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Abstract. In this article we introduce the notion of a ‘good model’ in order to study
the higher obstructions of complex supermanifolds. We identify necessary and sufficient
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1 Introduction

Complex supermanifolds are spaces modelled on the data of a complex manifold X and holomor-
phic vector bundle E → X. Accordingly, we refer to the pair (X,E) as a ‘model’. Supermanifolds
can be either split or non-split. A splitting is a global isomorphism to some fixed model space.
Berezin in [2, pp. 163–169] observed that to any complex supermanifold, there will be associated
a hierarchy of inductively defined cohomology classes representing obstructions to the existence
of a splitting.1 These classes are called obstruction classes to splitting, or simply ‘obstructions’.
To any supermanifold one can always define its primary obstruction. If this vanishes, another
will appear in its place, sitting at a higher degree (in a suitable sense). Accordingly, these classes
are referred to as ‘higher obstructions’.

Donagi and Witten in [7] observed that the higher obstructions to splitting a supermanifold X
might fail to represent a genuine obstruction to splitting X. That is, it might well be that X
is split even if it supports an atlas in which a higher obstruction to the existence of a splitting
does not vanish. Such a phenomenon seems to be difficult to illustrate in practice. For instance,
it was shown by the author in [3] that certain deformations of super Riemann surfaces will not
support such atlases.

In this article we are motivated by the following question:

When does a higher obstruction to splitting X represent a genuine obstruction? (1.1)

Following the terminology of Donagi and Witten, if a higher obstruction is not genuine it is
referred to as exotic.

We summarise the main ideas and results in this article below.

1.1 Article summary

Obstruction classes are associated to supermanifolds, while obstruction spaces are associated to
models. In our attempt to address the question in (1.1), we will look to classify models (X,E).
In Definition 4.1 we introduce the notion of a ‘good model’ (X,E). This is a model on which
every higher obstruction for any supermanifold modelled on (X,E) will be genuine. Lemma 4.2

1In the terminology of Berezin, a splitting is referred to as a ‘retraction’ and a split supermanifold is referred
to as ‘simple’.
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clarifies the relation to the splitting problem. Our main result is Theorem 4.3 where we obtain
necessary and sufficient conditions for (X,E) to be a good model.

Section 5 is devoted to illustrations of models which are good and otherwise. We restrict our
attention to holomorphic vector bundles on Riemann surfaces. Over the projective line P1

C, when
the bundle has rank 3, a general characterisation of good models is derived in Theorem 5.3. It
is based essentially on an example by Donagi and Witten in [7]. This is then extended to higher
rank for a particular class of bundles on P1

C in Theorem 5.5.
The relation of higher obstructions to the splitting problem is subtle. In Appendix A we

submit a proof of the assertion in Theorem 2.12, being: if the primary obstruction of a super-
manifold X does not vanish, then X is non-split. There is no reason for the analogous statement
for higher obstructions to hold. It is for this reason that we introduce variants of splitting such
as ‘strong splitting’ and ‘weak non-splitting’ in Definition 3.6.

2 Complex supermanifolds

There are a number of different categories of supermanifolds and each comes with its own level of
subtlety as detailed in [1]. Those considered in this article fall under the umbrella of the ‘algebro-
geometric’ supermanifolds. These are defined as locally ringed spaces which are modelled on
a given space. Standard reference include [5, 10]. One can however bypass that language and
give an equivalent definition in terms of Čech cohomology sets. This is the approach we consider
here since it is more convenient for the purposes of this article.

2.1 Green’s automorphism groups

Let X be a complex manifold and E → X a holomorphic vector bundle. Throughout this article
we will refer to the pair (X,E) as a model. Denote by E the sheaf of local sections of E. We
can then form the sheaf of exterior algebras ∧•E on X.

Remark 2.1. Note that ∧•E is a sheaf of Z2-graded, supercommutative algebras. It also admits
a compatible Z-grading. We will however only consider automorphisms of ∧•E which preserve
the Z2-grading. The sheaf of such automorphisms will be denoted AutZ2(∧•E). However we will
suppress the subscript ‘Z2’ so as to avoid cumbersome notation and simply write Aut∧•E .

Let J(X,E) ⊂ ∧•E be the ideal generated by local sections of E . As an OX -module, J(X,E) =
⊕j>0 ∧j E . The following sheaf of non-abelian groups were defined by Green in [8]:

G(k)(X,E) :=
{
α ∈ Aut∧•E |α(u)− u ∈ J k(X,E)

}
. (2.1)

The Čech cohomology of X valued in G(k)(X,E) is of particular importance. We present now our
working definition of a supermanifold.

