Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 076, 25 pages      arXiv:1612.07960      https://doi.org/10.3842/SIGMA.2017.076

Factorizable $R$-Matrices for Small Quantum Groups

Simon Lentner and Tobias Ohrmann
Fachbereich Mathematik, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

Received January 16, 2017, in final form September 15, 2017; Published online September 25, 2017

Abstract
Representations of small quantum groups $u_q({\mathfrak{g}})$ at a root of unity and their extensions provide interesting tensor categories, that appear in different areas of algebra and mathematical physics. There is an ansatz by Lusztig to endow these categories with the structure of a braided tensor category. In this article we determine all solutions to this ansatz that lead to a non-degenerate braiding. Particularly interesting are cases where the order of $q$ has common divisors with root lengths. In this way we produce familiar and unfamiliar series of (non-semisimple) modular tensor categories. In the degenerate cases we determine the group of so-called transparent objects for further use.

Key words: factorizable; $R$-matrix; quantum group; modular tensor category; transparent object.

pdf (553 kb)   tex (33 kb)

References

  1. Angiono I., Yamane H., The $R$-matrix of quantum doubles of Nichols algebras of diagonal type, J. Math. Phys. 56 (2015), 021702, 19 pages, arXiv:1304.5752.
  2. Bruguières A., Catégories prémodulaires, modularisations et invariants des variétés de dimension 3, Math. Ann. 316 (2000), 215-236.
  3. Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Mathematical Surveys and Monographs, Vol. 205, Amer. Math. Soc., Providence, RI, 2015.
  4. Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu., Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center, Comm. Math. Phys. 265 (2006), 47-93, hep-th/0504093.
  5. Feigin B.L., Tipunin I.Yu., Logarithmic CFTs connected with simple Lie algebras, arXiv:1002.5047.
  6. Gainutdinov A.M., Runkel I., Symplectic fermions and a quasi-Hopf algebra structure on $\overline{U}_{q}s\ell(2)$, J. Algebra 476 (2017), 415-458, arXiv:1503.07695.
  7. Kerler T., Lyubashenko V.V., Non-semisimple topological quantum field theories for 3-manifolds with corners, Lecture Notes in Mathematics, Vol. 1765, Springer-Verlag, Berlin, 2001.
  8. Kondo H., Saito Y., Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to ${\mathfrak{sl}}_2$, J. Algebra 330 (2011), 103-129, arXiv:0901.4221.
  9. Lentner S., A Frobenius homomorphism for Lusztig's quantum groups for arbitrary roots of unity, Commun. Contemp. Math. 18 (2016), 1550040, 42 pages, arXiv:1406.0865.
  10. Lentner S., Nett D., A theorem of roots of unity and a combinatorial principle, arXiv:1409.5822.
  11. Lentner S., Nett D., New $R$-matrices for small quantum groups, Algebr. Represent. Theory 18 (2015), 1649-1673, arXiv:1409.5824.
  12. Lusztig G., Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), 89-113.
  13. Lusztig G., Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010.
  14. Müller E., Quantengruppen im Einheitswurzelfall, Ph.D. Thesis, Ludwig-Maximilians-Universität München, 1998.
  15. Müller E., Some topics on Frobenius-Lusztig kernels. I, J. Algebra 206 (1998), 624-658.
  16. Müller E., Some topics on Frobenius-Lusztig kernels. II, J. Algebra 206 (1998), 659-681.
  17. Schneider H.-J., Some properties of factorizable Hopf algebras, Proc. Amer. Math. Soc. 129 (2001), 1891-1898.
  18. Shimizu K., Non-degeneracy conditions for braided finite tensor categories, arXiv:1602.06534.
  19. Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, Vol. 18, Walter de Gruyter & Co., Berlin, 1994.

Previous article  Next article   Contents of Volume 13 (2017)