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Abstract. We discuss the formulation of classical field theoretical models on n-dimensional
noncommutative space-time defined by a generic associative star product. A simple pro-
cedure for deriving conservation laws is presented and applied to field theories in noncom-
mutative space-time to obtain local conservation laws (for the electric charge and for the
energy-momentum tensor of free fields) and more generally an energy-momentum balance
equation for interacting fields. For free field models an analogy with the damped harmonic
oscillator in classical mechanics is pointed out, which allows us to get a physical under-
standing for the obtained conservation laws. To conclude, the formulation of field theories

on curved noncommutative space is addressed.
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finished. His coauthors dedicate this paper to his memory with deep gratitude for his
enthusiastic collaboration and friendship as well as for the example he has given to
all of us over many years.

1 Introduction

Over the last twenty years a great amount of work has been devoted to the study of structural
aspects and phenomenological applications of field theories on the simplest quantized space,

namely the

Groenewold—Moyal (or #-deformed) space [61, 85], e.g., see [4, 9, 21, 62, 91, 103,

104, 108, 110, 111] and references therein for a review. On this space the theories are formu-
lated in terms of ordinary functions by means of a deformed associative product, the so-called
Groenewold—Moyal star product

(f*9)(@) =3 %% f(m)g(y)| . ie,  frg=[fg+ 3070, f0,9+0(0%). (1.1)
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Here, the noncommutativity parameters 0¥ = —@"* are real constants and expression (1.1)
implies that the space-time coordinates x* fulfill a Heisenberg-type algebra,

[xH *a¥] =t xa¥ — ¥ *at =107, (1.2)

One refers to this case as the canonical deformation. Quite generally, the interest in this and
more general deformed spaces was triggered by their link with quantum gravity, quantum geo-
metry, string theory and D-branes, matrix models, the quantum Hall effect as well as other
physical systems (see, e.g., [4, 9, 21, 41, 62, 67, 91, 103, 104, 108, 110, 111] and references
therein). Moreover, it was realized that quantum field theory is in some ways better behaved
on noncommutative space-time than in ordinary space-time, e.g., see [91] for an assessment.

In the present work, we are interested in classical field theories defined on a space-time
for which the noncommutativity parameters 0*” appearing in the algebra (1.2) are space-time
dependent. These models, which appear to be more natural from the point of view of gravity and
which may have some interesting physical applications, have been much less investigated in the
literature!. Our work is based to a large extent on the mathematical results [73, 75] obtained
by V.G. Kupriyanov (and his collaborators) and applied mostly in the context of quantum
mechanics on noncommutative space [57, 58, 72, 74, 76]. We should also mention the special
instances where the noncommutativity parameters are linear in the coordinates (the so-called
linear or Lie algebra case which is related to fuzzy spaces and k-deformations) and the case
where they are quadratic in the coordinates which is related to quantum groups, both cases
having been the subject of various studies in the literature — see the reviews mentioned above
as well as [76].

A basic issue in the construction of Lagrangian models in classical field theory consists in
the study of the underlying symmetries and of the conservation laws in differential or integral
form. These questions which are related to Noether’s first theorem have been investigated
in the case of constant noncommutativity parameters by numerous authors, e.g., see [8, 15,
55, 83, 88] and references therein. Already for this simplest instance of a noncommutative
space, technical complications arise, in particular for the energy-momentum tensor in gauge
field theories — see [8]. The main concern of the present work is to address these questions in
the simplest possible manner for a space-time with z-dependent noncommutativity, both for
free and interacting classical field theories. Thus, we formulate a simple and general procedure
for deriving local conservation laws (or balance equations) which is based on the equations
of motion and which follows the familiar line of reasoning in classical or quantum mechanics.
For bosonic and fermionic matter fields, we then derive the local form of charge conservation
laws and of energy-momentum conservation laws for free fields as well the energy-momentum
balance equation for interacting fields. For those models which have already been discussed in
the context of quantum mechanics [74] or of field theory on a space with a noncommutativity
of Lie algebra-type [76], we recover the same results.

