The Duals of the 2-Modular Irreducible Modules of the Alternating Groups

John MURRAY

Department of Mathematics & Statistics, Maynooth University, Co. Kildare, Ireland E-mail: John.Murray@mu.ie

Received January 04, 2018, in final form April 04, 2018; Published online April 17, 2018 https://doi.org/10.3842/SIGMA.2018.033

Abstract. We determine the dual modules of all irreducible modules of alternating groups over fields of characteristic 2.

 $Key\ words:$ symmetric group; alternating group; dual module; irreducible module; characteristic 2

2010 Mathematics Subject Classification: 20C30

1 Introduction and statement of the result

Let S_n be the symmetric group of degree $n \ge 1$ and let k be a field of characteristic p > 0. In [7, Theorem 11.5] G. James constructed all irreducible kS_n -modules D^{λ} where λ ranges over the p-regular partitions of n. Here a partition is p-regular if each of its parts occurs with multiplicity less than p.

As the alternating group \mathcal{A}_n has index 2 in \mathcal{S}_n , the restriction $D^{\lambda} \downarrow_{\mathcal{A}_n}$ is either irreducible or splits as a direct sum of two non-isomorphic irreducible $k\mathcal{A}_n$ -modules. Moreover, every irreducible $k\mathcal{A}_n$ -module is a direct summand of some $D^{\lambda} \downarrow_{\mathcal{A}_n}$.

Henceforth we will assume, unless stated otherwise, that k is a field of characteristic 2 which is a splitting field for the alternating group \mathcal{A}_n . For this, it suffices that k contains the finite field \mathbb{F}_4 . D. Benson [1] has classified all irreducible $k\mathcal{A}_n$ -modules:

Proposition 1.1. Let $\lambda = (\lambda_1 > \lambda_2 > \cdots > \lambda_{2s-1} > \lambda_{2s} \ge 0)$ be a strict partition of n. Then $D^{\lambda} \downarrow_{\mathcal{A}_n}$ is reducible if and only if

- (i) $\lambda_{2j-1} \lambda_{2j} = 1$ or 2, for j = 1, ..., s, and
- (*ii*) $\lambda_{2j-1} + \lambda_{2j} \not\equiv 2 \pmod{4}$, for $j = 1, \dots, s$.

In this note we determine the dual of each irreducible $k\mathcal{A}_n$ -module. Now $D^{\lambda}\downarrow_{\mathcal{A}_n}$ is a self-dual $k\mathcal{A}_n$ -module, as D^{λ} is a self-dual $k\mathcal{S}_n$ -module. So we only need to determine the dual of an irreducible $k\mathcal{A}_n$ -module which is a direct summand of $D^{\lambda}\downarrow_{\mathcal{A}_n}$, when this module is reducible.

Theorem 1.2. Let λ be a strict partition of n such that $D^{\lambda} \downarrow_{\mathcal{A}_n}$ is reducible. Then the two irreducible direct summands of $D^{\lambda} \downarrow_{\mathcal{A}_n}$ are self-dual if $\sum_{i=1}^s \lambda_{2i}$ is even and are dual to each other

if
$$\sum_{j=1}^{s} \lambda_{2j}$$
 is odd.

This paper is a contribution to the Special Issue on the Representation Theory of the Symmetric Groups and Related Topics. The full collection is available at https://www.emis.de/journals/SIGMA/symmetric-groups-2018.html

For example $D^{(7,5,1)}\downarrow_{\mathcal{A}_{13}} \cong S \oplus S^*$, for a non self-dual irreducible $k\mathcal{A}_{13}$ -module S, and $D^{(5,4,3,1)}\downarrow_{\mathcal{A}_{13}}$ decomposes similarly. On the other hand $D^{(7,6)}\downarrow_{\mathcal{A}_{13}} \cong S_1 \oplus S_2$ where S_1 and S_2 are irreducible and self-dual.

In order to prove Theorem 1.2, we use the following elementary result, which requires the assumption that k has characteristic 2:

Lemma 1.3. Let G be a finite group and let M be a semisimple kG-module which affords a non-degenerate G-invariant symmetric bilinear form B. Suppose that $B(tm, m) \neq 0$, for some involution $t \in G$ and some $m \in M$. Then M has a self-dual irreducible direct summand.

