k) + Wi ot 1, (3.2)

which is also overdetermined.
Below we use two different samples of the test sequences in order to find the function ay,.
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3.1 The first test sequence

Define a sequence of the operators in R(y, N) due to the recurrent formula
Yb; Y17 Wl - [Y();Yl]; W2 == [YZ):W1]7 veey Wk+1 = [)/vak]v (33>

In the case of the first two members of the sequence we have already deduced commutation
relations (see (2.7) above) which are important for our further studies

[Dy, Yo] = —aouo . Yo, [Dy, Y1] = —aquy . Y7 (3.4)
By using these two relations and applying the Jacobi identity we get immediately
[Dg, W1] = —(aouo,e + a1ut o) Wi — Yo(aiui ») Y1 + Y1 (aouoz) Yo. (3.5)

It can be proved by induction that (3.3) is really a test sequence. Moreover it is easily verified
that for £ > 2

[Dy, Wi] = piWi + e Wi—1 + -+,

where the factors py, ¢, are evaluated as follows

k— k?
2

pr = —(0quy 5 + kaouo z), qk = Yo(aouo ) — Yo(arui o)k.

Due to the assumption that R(y,N) is of finite dimension only a finite subset of the se-
quence (3.3) is linearly independent. So there exists M such that

Wy = \Wy1+ -+, (3.6)
where the operators Yy, Y1, Wi, ..., Wy, are linearly independent and the tail might contain
a linear combination of the operators Yy, Y1, W1, ..., War_o. At the moment we are not interested

in that part in (3.6).
Lemma 3.1. The operators Yy, Y1, W1 are linearly independent.
Proof. Assume that

MW+ Y1 + poYo = 0.

Since the operators Yy, Y7 are of the form Yy = 8%0 4+, = 6%1 + -+ while W7 does not

contain summands like 8%0 and 8%1 then the factors pq, po vanish. If in addition A; # 0O then
we have W; = 0. Now by applying the operator adp, to both sides of this relation we get due
to (3.5) an equation

Yo(oiur 2)Y1 — Yi(aouo ) Yo = 0,

which yields two conditions: Yy(aqu1q) = a1 uoui e = 0 and Yi(aguoz) = o, toz = 0. Those

equalities contradict our assumption that W # 0. Lemma is proved. |
Lemma 3.2. If the expansion (3.6) holds then
P'(uo) 1 Q' (uo)
oa(ur, ug,u—1) = + — c1(up).
(1200 81) = B+ Q) T 3~ 1 PG + Q) M
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Proof. It is easy to check that equation (3.2) for the case of the sequence (3.3) takes the

following form

M(M —1)
2

We simplify the formula (3.7) due to the relations

Dx()\) = —a0u07x>\ — Yi)(aou07a;) — MYO(aluLx). (37)

0 0
YZ)(OZOUD@) = (8uo + aOUO,xaUO> QoUQ,z = (CYQMO + a%)uox,
T

Yo(oiunz) = Q140U o

A simple analysis of the equation (3.7) gives that A = A(ug, u1). Therefore (3.7) gives rise to
the equation

M—-1

M
)\uouO,x + )\u1 Ul = — (04)\ + (2) (ao,uo + 048)) U,z — Mal,uoul,x-

By comparing the coefficients before the independent variables wug ., u1,, we deduce an overde-

termined system of the differential equations for A

M(M —-1)
2

Let us derive and investigate the consistency conditions of the system (3.8). We differentiate

the first equation with respect to u_; and find

MM —1) aougu_y +20000,u_,

)\UO — *O[O)\ - (ao,uo + 01(2)), >\U1 — 7MO[1,’U,0' (38)

A=— 3.9
2 Oé()7u71 ( )
Since A\,_, = 0 we have
(log aO,u_l)uou_1 + 2O‘O,u_l =0. (310)
Now we introduce a new variable z due to the relation ag,_, = —%62 and reduce (3.10) to the

Liouville equation zy,, , = e* for which we have the general solution

o 2P (u0)Q (u)
(P(uo) + Q(u-1))*’
where P(ug) and Q(u_1) are arbitrary differentiable functions. Thus for o we can obtain the
following explicit expression

1 z Pl(uo)
=—= du_1 = H , 3.11
o) 2/6 Uu_q Plug) + Qa1 + H (ug, u1) (3.11)
where H (up,u1) is to be determined. Now we can find A from the second equation in (3.8)

Q'(uo)
P(u1) + Q(uo)
Let us specify H (ug,u1) by replacing in (3.9) ap and A in virtue of (3.11), (3.12). As a result
we obtain

A= —M/Oq,u()dul =-M + Mc(uo). (3.12)

1 QI(UO) 1 1 P”(UO)
H = — _Z )
(o: ) = 3 =3 Blan) + Qtag) ~ M =1 = 3 Bi(ug)
Summarizing the reasonings we can conclude that
P'(uo) 1 Q' (uo)
P(uo) + Q(u—1) M —1P(u

— c1(up), (3.13)

Oé(Ul, uo, u*l) =

where the functions of one variable P(ug), Q(uo), c1(uo) = 77 c(uo)+3 1;,/,((53)) and the integer M

are to be found. [ |
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The next step requires some additional integrability conditions. In what follows we derive
them by constructing another test sequence.
3.2 The second test sequence

Now we concentrate on a test sequence generated by the operators Yy, Y1, Yo and their multiple
commutators. It is more complicated than the previous sequence

ZOZ}/Oa Z1:Y17 22:}/2) Z3:[Y17}/0]7 Z4:[Y27}/1]7
Zs =Ya, Z3], Ze=V1,Z3], Zr=[MN,Z], Zs=[1,Z5] (3.14)
The members Z,, of the sequence for m > 8 are defined due to the recurrence Z,, = [Y1, Z,—3].

Note that it is the simplest test sequence generated by the iterations of the map Z — [Y7, Z]
which contains the operator [Y2, [Y1, Yp]] = Zs.

Lemma 3.3. Operators Zy, Z1, ..., Zs constitute a linearly independent set.