Definition 2.2. A supermanifold modelled on (X,E) is an element of the Čech cohomology set

Ȟ1
(
X,G(2)(X,E)

)
.

Generally Ȟ1(X,G), for G a sheaf of non-abelian groups on X, will be a pointed set. The
basepoint corresponds to the identity section of G. That is, under the inclusion {e} → G, for {e}
the trivial group, one obtains a map Ȟ1(X, {e})→ Ȟ1(X,G) of pointed sets. Now Ȟ1(X, {e})
is a one-point set. The basepoint in Ȟ1(X,G) is the image of this one-point set.

Definition 2.3. The basepoint in Ȟ1
(
X,G(2)(X,E)

)
is referred to as the split supermanifold model-

led on (X,E), or simply the split model.

The 1-cohomology set Ȟ1
(
X,G(2)(X,E)

)
will be referred to as the set of supermanifolds modelled

on (X,E).
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2.2 Isomorphisms of supermanifolds

We will make use of an early observation of Grothendieck in [9], discussed also in [4, p. 160],
regarding sheaves of non-abelian groups.

Theorem 2.4. Let X be a (paracompact) topological space and suppose the following is a short
exact sequence of sheaves of (not necessarily abelian) groups on X

e −→ A −→ B −→ C −→ e.

Then there exists a long exact sequence

e −→ H0(X,A) −→ H0(X,B) −→ H0(X,C) (2.2)

−→ Ȟ1(X,A) −→ Ȟ1(X,B) −→ Ȟ1(X,C), (2.3)

where the sequence in (2.2) is as groups whereas that in (2.3) is as pointed sets. Furthermore,
there exists an action of H0(X,C) on the set Ȟ1(X,A) such that the following diagram commutes

Ȟ1(X,A)

((

// Ȟ1(X,B)

Ȟ1(X,A)/H0(X,C).

66

We have so far defined supermanifolds as elements of a certain Čech cohomology set. As for
when two supermanifolds are isomorphic, this is defined as follows. Firstly observe for k = 2
the following short exact sequence of sheaves of groups

{e} −→ G(2)(X,E) −→ Aut∧•E −→ Aut E −→ {e}. (2.4)

Applying Theorem 2.4 gives a long exact sequence on cohomology. Consider the following piece

· · · −→ H0
(
X,Aut E

)
−→ Ȟ1

(
X,G(2)(X,E)

)
−→ Ȟ1

(
X,Aut∧•E

)
−→ · · · . (2.5)

Isomorphisms are defined as follows.

Definition 2.5. Two supermanifolds modelled on (X,E) are isomorphic if and only if their
image in Ȟ1

(
X,Aut∧•E

)
coincide.

Note, H0(X,Aut E) coincides with the group Aut(E) of global automorphisms. From the

latter part of Theorem 2.4 we have an action of the group Aut(E) on Ȟ1
(
X,G(2)(X,E)

)
and a well-

defined map from the orbits to Ȟ1
(
X,Aut∧•E

)
. This leads to the following result, first described

by Green in [8], on the general classification of supermanifolds. As per the definitions we have
made it follows from Theorem 2.4.

Theorem 2.6. There exists a bijective correspondence

{supermanifolds modelled on (X,E)}
up to isomorphism

∼=
Ȟ1
(
X,G(2)(X,E)

)
Aut(E)

.
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2.3 Obstruction theory

Recall that in Definition 2.3 we termed the basepoint in Ȟ1
(
X,G(2)(X,E)

)
the split model. With

the notion of isomorphism in Definition 2.5 we have:

Definition 2.7. A supermanifold if said to be split if and only if it is isomorphic to the split
model.

Obstruction theory for supermanifolds is concerned with the following question which is
referred to as the splitting problem:

Question 2.8. Given a supermanifold, how can one tell if it is split?

The splitting problem has a long history dating back to its original formulation by Berezin
in [2], framed using the term ‘retraction’. Examples of non-split supermanifolds were provided
by Berezin and contemporaries including Palamodov in [13], Green in [8] and Manin in [10].
Outside of mathematical curiosity however, the relevance of the splitting problem to theoretical
physics is not so clear. Recent advances by Donagi and Witten in [6, 7] serve to show that
non-splitting is a phenomenon that, at least in superstring theory, cannot be ignored. As our
starting point in addressing the splitting problem, we have the following result by Green in [8].

Proposition 2.9. For each k ≥ 2 there exists a short exact sequence of sheaves of groups

{e} −→ G(k+1)
(X,E) −→ G

(k)
(X,E) −→ Q

(k)
(X,E) −→ {e},

where the inclusion G(k+1)
(X,E) → G

(k)
(X,E) is normal and the factor Q(k)

(X,E) is abelian.

