Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 14 (2018), 035, 13 pages      arXiv:1707.05216      https://doi.org/10.3842/SIGMA.2018.035

On Basic Fourier-Bessel Expansions

José Luis Cardoso
Mathematics Department, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal

Received September 27, 2017, in final form April 11, 2018; Published online April 17, 2018

Abstract
When dealing with Fourier expansions using the third Jackson (also known as Hahn-Exton) $q$-Bessel function, the corresponding positive zeros $j_{k\nu}$ and the ''shifted'' zeros, $qj_{k\nu}$, among others, play an essential role. Mixing classical analysis with $q$-analysis we were able to prove asymptotic relations between those zeros and the ''shifted'' ones, as well as the asymptotic behavior of the third Jackson $q$-Bessel function when computed on the ''shifted'' zeros. A version of a $q$-analogue of the Riemann-Lebesgue theorem within the scope of basic Fourier-Bessel expansions is also exhibited.

Key words: third Jackson $q$-Bessel function; Hahn-Exton $q$-Bessel function; basic Fourier-Bessel expansions; basic hypergeometric function; asymptotic behavior; Riemann-Lebesgue theorem.

pdf (393 kb)   tex (19 kb)

References

  1. Abreu L.D., Completeness, special functions and uncertainty principles over $q$-linear grids, J. Phys. A: Math. Gen. 39 (2006), 14567-14580, math.CA/0602440.
  2. Abreu L.D., Functions $q$-orthogonal with respect to their own zeros, Proc. Amer. Math. Soc. 134 (2006), 2695-2701.
  3. Abreu L.D., Bustoz J., On the completeness of sets of $q$-Bessel functions $J_\nu^{(3)}(x;q)$, in Theory and Applications of Special Functions, Dev. Math., Vol. 13, Springer, New York, 2005, 29-38.
  4. Abreu L.D., Bustoz J., Cardoso J.L., The roots of the third Jackson $q$-Bessel function, Int. J. Math. Math. Sci. (2003), 4241-4248.
  5. Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
  6. Annaby M.H., $q$-type sampling theorems, Results Math. 44 (2003), 214-225.
  7. Annaby M.H., Mansour Z.S., On the zeros of the second and third Jackson $q$-Bessel functions and their associated $q$-Hankel transforms, Math. Proc. Cambridge Philos. Soc. 147 (2009), 47-67.
  8. Bettaibi N., Bouzeffour F., Ben Elmonser H., Binous W., Elements of harmonic analysis related to the third basic zero order Bessel function, J. Math. Anal. Appl. 342 (2008), 1203-1219.
  9. Bustoz J., Cardoso J.L., Basic analog of Fourier series on a $q$-linear grid, J. Approx. Theory 112 (2001), 134-157.
  10. Bustoz J., Suslov S.K., Basic analog of Fourier series on a $q$-quadratic grid, Methods Appl. Anal. 5 (1998), 1-38, math.CA/9706216.
  11. Cardoso J.L., Basic Fourier series in a $q$-linear grid: convergence theorems, J. Math. Anal. Appl. 323 (2006), 313-330.
  12. Cardoso J.L., Basic Fourier series: convergence on and outside the $q$-linear grid, J. Fourier Anal. Appl. 17 (2011), 96-114, math.CA/0605764.
  13. Cardoso J.L., A few properties of the third Jackson $q$-Bessel function, Anal. Math. 42 (2016), 323-337.
  14. Cardoso J.L., Petronilho J., Variations around Jackson's quantum operator, Methods Appl. Anal. 22 (2015), 343-358.
  15. Cieśliński J.L., Improved $q$-exponential and $q$-trigonometric functions, Appl. Math. Lett. 24 (2011), 2110-2114, arXiv:1006.5652.
  16. Elmonser H., Sellami M., Fitouhi A., Inequalities related to the third Jackson $q$-Bessel function of order zero, J. Inequal. Appl. 2013 (2013), 2013:289, 22 pages.
  17. Exton H., A basic analogue of the Bessel-Clifford equation, J\ n\=an\=abha 8 (1978), 49-56.
  18. Exton H., $q$-hypergeometric functions and applications, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, Halsted Press, New York, 1983.
  19. Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge, 1990.
  20. Hardy G.H., Notes on special systems of orthogonal functions (II): on functions orthogonal with respect to their own zeros, J. London Math. Soc. 14 (1939), 37-44.
  21. Hayman W.K., On the zeros of a $q$-Bessel function, in Complex analysis and dynamical systems II, Contemp. Math., Vol. 382, Amer. Math. Soc., Providence, RI, 2005, 205-216.
  22. Koelink H.T., Swarttouw R.F., On the zeros of the Hahn-Exton $q$-Bessel function and associated $q$-Lommel polynomials, J. Math. Anal. Appl. 186 (1994), 690-710.
  23. Koornwinder T.H., Swarttouw R.F., On $q$-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333 (1992), 445-461.
  24. Olde Daalhuis A.B., Asymptotic expansions for $q$-gamma, $q$-exponential, and $q$-Bessel functions, J. Math. Anal. Appl. 186 (1994), 896-913.
  25. Suslov S.K., ''Addition'' theorems for some $q$-exponential and $q$-trigonometric functions, Methods Appl. Anal. 4 (1997), 11-32.
  26. Suslov S.K., An introduction to basic Fourier series, Developments in Mathematics, Vol. 9, Kluwer Academic Publishers, Dordrecht, 2003.
  27. Swarttouw R.F., The Hahn-Exton $q$-Bessel function, Ph.D. Thesis, Technische Universiteit Delft, 1992.
  28. Štampach F., Nevanlinna extremal measures for polynomials related to $q^{-1}$-Fibonacci polynomials, Adv. in Appl. Math. 78 (2016), 56-75.
  29. Štampach F., Štovíček P., The Nevanlinna parametrization for $q$-Lommel polynomials in the indeterminate case, J. Approx. Theory 201 (2016), 48-72, arXiv:1407.0217.
  30. Watson G.N., A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, The Macmillan Company, New York, 1944.
  31. Wilcox H.J., Myers D.L., An introduction to Lebesgue integration and Fourier series, Dover Publications, Inc., New York, 1994.

Previous article  Next article   Contents of Volume 14 (2018)