Proof. Firstly we note that the operators Zg, Z1, ..., Z, are linearly independent. It can be
verified by using reasonings similar to those from the proof of Lemma 3.2. We prove the lemma
by contradiction. Assume that

4
Zs =Y _\Z;. (3.15)
7=0

Now we specify the action of the operator adp, on the operators Z;. For ¢ = 0, 1,2 it is obtained
from the relation

[Dzv sz] = _aiui,mYVi-
Recall that o; = a(ui—1,u;, uiy1). For ¢ = 3,4,5 we have
[Dg, Z3) = —(a1 +ag)Zs + -+,

(D, Zs) = —(ag +a1)Zs+ -,
[DJC7 Z5] = —(ao + a1+ CLQ)Z5 + Yo(al)Z4 — Yz(al)Zg R

Here a; = oju; 5. Let us apply the operator adp, to both sides of (3.15) and obtain

—(ap + a1 + a2)(AgZy + A3Z3 4 ---) + Yo(a1)Zy — Ya(a1)Zz + - -
= MaZs+ A3273 — (a1 + a2) Zy — A3(ap +a1) 23 + - - - . (3.16)

By comparing the coefficients before Z, in (3.16) we obtain the following equation
Mg = —QU0 AL — g ULz (3.17)

A simple analysis of the equation (3.17) shows that A\ = A(ug,u;). Hence the equation (3.17)
splits down into two equations Ag,, = —apAs and Ag,, = —a1,,. The former shows that
A4 = 0. Indeed if A4 # 0 then we obtain an expression for ag: ap = — (log A\yg) o Which shows that
(a0)u_, = 0. It contradicts the assumption that a(uy, up, u—1) depends essentially on u; and u_,
therefore Ay = 0. Then (3.17) implies a4, = 0 and it leads again to a contradiction. |

Turn back to the sequence (3.14). For the further study it is necessary to specify the action
of the operator adp, on the members of this sequence. It is convenient to divide the sequence
into three subsequences and study them separately {Zs,,}, {Z3m+1}, and {Z342}.
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Lemma 3.4. Action of the operator adp, on the sequence (3.14) is given by the following
relations

[Dy, Z3m] = — (oo, + maiul z) Zam
m — m2
+ <2Y1(Oé1ul,x) — mYl(aOUO,J:)> Z3m—3 4+,

Dy, Z3m41] = —(00u2 e + monut g) Zam1

2

[Dy, Zgm2] = —(0uo e + monut g + aau ) Zami2 + Yo(arui z) Zamy1 + Ya(onui o) Zsm

m —m?
+ (Yl(alul,x) - mY1(042u2,m)> L3m—2+ -+,

m
—(m—1) (gyl(alul,x) + Yi(oouoz + 042“2@)) Z3m-1+ .

Lemma 3.4 is easily proved by induction. Since the proof is quite technical we omit it.

Theorem 3.5. Assume that Zsi,o is represented as a linear combination
Z3kv2 = A\ Zsk1 + pwZak + Vg Zsg—1 + - (3.18)

of the previous members of the sequence (3.14) and neither of the operators Zzj o with j < k is
a linear combination of Zs with s < 3j + 2. Then the coefficient vy is a solution to the equation

k(k —1)

5 Yl (alulvx) — (kj — 1)Y1 (OZO’LL[)’x + 012’LL2736). (319)

Dx(Vk) = QU1 2VE —

Lemma 3.6. Suppose that all of the conditions of the theorem are satisfied. In addition assume
that the operator Zsy, (operator Zsyy1) is linearly expressed in terms of the operator Z; with
i < 3k. Then in this decomposition the coefficient before Zsy_1 vanishes.

Proof. Assume in contrary that A # 0 in the formula
Z3k = N3j—1+ -+ . (3.20)
Let us apply adp, to (3.20). As a result we find due to Lemma 3.4

—(wuoe + karuy o)A Zgg—1 + -+
= Dz()\)ng,1 — A(OéoU()@ + (k — l)alul’m + OéQUQVT)ng,l =+ (3.21)

Collect the coefficients before Z3;_1 and obtain an equation the coefficient A must satisfy to
Dy(N) = Magug z — arug ).

Due to our assumption above A does not vanish and hence
D,(log A\) = asug gz — cqug 4. (3.22)

Since A depends on a finite number of the dynamical variables then due to equation (3.22)
A might depend only on u; and ug. Therefore (3.21) yields

(log )‘)ulul,z + (log A)UQU/Q,LE = QU2 x — QU] -

The variables uj 5, uz, are independent, so the last equation implies oy = —(log A)y,, a2 =
(log A)u,. Thus a1 = ag(u1,u2) depends only on uj, ug. It contradicts our assumption that o
depends essentially on ug. The contradiction shows that assumption A # 0 is not true. That
completes the proof. |
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Now in order to prove Theorem 3.5 we apply the operator adp, to both sides of (3.18) and
then simplify due to the relation from Lemma 3.4. Comparison of the coefficients before Zg;_1
implies equation (3.19).

Let us find the explicit expressions for the coefficients of the equation (3.19)

Y1 (aouoe) = o,u, %oz, Yi(aouzz) = agu, u2.q, Yi(arug) = (o1, +0of)ur,
and substitute them into (3.19)

kE(k—1)

2 (al,ul + a%)ulw - (k - 1)(a0,ulu$ + 0‘27u1u2,2)' (3'23)

Dx(Vk) = VU1 oz —

A simple analysis of (3.23) convinces that v might depend only on the variables ug, u1, us.
Therefore

Dx(Vk) = VkuoU0,z T Vku UL,z + Viu, U2,z (3-24)

From the equations (3.23), (3.24) we obtain a system of the equations for the coefficient vy

Vk’,uo = _(k - 1)a0,u17 (325)
k(k—1

Viu, = —Q1Vg — (2)(041,1“ + a%), (3.26)

Vkuy = —(k — D)o, (3.27)

Substitute the preliminary expression for the function « given by the formula (3.13) into the
equation (3.25) and get

5 _ E—1  P'(u1)Q (up)
o T N1 (P(uy) + Q(uo))2

Integration of the latter with respect to ug yields

]{i -1 P’(ul)
M—-1 P(’U,l) —+ Q(UO)

Vp = — —i—H(ul,UQ).

Since vy, 4, = Hy, the equation (3.27) gives rise to the relation

P'(ug)Q' (uy)

o = = D 0Py + Q)2

Now by integration we obtain an explicit formula for H

Q' (u1)

H=-(k=1) <P<>+@<> “““”) ’

which produces

o 1 P'(uy) Q' (u1)
ve = —(k—1) (M “1P(un) + Qup)  Pluz) + Qlur)

+ A(u1)> .
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Let us substitute the values of o and vy, found into the equation (3.26). We get a huge equation

_w—n<mfwM> _ PP(w) )

M—1 ur) + Q(uo)  (P(u1) + Q(up))?
Q" (u1) Q% (w1) ,
‘%‘”<Pwﬁ+an‘<@m+an>+AW”>
(L P'(uy) 1 Q' (uy) el
= ”(Pwn+Mw) A1 Pluy) + Qur) “10
1 P'(uq) Q' (u1)
X<M—1Pmn+wa P@g+an+A@”>
_k(k=1) ( Plu) 1 Q" (u1)
2 P(U1)+Q(UQ) M—lP(UQ)—i-Q(ul)
o Q(uy) | 2! (1) P (1)
M~ 1 (Pluz) + Q(un))® T M — 1 (Plur) + Quo)) (Pluz) + Qun)
1 Q/Z(ul)

+

(M = 1) (P(u2) + Q(u1))?