An important utility of Proposition 2.9 is in relating non-abelian cohomology to the coho-
mology of abelian sheaves. By Theorem 2.4 the short exact sequence in Proposition 2.9 will
induce, for each k, a long exact sequence on cohomology. The piece of most relevance for our
present purposes is

· · · −→ Ȟ1
(
X,G(k+1)

(X,E)

)
−→ Ȟ1

(
X,G(k)(X,E)

) ω∗−→ H1
(
X,Q(k)

(X,E)

)
, (2.6)

where in the latter we have used the identification of Čech cohomology and sheaf cohomology
for abelian sheaves.

Definition 2.10. To any model (X,E) we term the following important constructs for each
k ≥ 2:

• the sheaf Q(k)
(X,E) in Proposition 2.9 is referred to as the k-th obstruction sheaf ;

• the cohomology group H1
(
X,Q(k)

(X,E)

)
is referred to as the k-th obstruction space.

Inspecting (2.6) shows: there will exist a class in the second obstruction space associated to
any supermanifold X modelled on (X,E). We denote this class by ω∗(X).

Definition 2.11. Let X be a supermanifold modelled on (X,E). The class ω∗(X) in the second
obstruction space will be referred to as the primary obstruction to splitting X.

The terminology in the above definition is justified in the following classical result.

Theorem 2.12. Let X be a supermanifold. If its primary obstruction is non-vanishing, then X
is non-split.
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Proof. A proof of this theorem, stated using the notion of ‘retractibility,’ can be found in
[2, Theorem 4.6.2, p. 158]. For completeness, we present a proof based on our formulation of
isomorphisms of supermanifolds in Definition 2.5. As the proof is a little involved, we defer it
to Appendix A. �

Note that Theorem 2.12 above cleanly addresses the splitting problem, as posed in Ques-
tion 2.8. If the primary obstruction to splitting vanishes however, it far more subtle to adequately
address this problem.

3 Higher obstructions

3.1 Higher atlases

We are interested in the splitting problem in instances where the primary obstruction vanishes.
To that extent we begin with the following string of definitions.

Definition 3.1. An element in Ȟ1
(
X,G(k)(X,E)

)
is referred to as a (k− 1)-split atlas for a super-

manifold modelled on (X,E).

Definition 3.2. If a supermanifold X lies in the image of a (k − 1)-split atlas X(k), then X is

said to be (k − 1)-split. Conversely, the image of X(k) in Ȟ1
(
X,G(2)(X,E)

)
will be referred to as

the supermanifold associated to X(k).

Associated to any (k − 1)-split atlas will be a class in the k-th obstruction space, which is

the cohomology group H1
(
X,Q(k)

(X,E)

)
. Following Definition 2.11 we have:

Definition 3.3. The class in the k-th obstruction space associated to any (k − 1)-split atlas
will be referred to as the primary obstruction of the (k − 1)-split atlas.

Definition 3.4. If the primary obstruction of a (k−1)-split atlas X(k) is non-vanishing, then X(k)

is said to be obstructed.

The primary obstructions associated to (k−1)-split atlases are precisely the ‘higher’ obstruc-
tion classes associated to supermanifolds, as described by Berezin (see [2, p. 164]) and more
recently by Donagi and Witten in [7, p. 15]. In these texts the higher obstructions were defined
inductively as follows. Starting with a (k−1)-split atlas X(k) for a supermanifold X, one wants to
lift this to a k-split atlas for X. The obstruction to doing so is precisely the primary obstruction
of X(k). The primary obstruction of X(k) is the (k− 1)-th obstruction to splitting X. Hence, the
k-th obstruction to splitting X is defined if and only if the (k − 1)-th obstruction to splitting X
vanishes.

3.2 The weak splitting problem

To see the relation of higher obstructions to the splitting problem, note that the groups G(k)(X,E),

defined in (2.1), will be trivial for k sufficiently large. Indeed, if q denotes the rank of the

holomorphic vector bundle E → X, then J k(X,E) = (0) for all k > q. Hence G(k)(X,E) = {e} for all

k > q. This leads to the following result, which can also be found (albeit phrased differently)
in [2, 13]:

Theorem 3.5. A supermanifold X is split if and only if it admits a (k−1)-split atlas for k > q.

We present now a weaker notion of splitting for higher atlases suited to the purposes of this
article.
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Definition 3.6. A (k− 1)-split atlas X(k), k > 2, is said to be weakly non-split if its associated
supermanifold does not coincide with the basepoint. Otherwise, it is said to be strongly split.
We say X(k) is split or non-split if its associated supermanifold is split or non-split.