The text is organized as follows. In Section 2, we present the set-up of noncommutative space-
time defined by a generic associative star product as well as the characteristics of the latter. In
Section 3, we discuss the formulation of classical field theory on such a space and we point out
an analogy of the free field models with the damped harmonic oscillator in classical mechanics.
In Section 4, we consider the derivation of conservation laws in non-relativistic classical and
quantum mechanics as a motivation for a quite simple derivation of local conservation laws in
relativistic field theory. This procedure (relying on the equations of motion) as well as the

'For different approaches to field theories on spaces with coordinate dependent noncommutativity in various
dimensions, we refer to the works [13, 14, 25, 39, 49, 53, 79, 97]. For instance, the authors of [53] applied Rieffel’s
deformation quantization theory to Euclidean R* with a topology R? x R?: This approach has the advantage of
being non-perturbative in (6*"), but it only works for a matrix (6*”(z)) whose canonical form solely involves two

non-vanishing entries 3% = —943 = 19(11, :Bz) where ¥ denotes an arbitrary smooth, positive, bounded function.
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properties of the star product then allow for a straightforward derivation of local conservation
laws in noncommutative space-time (along the lines followed by V.G. Kupriyanov for the Dirac
equation in noncommutative quantum mechanics). In Section 6, we address the formulation
of classical field theories on curved noncommutative space-time by generalizing the description
considered in flat space. More precisely, we follow the star product approach to gravity which
was recently put forward by M. Dobrski [44] and which appears to fit nicely into the framework
discussed in flat space-time. To conclude, we comment on the quantum theory in Section 7. The
aim of the appendices is to complement different parts of the text. In Appendix A, we outline the
passage from the operatorial approach to the star product formulation as well as the construction
of a closed star product. We have deferred to Appendix B several mathematical comments
on star products and on the deformed Leibniz rule, as well as on two-dimensional space-time.
Appendix C summarizes the Lagrangian and Hamiltonian formulations of the damped harmonic
oscillator in view of its similarities with free field theoretical models on noncommutative space-
time.

2 Noncommutative space

Operatorial approach: We consider a deformation of n-dimensional Minkowski space (with
metric signature (4, —,..., —)). More precisely, the space-time coordinates represent noncom-
muting variables Xn (operators on some Hilbert space) whose noncommutativity is described
by the relation

[(X*, X¥] =i (X), (2.1)

where 61" is antisymmetric in its indices. For a general operator function 61 which is given as a
power series in the variables Xe , an ordering prescription of operators must be defined, a natural
choice being Weyl’s symmetric ordering. The operator grv (X ) has a Weyl symbol [16, 60] whose
leading order [75] will be denoted by 0*¥(z). From the Jacobi identity for the algebra (2.1) it
follows [73, 75] that the antisymmetric field (6#) has to satisfy the Jacobi identity for the
Poisson bracket {f,g} = 0"0,,f0,g, i.e., the partial differential equations 0 = 0**09, 67+ cyclic
permutations of p, p, o (which we will refer to as the Poisson—Jacobi identity). Here and in
the following, the derivatives are supposed to act only on the first factor which follows, i.e.,
OufOvg = (0uf)(0vg).

In the present paper we do not follow the operatorial approach based on the commutation
relations (2.1), but rather the equivalent star product approach which we will outline in the sequel
(see [11, 42, 46, 70] for the pioneering work, [45, 107] for an introduction to the general theory,
and [13, 14, 25, 73, 75] for an explicit and constructive approach). However, the operatorial
approach is quite useful for describing some basic aspects and for a simple construction of the
star product as we outline in Appendix A.

Star product approach: An equivalent description of the deformed space above can be given
by passing (by virtue of an isomorphic map) from the noncommutative algebra generated by the
operators X* to the commutative, associative algebra C>°(R™) of smooth functions (depending
on real variables x*) equipped with an additional so-called star product = which is associative,

but noncommutative: The star-commutator is then given by
[2# % 2¥] = i0" (z), (2.2)

where the real-valued function 6 with §*” = —§"# is the afore-mentioned symbol of the ope-
rator 0" (X) which satisfies the Poisson-Jacobi identity. Relation (2.2) for the variables z* is
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satisfied if the ordinary product fg (of any two smooth functions f, g of the variables z#) is
deformed according to

frxg=fg+30"0,f0,9+ O(6?),  hence  [f*g]=1i0"0,f0,9+ O(6?). (2.3)

As is customary in the theory of formal star products or, more generally, in Gerstenhaber’s
theory of algebraic deformations [107], a constant real formal deformation parameter h can be
factored out of 0*¥ by writing 6*” = hO*” so that expression (2.3) may be viewed as a formal
power series in h. By a slight abuse of terminology, we refer to the order of i in the series
expansion as the order of 6.