/ P'(u1) 1 Q'(u1)
— ¢ (u1) — 2¢1(uq) <P(u1) +Q(uo) ' M —1P(uz) + Q(uy)

> + c%(u1)> . (3.28)

Evidently due to our assumption a%la(ul,uo,u_l) # 0, %a(ul,uo,u_l) # 0 the func-

tions P’(uz) and Q' (up) do not vanish. Therefore the variables
Q" (u1) P (uy) P'(u) Q' (ua)
(P(u2) + Q(u1))*"  (P(ua) +Qu0))*”  (P(u1) + Q(u0))(P(uz) + Q(u1))

are independent. By gathering the coefficients before these variables in (3.28) we get a system
of two equations

<1—Mll> (1—2(Mk1)>=o, 1+(M11)2:Mk1. (3.20)

There are two solutions to the system (3.29): M =0, k = —2 and M = 2, k = 2. The former
does not fit since k£ should be positive, so we have the only possibility M = 2, k = 2. This
finishes the proof of Theorem 3.5.

4 Finding the functions P, Q and c;

In this section we specify the function « given by (3.13). For this aim we should consider
expansions (3.6), (3.18) using the fact that M = 2, k = 2.
Let us rewrite the expansion (3.6) in the complete form

Wy = AW + oY) + 6Y,. (4.1)

Theorem 4.1. Ezxpansion (4.1) holds if and only if the function « in (1.1) is of the following
form

Pl(“”) + Ql(un)
P(up) + Q(un—1) ~ Plun+1) + Q(un)

where the functions P(uy,), Q(uy,) are connected with each other by the differential constraint

(U1, Un, Un—1) = - é (log @ (un) P’ (un)), (4.2)

_BQIIQPIQ _ 2PI//P/Q/2 + 3P1/2Ql2 + 2P/2Q///Ql — 0 (43)
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Proof. Firstly by using relations (3.4), (3.5) and applying the Jacobi identity we get
(D, Wa| = —(2a9 + a1)Ws — Yy(ao + 2a1) W1 + (2YpY1(ao) — Y1Yo(ao))Yo — YoYo(ar)Yr.

Evidently only one summand in (4.1) contains the term 8%17 namely oY1, and only one

summand contains the term 8%0, namely 6Yy. Hence o =0, § = 0 and we have

Wy = AW7.
Now by applying the operator adp, to both sides of this relation we obtain

—(2a0 4+ a1)Wa — Yo(agp + 2a1)W1 + (2YoY1(ag) — Y1Y0(a0))Yo — YoYo(a1)Ys
= Dx()\)Wl + )\(—(CLQ + al)Wl + Yl(a())Yo — Yg(al)yl).

Collecting the coefficients before Wy, W1, Y7, and Yy we find the following system

Dx()\) = —qgA — Yb(ao + 2@1), (44)
—YoYo(a1) = —AYo(ar), (4.5)
2YyY1(ap) — Y1Yp(ag) = AYi(ap). (4.6)

Setting M = 2 in (3.7) we obtain equation (4.4). The overdetermined system (3.8) takes the
form

ug — —060)\ - (@O,uo + Oé%), (47>

up — —2041#0 .

+ 2¢(up), (4.8)

P'(uo) L Qw)  1P"(uo)
P(ug) + Q(u-1) = P(u1) +Q(ug) 2 P'(uo)

We rewrite (4.5), (4.6) due to the relations

a(ug, ug, u—1) = — c(up). (4.9)

0
Yo(ao) = < + oz + - ) (aouo,z) = (a0, + ) U0z,

8u0 8u0,$
0 0
Yo(a1) = | 57— + aotoez—— + -+ | (Q1u1s) = 10Uz,
Oug Oug z
Yo(ao + 2a1) = Yo(ao) + 2Yo(a1) = (ao,ue + 0§ ) to e + 201 ug U1,
YoYo(ar) = <80 + aoug, x% + ) (@1 ,2) = 0 uguo Ul e

0 0
Yi(ag) = <8 + aquy, e + > (Quoz) = 00,uy 0,25

}/OYl aO < + apug x "‘ > Q0,7 U0, CC = (aO,uoul + aoao,ul)uz’
Y1Yo(ao) < + arug . + ) Qo + ao Uoz) = (Q0ugu; + 20000,u; ) U0,
as follows

al,uouo = Aal,uoa ao,uoul = )\OZO,ul' (410)
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We substitute (4.8), (4.9) into (4.10) and find that c(ug) = %%,l((zs)). So we find that functions
(4.8), (4.9) are given by

Q' (uo) N Q" (uo)

P(ur) +Q(ug) ~ Q'(uo)’
P'(up) + Q'(up)  1P"(up) 1Q"(uo)
Plup) + Q(u—1) = P(u1) +Q(uo) 2 P'(ug) 2 Q(up)’

Substituting (4.11), (4.12) into (4.7) we obtain that the functions P, ) must satisfy the equality

(4.11)

)‘(R) = /\(UO, ul)

(4.12)

CV(UI, uo, u—l)

—3Q"P"? —2P"P'Q? +3P"Q"” +2P”Q"Q =0
Thus we have proved that if the expansion (3.6) holds then it should be of the form
Wa = AryWh.
Or the same
Y0, Y1, Yo]] = A [¥1. Yol .
Let us define a sequence of the operators in R(y, N) due to the following recurrent formula
Yo, Yi, Wi=[V,Y, Wo=MW, W), ..., Wiy =1, Wi,

It slightly differs from (3.3) and can be studied in a similar way. We can easily check that the
conditions (4.2), (4.3) provide the representation

W = Ay Wi
Or the same
(Y1, [Y1, Yol = Ay [Y1, Yol (4.13)

with the coefficient

P P
Ay = P(u1) + Q(uo) * P'(u1)

Let us consider expansion (3.18) setting k = 2,
78 = N7 + wle +vZs+ pZy+ k23 + 02y + 071 + nZg. (414)

Theorem 4.2. Ezpansions (4.1), (4.14) hold if and only if the function « in (1.1) is of one of
the forms