Note that non-split will imply weakly non-split but not necessarily conversely. Similarly,
strongly split will imply split, but not necessarily conversely. These notions lead to the following
variant of the splitting problem.

Question 3.7. When will a given (k − 1)-split atlas be weakly non-split?

We refer to our proof of Theorem 2.12 in Appendix A for an illustration of the subtleties
involved in resolving the splitting problem as outlined in Question 2.8.

3.3 Exotic atlases

In [7] it was observed that the map Ȟ1
(
X,G(k)(X,E)

)
→ Ȟ1

(
X,G(2)(X,E)

)
will generally fail to be

either injective or surjective. This means the existence of an obstructed, (k − 1)-split atlas
for a supermanifold X does not imply X will be non-split – in contrast with the k = 2 case
in Theorem 2.12. The following definition captures precisely those obstructed atlases which
represent split supermanifolds.

Definition 3.8. A (k − 1)-split atlas X(k), for k > 2, is said to be exotic if it entertains the
following two properties:

(i) X(k) is obstructed;

(ii) X(k) is strongly split.

With the sequence in Proposition 2.9 we can describe an exotic atlas more concretely. In-
specting the cohomology sequence in (2.6) one step to the left and for the sequence of groups

G(k−1)(X,E) → G
(k)
(X,E) → Q

(k−1)
(X,E) gives

· · · −→ H0
(
X,Q(k−1)

(X,E)

) α−→ Ȟ1
(
X,G(k)(X,E)

)
(3.1)

β−→ Ȟ1
(
X,G(k−1)(X,E)

)
−→ H1

(
X,Q(k−1)

(X,E)

)
. (3.2)

We prove:

Lemma 3.9. Let X(k) be an obstructed, (k − 1)-split atlas for k > 2. If there exists a non-zero

φ ∈ H0
(
X,Q(k−1)

(X,E)

)
such that α(φ) = X(k), then X(k) will be exotic.

Proof. Let X(k) be a (k − 1)-split atlas and suppose α(φ) = X(k), for some non-zero

φ ∈ H0
(
X,Q(k−1)

(X,E)

)
. In assuming X(k) is obstructed, it cannot represent the basepoint in

Ȟ1
(
X,G(k)(X,E)

)
. Now by exactness of the sequence in (3.1)–(3.2) note, under β, that X(k) will

map to the basepoint in Ȟ1
(
X,G(k−1)(X,E)

)
. Hence it will map to the basepoint in Ȟ1

(
X,G(2)(X,E)

)
.

Thus X(k) is obstructed and strongly split. Hence X(k) is exotic. �

Further assumptions on the global sections of the obstruction sheaves yield the following
sufficient conditions forbidding the existence of exotic atlases.

Proposition 3.10. Suppose that H0
(
X,Q(k)

(X,E)

)
= (0) for all k > 2. Then there do not exist

exotic atlases for any supermanifold modelled on (X,E).
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Proof. Suppose H0
(
X,Q(k)

(X,E)

)
= (0). Then from (3.1) we have the exact sequence of pointed

sets

{e} −→ Ȟ1
(
X,G(k+1)

(X,E)

) ιk+1
∗−→ Ȟ1

(
X,G(k)(X,E)

)
. (3.3)

Unlike for rings or modules, an exact sequence as in (3.3) above need not imply ιk+1
∗ will be

injective as a map of sets. But for X(k+1) ∈ Ȟ1
(
X,G(k+1)

(X,E)

)
we can nevertheless conclude the

following implication from exactness of (3.3):(
ιk+1
∗
(
X(k+1)

)
= {e}

)
=⇒

(
X(k+1) = {e}

)
. (3.4)

Assume now that H0
(
X,Q(k)

(X,E)

)
= (0) for all k. Then the implication (3.4) will hold for all k.

Let X(k+1) ∈ Ȟ1
(
X,G(k+1)

(X,E)

)
and suppose it maps to the basepoint in Ȟ1

(
X,G(2)(X,E)

)
. It will then

follow from (3.4) that X(k+1) = {e}. Hence X(k+1) cannot be obstructed and so, by definition,
cannot be exotic. �

Remark 3.11. For E → X a holomorphic, rank q vector bundle it is superfluous to assume

H0
(
X,Q(q)

(X,E)

)
= (0) in Proposition 3.10. This is because G(k)(X,E) = {e} for all k > q, meaning

we already have {e} → Ȟ1
(
X,G(q)(X,E)

)
→ Ȟ1

(
X,G(q−1)(X,E)

)
. That is, Proposition 3.10 will be valid

under the slightly weakened assumption that H0
(
X,Q(k)

(X,E)

)
= (0) for all 2 < k < q.

