Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 078, 24 pages      arXiv:1702.01266      https://doi.org/10.3842/SIGMA.2017.078
Contribution to the Special Issue on Symmetries and Integrability of Difference Equations

Rational Solutions to the ABS List: Transformation Approach

Danda Zhang and Da-Jun Zhang
Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China

Received March 21, 2017, in final form September 26, 2017; Published online October 02, 2017

Abstract
In the paper we derive rational solutions for the lattice potential modified Korteweg-de Vries equation, and Q2, Q1($\delta$), H3($\delta$), H2 and H1 in the Adler-Bobenko-Suris list. Bäcklund transformations between these lattice equations are used. All these rational solutions are related to a unified $\tau$ function in Casoratian form which obeys a bilinear superposition formula.

Key words: rational solutions; Bäcklund transformation; Casoratian; ABS list.

pdf (500 kb)   tex (27 kb)

References

  1. Ablowitz M.J., Satsuma J., Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys. 19 (1978), 2180-2186.
  2. Adler V.E., Bobenko A.I., Suris Yu.B., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys. 233 (2003), 513-543, nlin.SI/0202024.
  3. Adler V.E., Bobenko A.I., Suris Yu.B., Discrete nonlinear hyperbolic equations: classification of integrable cases, Funct. Anal. Appl. 43 (2009), 3-17, arXiv:0705.1663.
  4. Atkinson J., Bäcklund transformations for integrable lattice equations, J. Phys. A: Math. Theor. 41 (2008), 135202, 8 pages, arXiv:0801.1998.
  5. Atkinson J., Hietarinta J., Nijhoff F.W., Seed and soliton solutions for Adler's lattice equation, J. Phys. A: Math. Theor. 40 (2007), F1-F8, nlin.SI/0609044.
  6. Atkinson J., Hietarinta J., Nijhoff F.W., Soliton solutions for Q3, J. Phys. A: Math. Theor. 41 (2008), 142001, 11 pages, arXiv:0801.0806.
  7. Atkinson J., Nijhoff F.W., A constructive approach to the soliton solutions of integrable quadrilateral lattice equations, Comm. Math. Phys. 299 (2010), 283-304, arXiv:0911.0458.
  8. Bobenko A.I., Suris Yu.B., Integrable systems on quad-graphs, Int. Math. Res. Not. 2002 (2002), 573-611, nlin.SI/0110004.
  9. Feng W., Zhao S., Shi Y., Rational solutions for lattice potential KdV equation and two semi-discrete lattice potential KdV equations, Z. Natur. A 71 (2016), 121-128.
  10. Freeman N.C., Nimmo J.J.C., Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique, Phys. Lett. A 95 (1983), 1-3.
  11. Grammaticos B., Ramani A., Papageorgiou V., Satsuma J., Willox R., Constructing lump-like solutions of the Hirota-Miwa equation, J. Phys. A: Math. Theor. 40 (2007), 12619-12627.
  12. Hietarinta J., Boussinesq-like multi-component lattice equations and multi-dimensional consistency, J. Phys. A: Math. Theor. 44 (2011), 165204, 22 pages, arXiv:1011.1978.
  13. Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016.
  14. Hietarinta J., Zhang D.-J., Soliton solutions for ABS lattice equations. II. Casoratians and bilinearization, J. Phys. A: Math. Theor. 42 (2009), 404006, 30 pages, arXiv:0903.1717.
  15. Hirota R., Nonlinear partial difference equations. I. A difference analogue of the Korteweg-de Vries equation, J. Phys. Soc. Japan 43 (1977), 1424-1433.
  16. Ma W.-X., You Y., Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions, Trans. Amer. Math. Soc. 357 (2005), 1753-1778, nlin.SI/0603008.
  17. Maruno K., Kajiwara K., Nakao S., Oikawa M., Bilinearization of discrete soliton equations and singularity confinement, Phys. Lett. A 229 (1997), 173-182, solv-int/9610005.
  18. Nijhoff F.W., Lax pair for the Adler (lattice Krichever-Novikov) system, Phys. Lett. A 297 (2002), 49-58, nlin.SI/0110027.
  19. Nijhoff F.W., Atkinson J., Hietarinta J., Soliton solutions for ABS lattice equations. I. Cauchy matrix approach, J. Phys. A: Math. Theor. 42 (2009), 404005, 34 pages, arXiv:0902.4873.
  20. Nijhoff F.W., Walker A.J., The discrete and continuous Painlevé VI hierarchy and the Garnier systems, Glasg. Math. J. 43A (2001), 109-123, nlin.SI/0001054.
  21. Shi Y., Zhang D.-J., Rational solutions of the H3 and Q1 models in the ABS lattice list, SIGMA 7 (2011), 046, 11 pages, arXiv:1105.1583.
  22. Zhang D.-J., Hietarinta J., Generalized solutions for the H1 model in ABS list of lattice equations, in Nonlinear and Modern Mathematical Physics, AIP Conf. Proc., Vol. 1212, Amer. Inst. Phys., Melville, NY, 2010, 154-161.

Previous article  Next article   Contents of Volume 13 (2017)