= a(uy,ug,u_1) = P (uo) 1P’ (uo) ~ P"(up)
@0 = 0t = B e Pu) + e | Pl + P e Plug) )
oo = auy, ug,u_1) = car(u—1)r’ (uo)
» U0, U— car(uo)r(u—1) + car(u—1) — ¢ + cor(u—_y)
ClT’(UO) (UO)T(UO) r (uo)
+ r(uo)(cgr(m)r(uo) + cyr(ug) — 1 + CQT‘(U())) r(uo)r (uo) ) (4.16)

where P(ug) and r(ug) are arbitrary smooth functions, c1 # 0, ¢35 # 0, c2, and c4 are arbitrary
constants.
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Proof. By taking £ = 2 in the statement of Lemma 3.4 we get

[Dy, Zs| = —(aouo g + 200u1,2) Z + - - -, (4.17)
[Dx, Z7] = —(O[2U27x + 20&1U17x)Z7 — (Yi (alul,x) + 2Y; (a2u27x))Z4 + - (4.18)
[Dy, Zg] = —(apuo,z + 2001 & + aous 5) Zg + Yo(rui z) Z7 + Ya(oiur 2) Zs

— (Y1 (alulw) + }ﬁ(aouow + OCQU27J;))Z5 + e (4.19)

Now we apply the operator adp, to both sides of (4.14) and then simplify due to the relations
(4.17), (4.18), (4.19). Comparison of the coefficients before Z7 and Zg implies A = 0 and p = 0.
Thus formula (4.14) is simplified

Zg = I/Z5 + pZ4 + K,Zg + O'ZQ + (5Z1 =+ ’I’]Zo. (420)
In what follows we will use the following commutativity relations

[Dx, Zg] = —(CLQ + 2a71 + a())Zg + Y()(al)Z7 — YQ(Ql)Zﬁ — Yl(a2 + a1+ CL())Z5
+ Y1Y0<CL1)Z4 — Y1Y2(a1)Z3 + <Y1Y2Y0<a1) + Z5(G1))Zl, (421)
[Dz, Z5] = —(CLQ + a1+ ag)Z5 + YE)(al)Z4 — Yg(al)Zg + YQYE)(al)Zl. (422)

Let us apply adp, to (4.20) then simplify by using (4.21), (4.22), (4.20) and gather the coeffi-
cients at Zs

—(ag + 2a1 + ap)v — Yi(az + a1 + ap) = Dy (v) — (a2 + a1 + ag)v
or the same
D,(v) = —a1v — Yi(a2 + a1 + ap). (4.23)

Equation (4.23) implies that v depends on three variables v = v(u, u1,u2) and splits down into
three equations as follows

Uy = _ao,ula (424)
V'u,l = —oV — Oél,ul — Oé%, (4'25>
Uyy = — 02y, - (4.26)

Substituting « defined by (4.12) into (4.24) and integrating with respect to u, we obtain

= ——P/(ul) U, U
- P(u1)+Q(uo)+H( 1, ug). (4.27)

From equation (4.26) we find

_ @) UQ, U
v = P(u2) +Q(u1) —|—R( 0, 1) (428)

Comparison of (4.27) and (4.28) yields
L P _ @wm)
Pur) + Q(uo) P(ug) + Q(u1)

Due to the fact that variables ug, u1, us are independent we obtain

Q' (u1)
P(uz) + Q(u1)

+H(U1,UQ):— +R(u,u1).

o Plw) Rlug, u) = —

P(u1) + Q(uo) — H(uy,ug) = —A(uq).
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Hence
_ . Qm)
H(ul,ug) = _P(UQ) i Q(Ul) + A(ul)
and then
poo Plw) Q) Aluy). (4.29)

P(u1) +Q(uo)  P(uz) + Q(u1)
Note that A\(zy defined by (4.11) satisfies the equation (4.7), i.e.,

)‘(R),u = —ao)\(R) — a07uO — Ozg.

AR)Lur = —C1A(R)1 — Qg — OF, (4.30)
where A\(py1 = Dy(Ar)). Here D, is a shift operator Dyup = ugy1. Let us subtract (4.30)
from (4.25)

(v =Aan),, = —aa (v = Aump).

Substituting functions (4.11) and (4.29) into the last equation we arrive at the equality
P'(u1)B(u1) Q' (u1)B(u1)

P(u1) + Quo)  P(uz) + Q(u1)

1 o "(u '(u / Q/<u1) _ Pl(ul) "
5 lopQ )P () (et - T ) )
Plo) Py,

T Plug) + Q(u1)  P(uy) + Q(uo)

where B(uy) = A(up) — Q0w)  This equality is satisfied only if the following conditions hold

Q' (u1) *
Q" (u1) = —Q'(u1)B(uy) + %Q'(ul)(log Q' (u1)P'(w1)), (4.31)
P(uy) = P'(uy) Buy) + %P’(ul) (log Q' (u1)P'(w1)), (4.32)
B/(ur) = 5 Blun) (log Q' (un) P! () (4.33)
The equation (4.33) is satisfied if B(u1) =0 or
(1og B(u1))’ = 3 (log Q' (1) P’ (1))’ (134
If B(ui1) =0 then Q(u1) = c1 P(u1) + ¢ and
o — PI(U()) clP’(uo) _ P//(U())
0 P(UO) + clP(u_l) —+ o P(ul) + 01P<UO) + ¢y PI(U()) ’
— P'(u1) B c1 P (u1) Q" (u1)
A(M) T P(ui) + c1P(ug) +c2  Plug) +c1P(u1) + c2 * Q' (u1) ’ (4.35)
L 2¢1 P’ (uo) P (uo)
Ay = P(u1) + c1P(ug) + c2 " P(ug)’ (4.36)
_ 2P/(U1) P”(ul)
AL = ") + e Plug) Foa T Pl (4.37)

Here ¢ # 0.
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If B(uj) # 0 then from the system of equations (4.31), (4.32), and (4.34) we obtain that
Qur) = — e T2 P(u1) = c3r(u1) + ¢4 and

esr(u—1)r' (ug)

0= (uo)r(u_) + car(u_y) — c1 + cor(u_y)
N c1r’ (uo) ~ "(uo)r(uo) — 7" (uo)
7 (ug) (ear(ur)r(uo) + car(ug) — 1 + car(up)) r(uo)r’ (uo)
Mo ey esr(ug)r' (uy)
(M) - esr(up)r(ug) + car(ug) — 1 + car(ugp)
B crr' (uy)
r(ur) (esr(ug)r(ur) + car(ur) — e1 + cor(uy))
r'(u) 2r"2 (uy) — " (u1)r(uy)
P T e (4:3%)
L 2¢17’ (ug) " (ug)r(ug) — 21" (up)
Ar) = (o) (car (ur ) (ut0) + car(utg) — 1 + car(uo)) + r(10)r (1) . (4.39)
Aoy = —2csr(ug)r’(uq) " (uy) (4.40)