4 Good models

The existence of an exotic atlas depends essentially on the model (X,E). This leads to the
following definition.

Definition 4.1. A model (X,E) is said to be good if there do not exist any exotic atlases for
any supermanifold modelled on (X,E). Otherwise, it is said to support exotic atlases.

The prime motivation for introducing good models lies in the following result which follows
from the definitions.

Lemma 4.2. Let (X,E) be a good model. Then if a (k − 1)-split atlas modelled on (X,E) is
obstructed, it will be weakly non-split.

It is a meaningful endeavour to understand when a given model (X,E) will be good. In
Proposition 3.10 we found sufficient conditions in this vein. We arrive now at our main result
in this article, concerning both necessary and sufficient conditions for a model to be good.

Theorem 4.3. A model (X,E) will be a good if and only if taking global sections preserves
exactness of the sequence

{e} −→ G(k+1)
(X,E) −→ G

(k)
(X,E) −→ Q

(k)
(X,E) −→ {e}

for all k ≥ 2.

Proof. From the exact sequence of sheaves of groups G(k+1)
(X,E) → G

(k)
(X,E) → Q

(k)
(X,E) we have the

following piece of the long exact sequence on cohomology

{e} −→ H0
(
X,G(k+1)

(X,E)

)
−→ H0

(
X,G(k)(X,E)

)
−→ H0

(
X,Q(k)

(X,E)

)
α−→ Ȟ1

(
X,G(k+1)

(X,E)

)
−→ · · · . (4.1)
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In the direction (⇐) in the statement of this theorem, assume (4.1) is exact for all k ≥ 2.

Then either H0
(
X,Q(k)

(X,E)

)
= (0) for all k ≥ 2 or the map α is constant, sending every φ ∈

H0
(
X,Q(k−1)

(X,E)

)
to the basepoint {e}. In either case, the proof of Proposition 3.10 will apply

since we will obtain exact sequences in (3.3) for all k. In the direction (⇒), suppose (X,E) is
a good model. We will show that α is constant. Firstly, by definition we know that there will

not exist any exotic atlases. Therefore, for any φ ∈ H0
(
X,Q(k)

(X,E)

)
, the atlas α(φ) must be an

unobstructed, k-split atlas, for otherwise it would be exotic by Lemma 3.9. Observe that as
a result we have the following lifting α̃ of α, represented by the dashed arrow

Ȟ1
(
X,G(k+2)

(X,E)

)
�� ''

H0
(
X,Q(k)

(X,E)

)
α̃

66

α // Ȟ1
(
X,G(k+1)

(X,E)

)
ω∗
��

// Ȟ1
(
X,G(k)(X,E)

)

H1
(
X,Q(k+1)

(X,E)

)
.

(4.2)

The lifting α̃ exists since the vertical maps in (4.2) are exact and unobstructedness of α(φ)
means ω∗

(
α(φ)

)
= 0. Hence from φ we obtain a (k + 1)-split atlas α̃(φ). We claim that α̃(φ)

is also unobstructed. To see this note that (4.2) will commute and so α̃(φ) will map to the

basepoint in Ȟ1
(
X,G(k)(X,E)

)
. As such it will map to the basepoint in Ȟ1

(
X,G(2)(X,E)

)
and so be

split. This means, if α̃(φ) were obstructed, it would be exotic, contradicting that (X,E) is
a good model. Hence α̃(φ) must be unobstructed. Applying this argument again to α̃(φ) will

show that α̃ will itself lift to some α̃′ valued in Ȟ1
(
X,G(k+3)

(X,E)

)
and that to φ will be associated

an unobstructed, (k+2)-split atlas. We can proceed inductively now and keep lifting the map α
to get unobstructed, k′-split atlases for any k′ > k, resulting in the commutative diagram

Ȟ1
(
X,G(k

′)
(X,E)

)
��

H0
(
X,Q(k)

(X,E)

)
α̃k′

77

α // Ȟ1
(
X,G(k+1)

(X,E)

)
.

(4.3)

Since G(k
′)

(X,E) is trivial for k′ sufficiently large, commutativity of (4.3) requires α map φ to the

basepoint {e} for all φ. Thus α is constant. This argument is independent of k ≥ 2 and depends
only on (X,E) being a good model. The theorem now follows. �

Remark 4.4. Concerning the diagram (4.2), it is argued in [2, Theorem 4.7.1, pp. 163–164]
and in [7, p. 16] that there will always exist a lift α̃ of α when k is odd.