Proof. We have $M = \bigoplus_{i=1}^{n} M_i$, for some $n \ge 1$ and irreducible kG-modules M_1, \ldots, M_n . Write $m = \sum m_i$, with $m_i \in M_i$, for all *i*. Then

$$B(tm,m) = \sum_{1 \le i \le n} B(tm_i, m_i) + \sum_{1 \le i < j \le n}^n \left(B(tm_i, m_j) + B(tm_j, m_i) \right)$$

= $\sum_{1 \le i \le n} B(tm_i, m_i).$

The last equality follows from the fact that char(k) = 2 and

$$B(tm_i, m_j) = B(m_i, t^{-1}m_j) = B(m_i, tm_j) = B(tm_j, m_i).$$

Without loss of generality $B(tm_1, m_1) \neq 0$. Then B restricts to a non-zero G-invariant symmetric bilinear form B_1 on M_1 . As M_1 is irreducible, B_1 is non-degenerate. So M_1 is isomorphic to its kG-dual M_1^* .

2 Known results on the symmetric and alternating groups

2.1 The irreducible modules of the symmetric groups

We use the ideas and notation of [7]. In particular for each partition λ of n, James defines the Young diagram $[\lambda]$ of λ , and the notions of a λ -tableau and a λ -tabloid.

Fix a λ -tableau x. So x is a filling of $[\lambda]$ with the symbols $\{1, \ldots, n\}$. The corresponding λ -tabloid is $\{x\} := \{\sigma(x) \mid \sigma \in R_x\}$, where R_x is the row stabilizer of x. We regard $\{x\}$ as an ordered set partition of $\{1, \ldots, n\}$. The \mathbb{Z} -span of the λ -tabloids forms the $\mathbb{Z}S_n$ -lattice M^{λ} , and the set of λ -tabloids is an S_n -invariant \mathbb{Z} -basis of M^{λ} .

Recall from [7, Section 4] that corresponding to each tableau x there is a polytabloid $e_x := \sum \operatorname{sgn}(\sigma) \{\sigma x\}$ in M^{λ} . Here σ ranges over the permutations in the column stabilizer C_x of the tableau x. The Specht lattice S^{λ} is defined to be the \mathbb{Z} -span of all λ -polytabloids. In particular S^{λ} is a $\mathbb{Z}S_n$ -sublattice of M^{λ} ; it has as \mathbb{Z} -basis the polytabloids corresponding to the standard λ -tableaux (i.e., the numbers increase from left-to-right along rows, and from top-to-bottom along columns).

Now James defines \langle , \rangle to be the symmetric bilinear form on M^{λ} which makes the tabloids into an orthonormal basis. As the tabloids are permuted by the action of S_n , it is clear that \langle , \rangle is S_n -invariant.

Suppose now that λ is a strict partition and consider the unique permutation $\tau \in R_x$ which reverses the order of the symbols in each row of the tableau x. In [7, Lemma 10.4] James shows that $\langle \tau e_x, e_x \rangle = 1$, as $\{x\}$ is the only tabloid common to e_x and $e_{\tau x}$ (in fact James proves that $\langle \tau e_x, e_x \rangle$ is coprime to p, if λ is p-regular, for some prime p). Set $J^{\lambda} := \{x \in S^{\lambda} | \langle x, y \rangle \in 2\mathbb{Z},$ for all $y \in S^{\lambda}\}$. Then $2S^{\lambda} \subseteq J^{\lambda}$ and it follows from [7, Theorem 4.9] that $D^{\lambda} := (S^{\lambda}/J^{\lambda}) \otimes_{\mathbb{F}_2} k$ is an absolutely irreducible kS_n -module, for any field k of characteristic 2.

2.2 The real 2-regular conjugacy classes of the alternating groups

A conjugacy class of a finite group G is said to be 2-regular if its elements have odd order. R. Brauer proved that the number of irreducible kG-modules equals the number of 2-regular conjugacy classes of G [4]. Now Brauer's permutation lemma holds for arbitrary fields [3, footnote 19]. So it is clear that the number of self-dual irreducible kG-modules equals the number of real 2-regular conjugacy classes of G.