 (esr(ur)r(uo) + car(ug) — c1 + cor(ug)) — '(u1)’
Now let us apply adp, to (4.20) using (4.21), (4.22), (2.7) and the facts that Z, = D,,(Z3) and

[Z1,Z4] = Dy[Zy, Z3) = —D,(W3) = —Dn()\(R))Wl = Dn(A(r))Zs and write down coefficients
before Z,4

—(a2 +2a1 + ap)p + Y1Yo(a1) + Yo(a1) Dn(A(r)) = vYo(a1) + Dz(p) — (a1 + az2)p.
Then
Dy(p) = —(a1 + ao)p + Y1Yo(a1) + Yo(a1) Dn(A(r)) — vYo(a1). (4.41)
The equation (4.41) implies that p = p(u, u1,uz) and splits down into three equations as follows
Puy = 0, —Q0P = Pugs —1p + Q1 uguy + 10wy + Q1 ug Dn(N(R)) — VO ug = Puy -

If ap, v, and A (g) are defined by the formulas (4.15), (4.35), and (4.36) or by the formulas (4.16),
(4.38), and (4.39) correspondingly then p = 0 and the last equations are satisfied.

Now let us apply adp, to (4.20) using (4.21), (4.22), (2.7), (4.13) and write down coefficients
before Z3

—(a2 + 2a1 + ag)k — Y1Ya(a1) — Ya(ar1)\p) = —vYa(a1) + Dy(k) — (a1 + a2)k.
Then
Dy(k) = —(ag + a1)k — Y1Ya(a1) — Ya(a1) Az + vYa(ar). (4.42)
The equations (4.42) implies that k = k(u1, u2) and splits down into two equations as follows
Ky = —002K, Kuy = —O1K — O jugu; — Q1O gy — al,ug)\(L) + va y,-

If ag, v, and Az are defined by the formulas (4.15), (4.35), and (4.37) or by the formulas (4.16),
(4.38), and (4.40) correspondingly then x = 0 and the last equations are satisfied.
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Apply adp, to (4.20) taking into account that p = k = 0 and write down coefficients before
operators Zo, Z1 and Zy

D,(0) = —(2a; + ap)o,
Dx(d) = —(CLQ +a1 + a0)5 — Y1Y2Y()(a1) + )\YQY()(al),
D,(n) = —(a2 + 2a1).

From these equations we obtain that o = § =n = 0.
Thus we have proved that if the expansions (4.1), (4.14) hold then (4.14) should be as follows

Zg = )\(M)Z5
Or the same
(Y1, [Ya, [Y1, Yol]] = A [Y2, [Y1, Yol , (4.43)

where Ay defined by the formula (4.35) or (4.38) and ag, A(g), and A(y) are defined by the for-
mulas (4.15), (4.36), and (4.37) or by the formulas (4.16), (4.39), and (4.40) correspondingly. W

Corollary of Theorems 4.1 and 4.2:

Corollary 4.3. In both cases Q(u1) = —%—i—c% P(u1) = esr(ug)4cq and Q(u1) = 1 P(ug)+c2
the constraint (4.3) is satisfied identically.

In a similar way we check that the same conditions (4.15), (4.16) provides the representations

D/O’ D/Q7 [}/17 Yb]]t] = A(R) [Yéa [Yi, YVO]]»
[Ya, [Ya, [Y1, Y0l]] = Dn(A1)[Y2, [Y1, Yol

5 Comments on the classification result

In this section we briefly discuss the statements of Theorems 4.2 and 5.2 (see below) claiming
that the lattice (1.1) is integrable in the sense of Definition 1.1 only for two choices of the
function « given by (4.15) and (4.16). In both cases the lattice has a functional freedom which
is removed by an appropriate point transformation. Therefore we have

Theorem 5.1. Any lattice (1.1) integrable in the sense above is reduced by the point transfor-
mation v = p(u) to the following lattice

1 1
Un,zy = Un,zVUny ( - > . (51)

Un — Un—1 Un+1 — Un

Specify the point transformations® applied to the lattices. Change of the variables w = P(u)
reduces (4.15) to

1 C1
w = Wy, LW + . 5.2
Ry ey <wn +e1Wp—1 + €2 Wpy1 + crwp + 62> (52)

The latter is connected with (5.1) by the change of the variables v, = (—c1)"wy, — 1fr281 ifep #—1
and by v, = w,, — con in the special case ¢; = —1.

1We are glad to acknowledge that these transformations are found by R.I. Yamilov and R.N. Garifullin (private
communication).
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Change of the variables v = r(u) reduces (4.16) to

Un—l + /U’ﬂ"rl + B > , (53>

Un,zy = Un,zUny <
UpUn—1 + Bop—1 — 7 UnUn+1 + Bop —

where we denote 8 = %, «v = c¢1/cs. Then change of the variables v = ﬁ(%—i—c), v = B%(?+c)
reduces (5.3) to
L s
c 1 c 1 -
Wn + G qWn-1+ 47 Wntl+ o 7Wn+ o7

Wn,zy =

The latter coincides with (5.2) if ¢1 = {5, H%

Note that equation (5.1) coincides with the Ferapontov-Shabat—Yamilov equation found
in [20] and [4].

Cy =

Theorem 5.2. The characteristic Lie rings in x- and y-directions for the following system of
hyperbolic type equations

v-1 = Cp,
1 1
Un,zy = Un,zUny — - — s 0<n< N, (54)
Un — Un—1 Un+1 — Un
UN+1 = C1,

are of finite dimension.