The correspondence between the operator and star product formulations is such that we have
(in terms of the notation W[f] = f(X) for the operators)

WIf x g] = W[f] o Wlg], (2.4)

where o denotes the product of operators. The operator W[ fl1= f (X ) acts on the unit function 1
according to f (X )1 = f, hence relation (2.4) implies that its action on a smooth function g
is given by f (X ) g = f*xg. According to this equation, an explicit expression for f % g can
be determined perturbatively [75] by looking for an expansion of Xn (and thereby of the Weyl
ordered function f (X )) as a differential polynomial in the standard, commuting position ope-
rators X* and in 0, (see Appendix A): more precisely, one may easily check that the expansion
Xr = XF 4 $0179, + O(6?) (which is familiar from the definition of the Groenewold-Moyal
product) satisfies the commutation relation (2.1) and that equation f (X ) g = f x g yields the
expansion (2.3) to first order in . The expression that one finds [75] for the star product to
second order in 6 is given by

f *g = fg + %QNVaHfayg - %QPUQ#Vapaufaaayg
— L0P0,0m (8,0, £,g — 0, f0,009) + O(6°). (2.5)

This result (which is referred to as the Weyl star product [76]) coincides with the explicit
expression which has been given for R” by Kontsevich up to second order at the beginning
of his seminal article [70] (e.g., see [45] for a nice introductory review of Kontsevich’s work). For
constant noncommutativity parameters, the star product (2.5) reduces to the Groenewold—Moyal
star product at the given order. The first three terms may be referred to as the “Groenewold—
Moyal-like part” [65] since they have the same form as the Groenewold—Moyal star product up
to this order. Quite generally the terms of even order in 6 are symmetric with respect to the
exchange of the functions f and g while the odd order terms are antisymmetric [75, 76]. The
series (2.5) can be interpreted physically as the perturbative expansion of the path integral for
a non-linear sigma model for the world-sheet description of bosonic strings [27, 38, 65, 104].

Closed star product: For the formulation of quantum mechanics or field theory we are
interested in so-called closed star products [35], i.e., star products for which the integral of

a function f over R is the trace of the operator f(X):

Trf(X) —/ d"zw(z) f(z).

n

Here, the standard integration measure d"z has been modified? by a weight factor w so as to
ensure the cyclicity of the trace, i.e., the validity of the so-called closedness or closure relation

/nd"mw(f*g) = /]Rn d"zwfg. (2.6)

2This modification and the expression (2.9) below for w are natural for symplectic manifolds and have been
noted in the case of R™ by different authors [25, 48, 49, 97].
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More precisely, substitution of the expansion (2.5) into relation (2.6) and the assumption that f
and g are smooth functions of fast decay at infinity with respect to the considered integration
measure (so that all boundary terms in the integral vanish) yield

0= / d"zw(fxg— fg)=—3 / d"z8,, (w0 ) fO,9 + O(6?). (2.7)
n Rn
Since this condition has to hold for arbitrary functions f, g, we obtain the condition
Ou(wh") =0, ie., w0, 0" = —0,woH . (2.8)

This relation means that the tensor (6*") is divergenceless with respect to the integration mea-
sure wd"z. (We note that for a curved n-brane in a flat background space-time, the divergence
condition (2.8) admits the physical interpretation of a Born—Infeld equation of motion on the
brane [104].) Thus, for non-constant functions 8**, the factor w cannot be chosen to be a con-
stant. Given the noncommutativity parameters 6" (x), this partial differential equation deter-
mines the function w in terms of #”. By using the usual formula for the infinitesimal variation
of the determinant of a matrix as well as the Poisson—Jacobi identity, one can readily check that
a solution [14, 73, 74] of equation (2.8) is given as follows if the matrix (6*(x)) is invertible for
all z € R"™ (which requires n to be even):

w = (det(6")) "/, (2.9)

In this respect, we recall that the determinant of an invertible, real, antisymmetric matrix
© = (0") of even order has a strictly positive determinant; in fact [60], this determinant is the
square of the so-called Pfaffian of the matrix, det © = (Pf©)2.