We review some well known facts about the 2-regular conjugacy classes of the alternating group. See for example [8, Section 2.5].

Corresponding to each partition μ of n there is a conjugacy class C_{μ} of S_n ; its elements consist of all permutations of n whose orbits on $\{1, \ldots, n\}$ have sizes $\{\mu_1, \ldots, \mu_\ell\}$ (as multiset). So C_{μ} is 2-regular if and only if each μ_i is odd.

Let μ be a partition of n into odd parts. Then $C_{\mu} \subseteq \mathcal{A}_n$. If μ has repeated parts then C_{μ} is a conjugacy class of \mathcal{A}_n . As C_{μ} is closed under taking inverses, C_{μ} is a real conjugacy class of \mathcal{A}_n .

Now assume that μ has distinct parts. Then C_{μ} is a union of two conjugacy classes C_{μ}^{\pm} of \mathcal{A}_n . Set $m := \frac{n-\ell(\mu)}{2}$ and let $z \in C_{\mu}$. Then z is inverted by an involution $t \in \mathcal{S}_n$ of cycle type $(2^m, 1^{n-2m})$. Since $C_{\mathcal{S}_n}(z) \cong \prod \mathbb{Z}/\mu_j \mathbb{Z}$ is odd, t generates a Sylow 2-subgroup of the extended centralizer $C_{\mathcal{S}_n}^*(z)$ of z in \mathcal{S}_n . It follows that z is conjugate to z^{-1} in \mathcal{A}_n if and only if $t \in \mathcal{A}_n$. This shows that C_{μ}^{\pm} are real classes of \mathcal{A}_n if and only if $\frac{n-\ell(\mu)}{2}$ is even. This and the discussion above shows:

Lemma 2.1. The number of self-dual irreducible kA_n -modules equals the number of non-strict odd partitions of n plus twice the number of strict odd partitions μ of n for which $\frac{n-\ell(\mu)}{2}$ is even.

3 Bressoud's bijection

We need a special case of a partition identity of I. Schur [9]. This was already used by Benson in his proof of Proposition 1.1:

Proposition 3.1 (Schur, 1926). The number of strict partitions of n into odd parts equals the number of strict partitions of n into parts congruent to $0, \pm 1 \pmod{4}$ where consecutive parts differ by at least 4 and consecutive even parts differ by at least 8.

D. Bressoud [5] has constructed a bijection between the relevant sets of partitions. We describe a simplified version of this bijection.

Let $\mu = (\mu_1 > \mu_2 > \cdots > \mu_\ell)$ be a strict partition of n whose parts are all odd. We subdivide μ into 'blocks' of at most two parts, working recursively from largest to smallest parts. Let $j \ge 1$ and suppose that $\mu_1, \mu_2, \ldots, \mu_{j-1}$ have already been assigned to blocks. We form the block $\{\mu_j, \mu_{j+1}\}$ if $\mu_j = \mu_{j+1} + 2$, and the block $\{\mu_j\}$ otherwise (if $\mu_j \ge \mu_{j+1} + 4$). Let s be the number of resulting blocks of μ .

Next we form the sequence of positive integers $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_s)$, where σ_j is the sum of the parts in the *j*-th block of μ . Then the σ_j are distinct, as the odd parts form a decreasing sequence, with minimal difference 4, and the even parts form a decreasing sequence, with minimal difference 8. Moreover, each even σ_j is the sum of a pair of consecutive odd integers. So $\sigma_j \neq 2 \pmod{4}$, for all j > 0.

We get a composition ζ of n + 2s(s-1) by defining

$$\zeta_1 = \sigma_1, \ \zeta_2 = \sigma_2 + 4, \ \dots, \ \zeta_s = \sigma_s + 4(s-1).$$

The even ζ_j form a decreasing sequence, with minimal difference 4, and the odd ζ_j form a weakly decreasing sequence ($\zeta_j = \zeta_{j+1}$ if and only if ζ_j , ζ_{j+1} represent two singleton blocks $\{2k-1\}$ and $\{2k-5\}$ of μ , for some $k \ge 0$).