The proof of Theorem 5.2 can be found in Appendix A.
Corollary 5.3. The system (5.4) is Darbouz integrable.
Remark 5.4. The following lattice (see [20])

Gnay = ooy (f (@1 — @n) = f(@n — @n-1)),
F=f o

is reduced by the point transformation to (5.1). Namely if b # 0 then f(q) = btan(b(q + ¢)) =
—ibtanh(ib(q + ¢)), where c is the constant of integration, 7 is the imaginary unit. So we have
the lattice

Inzy = Qn,zqn,y(—1b) (tanh(ib(qn+1 — qn + ¢)) — tanh(ib(qn, — gn-1 + c)))

The change of variables ¢, = —%vn —nc reduces the last lattice to (5.1). If b = 0 then f(q) = —1-

q+c’
By the change of variables ¢, = v,, — nc we obtain (5.1).
6 Conclusion
In [9] it was conjectured that any nonlinear integrable two-dimensional lattice of the form
Un,zy = g(un+1, Un, Un—1, Un,x, un,y) (61)

admits cut-off conditions reducing the lattice to a finite system of the hyperbolic type partial
differential equations being integrable in the sense of Darboux when they are imposed at two
points n = N; and No chosen arbitrary.
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In the present article we discussed the classification algorithm based on that conjecture.
Actually we solved a problem of the complete description of the lattices (1.1) satisfying the
suggested requirement. The lattice (1.1) is a particular case of the lattice (6.1) for which the
mentioned cut-off condition is easily found: uy, = cp, un, = c¢1. This circumstance essentially
simplifies the situation. Nevertheless even in general when a priori the cut-off condition is
also unknown the algorithm might be effective since the assumption on the existence of such
boundary conditions puts severe restrictions on the characteristic operators.

We show that the class of integrable lattices of the form (1.1) contains only one model
up to the point transformations. This model coincides with the Ferapontov—Shabat—Yamilov
equation. The one-dimensional reduction x = y of this lattice satisfies completely also the
symmetry integrability conditions (see [23]).

A Appendix

The goal of the appendix is to prove Theorem 5.2. Let us introduce a special notation Y;, . ;,
for the multiple commutators. It is defined consecutively

mk,...,io = [Y;/k?}/:b (Al)

k71,~-~,i0]'

Number k is called the order of the operator (A.1).
In order to prove Theorem 5.2 we show that the ring R(y, V) is of finite dimension. Actually
we construct the basis in R(y, N) containing the operators

Yo, Yo' Yisiniding® - YNN-1.0- (A.2)

A.1 The base case of the mathematical induction

In the previous section we have proved that

[Yo, Y10] = A(r) Y10, [Y1, Y10] = A2y Y10, (A.3)
[Yo, Y210] = A(r) Y210, [Y1, Y210] = A(ar) Yar0, [Y2, Ya10] = Dn(A(z) Y210 (A4
In what follows we will use the following relations which are easily verified

[Dy, Y3210] = —(a3 + a2 + a1 + ag) Y3210 — Y3(a2)Ya10 + Yo(a1)Y3o1, (A.5)
[Dy, [Yo, Y3210]] = —(a3 + a2 + a1 + 2a0)[Y0, Y3210]

— Yo(2a1 + ag) Y3210 — Y3(a2)[Yo, Yo10] + YoYo(a1)Y3a1, (A.6)
[Dg, [Y1, Y3210]] = — (a3 + a2 + 2a1 + ao)[Y1, Ya210] — Y1(a2 + a1 + ao)Y3210

— Y1Y3(a2)Yo10 — Y3(a2)[Y1, Yor0] + Y1Yo(a1) Y321

+ Yo(a1)[Y1, Ya21], (A7)
[Dy, [Y2, Ya210])] = — (a3 + 2az + a1 + ao)[Y2, Ys210] — Ya(az + a2 + a1) Y3210

— YaY3(az2)Ya10 — Y3(a2)[Y2, Yaio] + Y2 Yo(a1)Y321

+ Yo (a1)[Y2, Y321], (A.8)
[Dy, [Y3, Y3210]] = —(2a3 + a2 + a1 + ao)[Y3, Y3210] — Y3(az + 2a2) Y3210

— Y3Y3(az2)Ya210 + Yo(a1)[Y3, Y321]. (A.9)

We prove the theorem by the mathematical induction. The base case consists in proving
a lot of the formulas concerned to small order commutators up to order six. When constructing
a linear expression for a given element in R(y, N) as a linear combination of those from (A.2)
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we always use Lemma 2.3. That is why we need in explicit expressions for [D,,Y;,  ]. In the
base case we prove a large set of the equalities. Since they all are proved by one and the same
way we concentrate on one of them.

Lemma A.1. We have
[Yo, Ya210] = A(r)Ya210- (A.10)

Proof. By applying the operator adp, to Z = [Yo, Y3210] — A(r) Y3210 and simplifying due to the
equations (A.5), (A.6) we obtain [Dy, Z] = 0. Evidently Z satisfies the settings of Lemma 2.3.
Due to this lemma we obtain Z = 0. Lemma A.1 is proved. |

In what follows we need in the formulas

[Y1, Ys210] = A(ar) Y3210, (A.11)
[Y2, Y310] = D (X)) Y3210, (A.12)
[Y3, Y3210] :D%()\ )) Y3210, (A.13)

which are some versions of the formula (A.10) from Lemma A.1.
Now using formulas

[Dg, Yazo10] = —(a4 + a3 + a2 + a1 + ao)Yas210 — Ya(az)Yaz10 + Yo(a1)Yasor, (A.14)
[Dg, [Yo, Yaz210]] = —(a4 + a3 + a2 + a1 + 2a0)[Yo, Yaz210]
— Y0(2a1 + ao)Yaszo10 — Ya(as)[Yo, Ys210] + YoYo(a1)Yaso1, (A.15)

[Dy, [Y1, Yaz210]] = — (a4 + a3 + a2 + 2a1 + ag)[Y1, Yaz210]

— Yy(a3)[Y1, Y3210] — Yi(az + a1 + ao)Yaza10 — Y1Yi(a3) Y3210

+ Y1Yo(a1)Yaz21 + Yo(a1)[Y1, Yazai], (A.16)
[Dy, [Y2, Yazo10]] = —(aa + az + a2 + a1 + ao)[Y2, Yaz210]

—Ya(az + ag + a1)Yize10 — Y2Ya(a3)Ys210 — Ya(a3z)[Y2, Y3210

+ Ya2Yo(a1)Yasar + Yo(ar)[Y2, Yazo1], (A.17)
[Dy, Y3, Yas210]] = —(aa + 2a3 + a2 + a1 + ao)[Y3, Yaz210]

— Y3(a4 + a3 + a2)Yazz10 — Y3Yi(a3z) Y3210 — Ya(as)[Y3, Y3210]

+ Y3Yo(a1)Yasor + Yo(a1)[Ys, Yazoi], (A.18)
[Dg, [Ya, Yaz210]] = —(2a4 + a3 + ag + a1 + ao)[Ya, Yaz210]
— Yi(aq + 2a3)Yazo10 — YaYa(az)Ya210 + Yo(a1)[Ya, Yizoi] (A.19)

by direct calculations we prove that

[Y0, Yaz210] = A(r) Y3210, (A.20)
[Y1, Yaz210] = )\(M)Y43210, (A.21)
[Y2, Yazz10] = Dn(A(ary) Yas210, (A.22)
[Ya, Yasa10] = D (A(ar)) Yas2io, (A.23)
[Y4, Yaszr0] = D3 (Ar)) Yas21o0, ( )
where A(r), A(ary, and () are defined by the formulas (4.36), (4.35), and (4.37) or by the
formulas (4.39), (4.38), and (4.40) correspondingly.