5 Illustrations

To convince the reader that exotic atlases and good models exist we present some illustrations. It
will be convenient to firstly present the following more explicit characterisation of the obstruction
sheaves which we will make use of in our applications. A justification can be found in [8].

Lemma 5.1. To any model (X,E) there exists an isomorphism of sheaves

Q(k)
(X,E) =

{
∧kE ⊗ TX , k is even,

E∗ ⊗ ∧kE , k is odd.
(5.1)
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5.1 On Riemann surfaces

Let X be a complex manifold and E → X a holomorphic vector bundle of rank 3. Then

G(k)(X,E) = {e} for all k > 3. With the identifications of the obstruction sheaves in (5.1) we obtain

the following long exact sequence, corresponding to the more general case in (4.1)

{e} −→ H0
(
X,G(3)(X,E)

)
−→ H0

(
X,G(2)(X,E)

)
−→ H0

(
X,∧2E ⊗ TX

)
α−→ Ȟ1

(
X,G(3)(X,E)

)
−→ · · · . (5.2)

Theorem 4.3 says (X,E) will be a good model if and only if α in (5.2) vanishes. This is generally
a non-trivial condition to check. It will be true however if h0

(
X,∧2E ⊗ TX

)
= 0.2

Proposition 5.2. Let X be a Riemann surface of genus g and E → X a rank 3, holomor-
phic vector bundle. Suppose it splits into a sum of non-negative, holomorphic line bundles and
degE < 3g − 3. Then (X,E) will be a good model.

Proof. It suffices to show h0
(
X,∧2E ⊗ TX

)
= 0. Let X be a genus g Riemann surface. Assu-

ming E is holomorphically split we can write E = Ld1 ⊕ Ld2 ⊕ Ld3 , for Ldi → X a line bundle
on X of degree di. If Ldi is non-negative, then di ≥ 0. Note that ∧2E = Ld1+d2⊕Ld1+d3⊕Ld2+d3 ;
and deg∧2E = 2 degE = 2(d1 + d2 + d3). With deg TX = 2 − 2g and the above description
of ∧2E we see that h0

(
∧2 E ⊗ TX

)
= 0 when

d1 + d2 < 2g − 2, d1 + d3 < 2g − 2 and d2 + d3 < 2g − 2.

These conditions are equivalent to degE < 3g − 3 when di ≥ 0 for each i. �

5.2 In genus zero

We can be considerably more specific on the projective line.

Theorem 5.3. Let E = Ld1⊕Ld2⊕Ld3 be a rank 3, holomorphic vector bundle on P1
C, where Ldi

is a line bundle on P1
C of degree di. Then (P1

C, E) will be a good model if and only if at least one
of di 6= −1.

Before giving a proof of Theorem 5.3 we provide some preliminary remarks about exotic
atlases. Regarding their existence, this was addressed in [7, pp. 15–16] for the present situation,
i.e., when E has rank 3. We comment on this here, but in a little more generality. Let E → X

be a holomorphic vector bundle of rank q. Note that G(k)(X,E) = {e} for all k > q. Hence

G(q)(X,E)
∼= Q(q)

(X,E) which implies Ȟ1
(
X,G(q)(X,E)

) ∼→ H1
(
X,Q(q)

(X,E)

)
. With the exact sequence

· · · −→ H0
(
X,Q(q−1)

(X,E)

)
−→ Ȟ1

(
X,G(q)(X,E)

)
−→ Ȟ1

(
X,G(q−1)(X,E)

)
−→ · · ·

we deduce:

Lemma 5.4. Let E → X be a rank q, holomorphic vector bundle. Any (q − 1)-split atlas in

Ȟ1
(
X,G(q)(X,E)

)
in the image of a non-trivial section in H0

(
X,Q(q−1)

(X,E)

)
will be obstructed and

hence, by Lemma 3.9, exotic.

We now present a proof of Theorem 5.3.

2For any abelian sheaf A on X we denote hi(X,A) := dimHi(X,A).
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Proof of Theorem 5.3. Write E = O(d1) ⊕ O(d2) ⊕ O(d3), where E denotes the sheaf of
sections of E. Then

Q(2)

(P1
C,E)

= O(d1 + d2 + 2)⊕O(d1 + d3 + 2)⊕O(d2 + d3 + 2) and

Q(3)

(P1
C,E)

= O(d1 + d2)⊕O(d1 + d3)⊕O(d2 + d3).