Choose a permutation τ such that $\zeta_{\tau 1} \geq \zeta_{\tau 2} \geq \cdots \geq \zeta_{\tau s}$. Then we get a strict partition γ of n by defining

$$\gamma_1 = \zeta_{\tau 1}, \ \gamma_2 = \zeta_{\tau 2} - 4, \ \dots, \ \gamma_s = \zeta_{\tau s} - 4(s-1).$$

By construction, the minimal difference between the parts of γ is 4 and the minimal difference between the even parts of γ is 8. Moreover, $\gamma_j \equiv \zeta_{\tau j} \pmod{4}$. So $\gamma_j \not\equiv 2 \pmod{4}$. Then $\mu \to \gamma$ is Bressoud's bijection.

Finally form a strict partition λ of n which has 2s - 1 or 2s parts, by defining

$$(\lambda_{2j-1}, \lambda_{2j}) = \begin{cases} \left(\frac{\gamma_j}{2} + 1, \frac{\gamma_j}{2} - 1\right), & \text{if } \gamma_j \text{ is even or} \\ \left(\frac{\gamma_j + 1}{2}, \frac{\gamma_j - 1}{2}\right), & \text{if } \gamma_j \text{ is odd.} \end{cases}$$

Then λ satisfies the constraints (i) and (ii) of Proposition 1.1. Conversely, it is easy to see that if λ satisfies these constraints, then λ is the image of some strict odd partition μ of n under the above sequence of operations.

Lemma 3.2. Let μ be a strict-odd partition of n and let λ be the strict partition of n constructed from μ as above. Then $\frac{n-\ell(\mu)}{2} = \sum \lambda_{2j}$.

Proof. Each pair of consecutive parts λ_{2j-1} , λ_{2j} of λ corresponds to a block \mathcal{B} of μ . Moreover by our description of Bressoud's bijection, there are integers q_1, \ldots, q_s , with $\sum q_j = 0$ such that

$$(\lambda_{2j-1} + 2q_j, \lambda_{2j} + 2q_j) = \begin{cases} \left(\frac{\mu_i + 1}{2}, \frac{\mu_i - 1}{2}\right), & \text{if } \mathcal{B} = \{\mu_i\}, \\ (\mu_i, \mu_{i+1}), & \text{if } \mathcal{B} = \{\mu_i, \mu_{i+1}\} \end{cases}$$

In case $\mathcal{B} = \{\mu_i, \mu_{i+1}\}$, we have $\mu_i = \mu_{i+1} + 2$ and thus $\frac{\mu_i - 1}{2} + \frac{\mu_{i+1} - 1}{2} = \lambda_{2j} + 2q_j$. We conclude that

$$\frac{n-\ell(\mu)}{2} = \sum_{i=1}^{\ell(\mu)} \frac{\mu_i - 1}{2} = \sum_{j=1}^s (\lambda_{2j} + 2q_j) = \sum_{j=1}^s \lambda_{2j}.$$

4 Proof of Theorem 1.2

Let D(n) be the set of strict partitions of n and let S(n) be the set of strict partitions of n which satisfy conditions (i) and (ii) in Proposition 1.1. So there are $2|S(n)| + |D(n) \setminus S(n)|$ irreducible $k\mathcal{A}_n$ -modules.

Next set $S(n)^+ := \{\lambda \in S(n) \mid \sum \lambda_{2j} \text{ is even}\}$. Then it follows from Lemmas 2.1 and 3.2 that the number of self-dual irreducible $k\mathcal{A}_n$ -modules equals $2|S(n)^+| + |D(n) \setminus S(n)|$. Now $D^{\lambda} \downarrow_{\mathcal{A}_n}$ is an irreducible self-dual $k\mathcal{A}_n$ -module, for $\lambda \in D(n) \setminus S(n)$. So we can prove Theorem 1.2 by showing that the irreducible direct summands of $D^{\lambda} \downarrow_{\mathcal{A}_n}$ are self-dual for all $\lambda \in S(n)^+$.