Now, having explicit formulas for the small order commutators we are ready to work out an
induction hypothesis.
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A.2 Inductive step

Theorem A.2. For n > 1 the multi-commutators satisfy the following formulas

n+1
[Drv Yn+1,n, <Z az) n+1,m,....,0 — YnJrl(an)Yn,nfl,...,O + }/O(al)YnJrl,n,...,ly (A25)

[Dy, [Yo0, Yotim,...0l) = —(ang1 + - - + a1 + 2a0)[Yo, Yot1,n,....0] — Yo(ao + 2a1)Ynt1n,..0
- n—l—l(an)[yba Yn,n—l,...,O] + Y'()Yz)(al)yn+1,n,...,la (A26)
(D, [Yi, Yotin,.. 0]l = —(@nt1 + -+ 2a + - - - + ao) [Yk, Yogi,n,....0]

n+1
Zaz n+1 MN,y...,0 YkYn—i—l(an)Yn,n—l,...,O

- n+1(an)[Yk,Yn,n—1,...,o] + YiYo(a1)Ynsim,.. 1
-+ %(al)[Yk, Yn—&—l,n,...,l]a k=1,2,...,n, (A27)
[Dacv [Yn+17 Yn+1,n,...70]] = _(2an+1 +an+---+ aO)[Yn—f—la Yn—i—l,n,...,O]
n—l—l(an-l—l + 2an)Yn+l,n,...,0 - Yn-l—lYn—i-l(an)Yn,n—l,...,O
+ YE)(GI)[Yn—i-ly Yn—l—l,n,...,l]- (A28>
Proof by induction. For n = 2 and n = 3 formulas (A.25)-(A.28) are previously proved
(see (A.5)—(A.9) and (A.14)—(A.19)).
Assume that the multi-commutators satisfy the following formulas

[Dx,Yn,..,o (Zal> n,..,0 — (an 1)Yn71,...,0+Yb(a1)yn,...,1,

[Dma [}/E]a Yn,...,OH = _(an + - Fa + 2&0)[%, Yn,.A.,O]
- }/E)(GO + 2al)yvn,...,() - Yn(anfl)[yba Ynfl ] + }/0}/0(&1)}/ L1

[Dma [Ykn Yn,..‘,OH = _(an + -+ 2a+ -+ aO)[Yk7 (Z az) n,...,0

= YiYo(an—1)Yn-1,..0 — Ya(an—1)[Ye, Yo-1,..,
+ Yo(a1)[Ye, Yo, . 1], k=1,2,...,n—1,
[Dm’ [Yn’ Ynz"'70]] = _(2an +apn—1+---+ aO)[Yn> Yn,~..,0]

- Yn(an + 2an71)Yn,...,0 - YnYn(anfl)Ynfl,.“,O + %(al)[yny Yn,.. 1]-

3

ol + YiYo(a1)Yn, 1

Then from these assumptions we deduce similar equations for n + 1

[De, Yntim,...0l = [Da, [Ynt1, Ynn—1,.0]]
= [Yor1, Dz, Yan-1,..0l] = Yan-1,..0, [Dz, Yai1]]
= [Yot1,—(an +an—1+ -+ a0)Ynn-1,.0— Yn(an—1)Yn-1n-2,.0
+Yo(a1)Ynn—1,..1) — Yon-1,..0, —@n+1Ynt1]

n+1
§ a; | Yni1 My, YnJrl(an +ap—1+---+ aO)Yn,nfl,...,OYn,nf1,..,,0

- n+1Yn(anfl)Ynfl,an...,O - Yn(anfl)[YnJrl» Ynfl,nf2,...,0]
+ Y1 Yo(a1)Ynn—1,..1 + Yo(a1)Yntim, .1 + Yon—1,.0(@n1)Ynir (A.29)
Note that

Yila;) =0 if |i—j|>1, (A.30)
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ie,ifi#£j,i#7j+1, and
Y, Yo, 0] =0 if m—n>1
That is why the following terms in (A.29) are equal to zero

Yn—l—l(an—l +---+ a()) = 07 Yn+1Yn(an—1) = 07
Yot1, Ynoin—2..0] =0, Yn+1Yo(a1) =0, Yon—1,..0(ans1) =0.

Thus the equality (A.29) takes the form (A.25).
Let us prove the formula (A.26),

[D:t:a D/Oa Yn+l,n,...,0“ = [YO, [DCC7 Yn+l,n,...,0“ - [Yn+l,n,...,0a [Dx’ }/OH

n+1
Yo, — (Z az’) Yot1m,...0 = Yont1(an)Ynn—1,..0 + Yo(a1)Yniin,.. 1

=0
— Yot1m,....0, —a0Y0)-

From this equality using property of linearity of the commutators and the equations (A.30) we
obtain the formula (A.26). The formulas (A.27) and (A.28) are proved in a similar way.

Theorem A.3. For m > 1 the multi-commutators satisfy the following formulas

Y0, Yit1,m,...0l = Ar)Ym+1,m.....05 (A.31)
Yk, Yintrim,...0) = DZ_I()\(M))Ym+1,m,...,Oa k=1,...,m, (A.32)
[Ym+17 Ym+1,m,...,0] = D;n ()\(L))Ym-‘rl,m,...,o‘ (A33)

Proof by induction. For m = 1,2,3 formulas (A.31)-(A.33) are true (see (A.3), (A.4),
(4.43), (A.10), (A.11), (A.12), (A.13), (A.20)—(A.24)).
Assume that the multi-commutators satisfy the following formulas

D/O,Ym,mfl,...,[)] = )\(R)Ym,mfl,...,Oa (A34)
Yk, Yinm—1,..0] = Dyki_l()\(M))Ym,mfl,..,,Oa k=1,....m—1, (A.35)
[Yma Ym,m—l,...,O] = D;n_l ()‘(L))Ym,m—l,...,o- (A36)

Let us first prove the formula (A.31). The proof is rather tricky: we assume the expansion
with undetermined coefficients

[}/07 Ym—i—l,m,...,O] = AYvn’b-l—l,m,...,O + ,Ume—‘rl,m ..... 1+ VYm,m—L...,O + 6Y;n—i—l,rrz,...,Q
+ nYm,m—l,...,l + CYm—l,m—Q,...,O +
+0Yp1m+ -+ &0+ 0Yg1 + - - + Y0, (A.37)

and then evaluate the coefficients consecutively in the following way. We apply the opera-
tor adp, to (A.37) and gather the coefficients before the linearly independent operators. For
instance, by comparing the coefficients before the multi-commutator Y, 41,0 and then using
formulas from Theorem 2.1 with n = m — 1 we find

Dm()\) = —qg\ — Yb(ao + 2a1).