If the rank of the matrix (6*”) is not even and maximal for all x € R", then one has to look
for the corresponding solutions of equation (2.8) (e.g., see [49] for the two-dimensional case).
In the following we will assume that the matrix (#*¥) is invertible whenever needed, the weight
function w being then given by expression (2.9). (The latter assumption is mainly made for
convenience: apart from Section 6 below, all we really need is the existence of a non-vanishing
weight factor w satisfying equation (2.8).) The quadratic terms in the closure relation (2.7) are
discussed in Appendix A and we will address them in equations (2.11), (2.12) below.

Some mathematical remarks: The antisymmetric tensor 0#" satisfying the Poisson—Jacobi
identity represents a Poisson tensor (also referred to as Poisson bivector field [107]) and rela-
tion (2.3) identifies the star-commutator as a deformation of the Poisson bracket. If we assume
that the matrix (##) is invertible at all points, then it admits an inverse matrix (wy,) = (6*)~1.
The latter matrix is non-degenerate, antisymmetric and, by virtue of the Poisson—Jacobi identity
for OM¥, its components satisfy the relation 0 = d,w,,,+ cyclic permutations of the indices. Thus
w = %wwdx“ A da” is a symplectic two-form and we have w = \/det(w,,). We note that the
latter factor is reminiscent of the density /g = \/det(g,,) which appears for the integration
on a Riemannian manifold with metric tensor (g, ). Indeed, the canonical volume form (or
so-called Liouville measure) on a symplectic manifold of dimension n = 2m reads [11, 46, 107]

av = migm — Pl(wy)d"z = 1 /det(wp)d"z = wd"z, (2.10)
where we did not spell out the exterior product symbols. For a symplectic manifold M, the
integral |’ v A"zwf of a function f: M — C with respect to the Liouville measure is also qualified
as a Poisson trace [107].

Concerning our considerations on star products, we emphasize that Minkowski space R is
considered (for n even) as a symplectic manifold or as a Poisson manifold rather than a sym-

plectic vector space [80] or a Poisson algebra [77] since the tensor (##¥) is not constant. Thus, in
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general (w,,,) and (0*”) cannot be cast into canonical form (Darboux or canonical coordinates)
by a linear change of coordinates: This contrasts the case of constant deformation parame-
ters (Groenewold—Moyal star product). As for the star products, they are to be viewed as
non-trivial associative deformations of the associative algebra C'°°(R™) [107]. For the case of
a general Poisson manifold M (generalizing M = R"™), relation (2.6) is known as the generalized
Connes—Flato-Sternheimer conjecture. In this respect we note that the authors of [48] have
shown that for any Poisson tensor which is divergenceless with respect to some volume form,
there exists a star product which satisfies (2.6).

Explicit expression of closed star product: Due to the non-trivial weight factor w which
has to be present in equation (2.6), the terms of order #? in the Weyl star product (2.5) do not
satisfy the closure relation. However, as pointed out in [73] and as outlined in Appendix A, one
can pass over to a gauge equivalent [70] star product «' which satisfies this relation to order §2.
The corresponding gauge transformation of the Weyl star product is given by

frxgr— f+ g=DYDf x Dyg), with D=1+ ;-0,(w9,0")0,0,, (2.11)

and it readily leads to the following expression to order 62 of a closed star product [73] (in which
we dropped the prime on +'):

f *xg = fg + %euyaufaug - %apge'wjapaufaaaug - %epgaaeuy(apaufaug - aufapaug)
— 510, (W0 0,0")D, f 0,9 + O(6°). (2.12)

In summary, for a given antisymmetric tensor field (") satisfying the Poisson—Jacobi identity,
the star product (2.12) satisfies the closure relation (2.6) to order #% with an integration measure
wd™z with respect to which the Poisson tensor (6#”) is divergenceless.