Suppose then that $\lambda \in S(n)^+$. Let $\tau \in S_n$ be the permutation which reverses each row of a λ -tableau, as discussed in Section 2.1. We claim that $\tau \in \mathcal{A}_n$. For τ is a product of $\sum_{i=1}^{2s} \lfloor \frac{\lambda_j}{2} \rfloor$ commuting transpositions. Now $\lfloor \frac{\lambda_{2j-1}}{2} \rfloor + \lfloor \frac{\lambda_{2j}}{2} \rfloor = \lambda_{2j}$, as $\lambda_{2j-1} - \lambda_{2j} = 1$, or $\lambda_{2j-1} - \lambda_{2j} = 2$ and both λ_{2j-1} and λ_{2j} are odd. So $\sum_{i=1}^{2s} \lfloor \frac{\lambda_i}{2} \rfloor = \sum_{j=1}^{s} \lambda_{2j}$ is even. This proves the claim.

Since D^{λ} is irreducible and the form \langle , \rangle is non-zero, \langle , \rangle is non-degenerate on D^{λ} . Write $D^{\lambda}\downarrow_{\mathcal{A}_n} = S_1 \oplus S_2$, where S_1 and S_2 are non-isomorphic irreducible modules. As $\tau \in \mathcal{A}_n$, it follows from Lemma 1.3 that we may assume that S_1 is self-dual. Now $S_2^* \not\cong S_1^* \cong S_1$ and S_2^* is isomorphic to a direct summand of $D^{\lambda}\downarrow_{\mathcal{A}_n}$. So S_2 is also self-dual. This completes the proof of the theorem.

5 Irreducible modules of alternating groups over fields of odd characteristic

We now comment briefly on what happens when k is a splitting field for \mathcal{A}_n which has odd characteristic p. Let sgn be the sign representation of kS_n . So sgn is 1-dimensional but nontrivial. G. Mullineux defined a bijection $\lambda \to \lambda^M$ on the p-regular partitions of n and conjectured that $D^{\lambda} \otimes \text{sgn} = D^{\lambda^M}$ for all p-regular partitions λ of n. This was only proved in the 1990's by Kleshchev and Ford-Kleshchev. See [6] for details.

Now $D^{\lambda} \downarrow_{\mathcal{A}_n} \cong D^{\lambda^M} \downarrow_{\mathcal{A}_n}$, and $D^{\lambda} \downarrow_{\mathcal{A}_n}$ is irreducible if and only if $\lambda \neq \lambda^M$ See [2] for details. Moreover D^{λ} and D^{λ^M} are duals of each other, by [7, Theorem 6.6]. So $D^{\lambda} \downarrow_{\mathcal{A}_n}$ is self-dual, if $\lambda \neq \lambda^M$. However when $\lambda = \lambda^M$, we do not know how to determine when the two irreducible direct summands of $D^{\lambda} \downarrow_{\mathcal{A}_n}$ are self-dual.

Acknowledgement

D. Benson told me that it was an open problem to determine the self-dual irreducible $k\mathcal{A}_n$ -modules. G.E. Andrews directed me to Bressoud's paper [5]. We also thank the anonymous referees for their comments, which helped to improve the clarity of this paper.

References

- [1] Benson D., Spin modules for symmetric groups, J. London Math. Soc. 38 (1988), 250–262.
- [2] Bessenrodt C., On the representation theory of alternating groups, Algebra Colloq. 10 (2003), 241–250.
- [3] Brauer R., On the connection between the ordinary and the modular characters of groups of finite order, Ann. of Math. 42 (1941), 926–935.
- [4] Brauer R., Nesbitt C., On the modular characters of groups, Ann. of Math. 42 (1941), 556–590.
- [5] Bressoud D.M., A combinatorial proof of Schur's 1926 partition theorem, *Proc. Amer. Math. Soc.* 79 (1980), 338–340.
- [6] Ford B., Kleshchev A.S., A proof of the Mullineux conjecture, Math. Z. 226 (1997), 267–308.
- [7] James G.D., The representation theory of the symmetric groups, *Lecture Notes in Math.*, Vol. 682, Springer, Berlin, 1978.
- [8] James G.D., Kerber A., The representation theory of the symmetric group, *Encyclopedia of Mathematics and its Applications*, Vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981.
- Schur I., Zur additiven Zahlentheorie, Sitzungsber. Preuß. Akad. Wiss. Phys.-Math. Kl. (1926), 488–495, Reprinted in Schur I., Gesammelte Abhandlungen, Band III, Springer-Verlag, Berlin – New York, 1973, 43–50.