In order to construct an exotic atlas for a supermanifold modelled on
(
P1
C, E

)
it will be necessary

for

(i) h0
(
Q(2)

(P1
C,E)

)
6= 0 (by Proposition 3.10 and Remark 3.11) and

(ii) h1
(
Q(3)

(P1
C,E)

)
6= 0 (since G(3)

(P1
C,E)
∼= Q(3)

(P1
C,E)

here).

From Bott’s formula on the dimension of the cohomology of line bundles on projective space,3

both (i) and (ii) will be satisfied if and only if (d1, d2, d3) = (−1,−1,−1). Now in this case,
where (d1, d2, d3) = (−1,−1,−1), we have by Serre duality

H0
(
P1
C,Q

(2)

(P1
C,E)

) ∼= H1
(
P1
C,Q

(3)

(P1
C,E)

)
.

Upon observing H1
(
P1
C,Q

(3)

(P1
C,E)

) ∼= Ȟ1
(
P1
C,G

(3)

(P1
C,E)

)
, the theorem will then follow from Lem-

ma 5.4 applied to q = 3. �

We will now consider those bundles of higher rank which decompose into copies of a single line
bundle, i.e., E = ⊕qLd. As we will see, the case d = −1 will be similar to that in Theorem 5.3.

Theorem 5.5. Let E → P1
C be a rank q, holomorphic vector bundle. Suppose E = ⊕qLd where

Ld → P1
C is a line bundle of degree d. Then

(i) if d = −1 then
(
P1
C, E

)
will support exotic atlases;

(ii) if d < −1, then
(
P1
C, E

)
will be a good model.

Proof. Let O(d) denote the sheaf of sections of Ld so that E = ⊕qO(d). We begin by pro-

ving (ii). We have generally ∧kE = ⊕(qk)O(kd). As such the obstruction sheaves are given by

Q(k)

(P1
C,E)

=

{
⊕(qk)O(kd+ 2), k is even,

⊕k(
q
k)O

(
(k − 1)d

)
, k is odd.

(5.3)

Note that 2 ≤ k ≤ q here. Evidently, if d < −1 the obstruction sheaves will be sums of line

bundles of negative degree. Hence H0
(
P1
C,Q

(k)

(P1
C,E)

)
= (0). Part (ii) then follows from Proposi-

tion 3.10. As for part (i), firstly note that

∧•E = ∧0E ⊕ ∧1E ⊕ ∧2E ⊕ · · · ⊕ ∧qE

= O(0)⊕
[
⊕q O(d)

]
⊕
[
⊕(q2) O(2d)

]
⊕ · · · ⊕ O(qd).

We haveAut E ⊂⊕q2O(0) andAut∧•E ⊂⊕0≤a≤b≤qO((b−a)d). Note in particular that b− a ≥ 0.

Regarding the sheaf G(k)
(P1

C,E)
observe that it can be realised as a subsheaf of ⊕0≤a<b≤qO((b−a)d)

where now b− a ≥ k − 1. Therefore if d < 0:

H0
(
P1
C,G

(k)

(P1
C,E)

)
= {1}, (5.4)

3See, e.g., [11, p. 4].
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for all k ≥ 2. Now if d = −1 then h0
(
P1
C,Q

(2)

(P1
C,E)

)
=
(
q
2

)
6= 0 from (5.3). Since H0

(
P1
C,G

(2)

(P1
C,E)

)
=

{e} from (5.4) we have the exact sequence

{1} −→ H0
(
P1
C,Q

(2)

(P1
C,E)

) α−→ Ȟ1
(
P1
C,G

(3)

(P1
C,E)

)
,

where α is the boundary map from (5.2). In particular α does not vanish and any atlas in its
image will be exotic. �

5.3 In genus one

Here we can relax some of conditions in Proposition 5.2, although we cannot be as general as in
the genus zero case.

Proposition 5.6. Let C be a Riemann surface of genus one and E → C a holomorphic, rank 3
vector bundle. Then (C,E) will be a good model when either:

(i) degQ(2)
(C,E) = h0

(
Q(2)

(C,E)

)
or

(ii) degQ(2)
(C,E) = −h1

(
Q(2)

(C,E)

)
.

Proof. In genus one note that TC = OC is a line bundle of degree zero. Hence we have

a natural isomorphism Q(2)
(C,E)

∼= Q(3)
(C,E). The proposition now follows from the Riemann–Roch

theorem. �

A Proof of Theorem 2.12

We will firstly present an erroneous proof as it will be instructive in illustrating the subtlety
involved in the splitting problem.