The latter coincides with the equation (4.4) and, therefore, we can conclude that A = A(R)-
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Compare now the coefficients before Y, 11,1 to get an equation for determining p. Note
that by Theorem A.2 we have

[D:ca Ym+1,m,...,1] = Dn[Dxa Ym,m—L...,O] = |Theorem AQ‘

m
=D, ( (Z ai) Yim—1,..0 = Ym(@m—1)Ym—1,m-2..0+ %(al)Ym,ml,...J)
i=0

m+1
= - <Z ai) Yot1m,1 — Ymt1(am)Ymm—1,..1 + Y1(a2)Yit1m,... 2. (A.38)
i1

Due to the relation (A.38) the desired equation reduces to the form
Dy(1) = —2aop + YoYo(a1) — AYo(ar).

It is easily checked that the equation has the only solution y = 0. Continuing this way we
can prove that all of the other coefficients v, ¢, ..., in (A.37) vanish. Now for the operator
Z = [Yo, Yims1m....0l — A\(g)Ym+1,m,...0 we have [D, Z] = 0. Due to Lemma 2.3 it implies Z = 0.
That completes the proof of the formula (A.31).

Now we prove the formula (A.32). To this end we assume that the equation holds

[Yka Ym+1,m ..... 0] = )\Ym—l—l,m,...,O + UYm+1,m,...,1 + VYm,m—l
+0Ymm—1,..1 +CYm—1m-2,..0+
+ 9Ym+1,m +---+ §Y10 + UYm+1 + -+ (5}/0 (A39)

---------

with the coefficients to be determined.
Let us apply adp, to (A.39) and write down the coefficients before the operator Yy, 41.m,..0

m+1
D,(\) = —ap\ — Y}, (Z ai> .
=0

(k—1)

Apply D, to the last equation

Dy (D, FD () = —a1 D, *=Y(N) — Yi(az + a1 + ag).

This equation coincides with the equation (4.23) then D, (kfl)()\) = Ay and
A= DE T (Aan)-
Note that due to the formula (A.35) we have

Ye, Yittm,.. 1) = Dn[Yi—1, Yinm—1,...0]
= Dn (Dg_2()\(M))Ym,mfl,...,0) = Dﬁ_l ()‘(M))Ym+1,m,..‘,1- (A40)

Apply adp, to (A.39) using the formulas from Theorem A.2 and the formula (A.40) and write
down the coefficients before the multi-commutator Y, 11m,...1

—(@m41 + o+ 2a5 + -+ ag)p + YiYo(ar) + Yo(ar) Dy~ (A

m—+1
= AYo(a1) + Da(p) — (Z) n

=1
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Since A = D,’i_l()\(M)) the latter can be brought to the form
Dy (p) = —(ao + ag)p + YiYo(ar). (A.41)
Evaluate the action of the product of the operators

o Q1 yuq U1,z T Q1O UL g, k=1,

0
Yk}/()(al) ==+ QpUk oz 7 (al,uul,x) = 3 %1uus Ul,x, k= 2>
ouy, Ouy, o 0 Lo
) > 2.

Thus if k£ = 1 then the equality (A.41) takes the form
D.(p) = —(oug + arug z) 1+ (01w, + 0100 4) U1 g
This equation implies that pu = p(u,u1) and splits down into two equations as follows
Moy = —QoL, Py = —Q1 b+ O gy + QLA -

Then we can prove that p = 0.
If k£ = 2 then the equality (A.41) takes the form

D, (p) = —(coug + oo )t + Q1 yuy Utz
This equation implies that p = p(u,u1,us) and splits down into three equations as follows

Hy = —QoH, Huy = 01 yug Hyy = —Q2 1.

And then again y = 0.
If k£ > 2 then the equality (A.41) takes the form

Dy () = —(cvous + agup z) -

This equation implies that pu = p(u, ug) and splits down into two equations as follows

P = —QOf,  fluy, = — Q[

Then p = 0.

In a similar way we can verify that all of the coefficients in (A.39) vanish except A. Thus
due to Lemma 2.3 formula (A.32) is correct.

Now we check the formula (A.33). First we assume that the following decomposition takes
place

[Ym+1a Ym+1,m,...,0] = )\Ym—i-l,m,...,(] + ,UYm—l—l,m,...,l + VYm,m—l,..‘,O + 6va—l—l,m,...,Q
+ 77va,m—1,...,1 + CYm—l,m—Q,A..,O +- 4+ eym—l—l,m +
+ &9+ 0Ymi1+ -+ 6Y (A.42)

with undefined factors.
Let us apply adp, to (A.42) and write down the coefficients before the multi-commutator

Yim+1m,..0

D, (A) = —ami1 A — Y1 (amy1 + 2am).
Apply D, to this equation

Dy (D;™ (X)) = —a1D;,™(A) — Yi(a1 + 2ap).

This equation coincides with (4.4) then D™ (X\) = A1y and A = D' (\(z))-
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Let us apply adp, to (A.42) and write down the coefficients before the multi-commutator
Ym+1,m,...,1

m+1
—(2am41 + am + -+ ag)p + Yo(a) D' (\r)) = AYo(ar) + Dy(p) — | > ai | .
=1

Note that A = Dy'()\(r)) then the last equality takes the form

Dy(p) = —(am+1 + ao)p.

Then p = 0.
Let us apply adp, to (A.42) and write down the coefficients before the multi-commutator
Ym,m—l,...,O
D, (v) = =2am+1v — Y1 Yimt1(am) + AY g1 (am). (A.43)
Note that

>\Ym+1(am) - Ym+1Ym+1(am)
= D" (A1) Ym+1(am) — Ymy1Ymy1(am) = Din(Ar))Y1(ao) — Y1Y1(ao)) = 0.

Then the equation (A.43) takes the form D, (v) = —2a,,41v and we obtain that v = 0.

In a similar way we can prove the vanishing of the other coefficients in (A.42). Now by
applying Lemma 2.3 it is easy to complete the proof of the formula (A.33). Theorem A.3 is
proved.
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