False proof. Let X be a supermanifold modelled on (X,E) and suppose its primary obstruc-

tion ω∗(X) does not vanish. The map ω∗ : Ȟ1
(
X,G(2)(X,E)

)
→ H1

(
X,Q(2)

(X,E)

)
is a map of pointed

sets, sending the basepoint {e} ∈ Ȟ1
(
X,G(2)(X,E)

)
to the basepoint 0 ∈ H1

(
X,Q(2)

(X,E)

)
. Since

ω∗(X) 6= 0, X cannot be split. �

The fault in the above reasoning lies in our failure to consider isomorphisms induced by the

global symmetries Aut(E) acting on Ȟ1
(
X,G(2)(X,E)

)
(cf. Definition 2.5 and Theorem 2.6). If

Aut(E) fixes the basepoint {e} then the above argument would be valid, but there is of course
no reason for it to fix the basepoint in general. Consider instead the following

· · · // Aut(E)
δ // Ȟ1

(
X,G(2)(X,E)

)
ω∗
��

// Ȟ1
(
X,Aut∧•E

)
// · · ·

H1
(
X,Q(2)

(X,E)

)
.

(A.1)

Since (A.1) is exact we have: if a supermanifold X is split, then X = δ(φ) for some φ ∈ Aut(E).
Observe that Theorem 2.12 will then follow from:

Proposition A.1. The composition of maps ω∗δ in (A.1) vanishes.

The proof we submit of Proposition A.1 is based on the discussion in [7, p. 16]. We will cite
the following result whose proof can be found in [12].
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Lemma A.2. Let (X,E) be a model. The subgroup C× · 1E < Aut(E) acts on the k-th obstruc-

tion space H1
(
X,Q(k)

(X,E)

)
by sending v 7→ λkv for any vector v ∈ H1

(
X,Q(k)

(X,E)

)
.

Proof of Proposition A.1. From Theorem 2.4 we know that Aut(E) will act on

Ȟ1
(
X,G(2)(X,E)

)
. Denote this action by ?. Our first claim is that the subgroup C× · 1E will act

trivially on the image of Aut(E). To see this, let (Ui → X) be an open cover and φ ∈ Aut(E).
If φ̃i ∈

(
Aut∧•E

)
(Ui) are local lifts of φi, then

δ(φ)ij = φ̃iφ̃
−1
j .

Now clearly any λ · 1E ∈ C× · 1E < Aut(E) will act by sending φi 7→ λφi. Hence,(
λ · 1E

)
? δ(φ)ij =

(
λφ̃i
)(
λ−1φ̃−1j

)
= φ̃iφ̃

−1
j = δ(φ)ij . (A.2)

The group Aut(E) will act on Ȟ1
(
X,G(2)(X,E)

)
and this action will induce an action on

H1
(
X,Q(2)

(X,E)

)
. The action of C× · 1E mentioned in Lemma A.2 is compatible with this in-

duced Aut(E) action. In particular we can conclude: for a supermanifold X ∈ Ȟ1
(
X,G(2)(X,E)

)
and any λ · 1E ∈ C× · 1E ,

ω∗
(
(λ · 1E) ? X

)
= λ2ω∗

(
X
)
. (A.3)

In comparing (A.2) and (A.3) we see that if X = δ(φ), we must have ω∗
(
X
)

= 0. This proves
Proposition A.1 from whence Theorem 2.12 follows. �

Acknowledgements

The author would like to acknowledge the helpful feedback of the anonymous referees.

References
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Birkhäuser Boston, Inc., Boston, MA, 2008.

[5] Deligne P., Morgan J.W., Notes on supersymmetry (following Joseph Bernstein), in Quantum Fields and
Strings: a Course for Mathematicians, Vols. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence,
RI, 1999, 41–97.

[6] Donagi R., Witten E., Super Atiyah classes and obstructions to splitting of supermoduli space, Pure Appl.
Math. Q. 9 (2013), 739–788, arXiv:1404.6257.

[7] Donagi R., Witten E., Supermoduli space is not projected, in String-Math 2012, Proc. Sympos. Pure Math.,
Vol. 90, Amer. Math. Soc., Providence, RI, 2015, 19–71, arXiv:1304.7798.

[8] Green P., On holomorphic graded manifolds, Proc. Amer. Math. Soc. 85 (1982), 587–590.

[9] Grothendieck A., A general theory of fibre spaces with structure sheaf, University of Kansas, 1995.

[10] Manin Yu.I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften,
Vol. 289, Springer-Verlag, Berlin, 1988.

[11] Okonek C., Schneider M., Spindler H., Vector bundles on complex projective spaces, Modern Birkhäuser
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