By construction, the expressions wf *x g and wfg only differ by a total derivative so that
equality (2.6) holds. For later reference, we spell out the explicit expression of this derivative [74]
(for which the Jacobi identity has again been used):

w(fxg)=wfg+9,a’(f.9), (2.13)
with

a”(f,9) = w[30°7 (fOrg — Dsfg) + £50°70" (050, f Dg — 0 050,9)
+ 55(0"7050M° — "7 9,0°)0,.fO,g] + O(6?).

In the case of constant noncommutativity parameters 6*”, the star operation is not x-dependent
in the sense that the Leibniz rule 0,(f x g) = Ouf x g + f * Oug holds. This is no longer
true for non-constant functions 6** where one has a modified rule for the differentiation, see
equations (3.4)—(3.5) below.

It is worthwhile to note the behavior of the star product of complex-valued functions under
the operation of complex conjugation [74]:

(f*g)" =g *f"

This relation can be explicitly checked for the expansion (2.12), the verification for the last term
making use of the Jacobi identity and of relation (2.8) which is satisfied by the function w.

We refer to Appendix B for some mathematical comments on the potential relationship
between the star products considered here and the approach of A. Connes to noncommutative
geometry.
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Some particular cases: As pointed out in [75], some simplifications in the perturbative
expansions underlying the star products occur for the special case of linear Poisson structures,
e., for a commutator algebra of Lie algebra type, [X ”,X "] =i ,’f YXP. The latter instance
(and in particular the case of the Lie algebra su(2) where [X i,Xj] = ie* X* and where the
weight function w can be chosen to be constant, w = 1, since 9;0% = 0; (sijkxk) = 0) has been
studied in detail in [76] (see also [68] for some elaborations and applications). Remarkably,
some closed expressions can then be determined in the case of su(2) (and even for more general
Lie algebras) for the operators X for the star product as well as for the gauge transformation
relating the Weyl star product and the closed star product. Moreover, the latter product can
be identified [42, 76] with the one following from the so-called Duflo quantization map for su(2)
which appears to be [76] the mathematically preferred quantization in this context (see also [93]).
We will briefly come back to the su(2) case in the concluding Section 7 with some comments on
the properties of quantum field theories on such spaces. The case of two space-time dimensions,
which also represents an instance of particular interest, is commented upon in Appendix B.

3 Field theory on noncommutative space

Generalities: In field theory the action functionals are generally expressed in terms of an
L2-type scalar product (-,-) of complex-valued fields f, g. In the present context, this scalar
product involves the weight factor w = 1/1/det(0#¥) (the latter being strictly positive with the
assumption that the matrix (6*¥(z)) is non-singular for all x € R"):

(f,q) E/nd"xwf*g. (3.1)

Any derivatives appearing in the Lagrangian should represent anti-Hermitian operators with
respect to this scalar product, very much as the momentum operator in relativistic quantum
mechanics should be Hermitian with respect to the scalar product of wave functions f, g. As
remarked by Kupriyanov [74] following the works [6, 50, 57], this implies that the momentum
operator in relativistic quantum mechanics is no longer given by p, = —id,, but presently
involves an additional term, p, = —i0,, — i@u(ln wl/g), so as to have (f,p.g9) = (P.f,g) for all
wave functions f, g belonging to the domain of definition of the operator® p,,. We note that

puf = —iDuf,  with  D,f =[98, + du(Inw'?)] f = w29, (w'/?f), (3.2)

and (f,Dug) = —(D,f,g) for smooth functions f, g. Here, the derivative D, has the form of
a covariant derivative in Abelian gauge theory with the particular gauge potential

Ay =9, (Inw'/?). (3.3)

Since the latter is pure gauge, the covariant derivatives commute with each other (i.e., [D,,D,] =
0) and they are related by a gauge transformation to the ordinary derivatives (namely D, =
w1/% 08, o w/?). Actually, the fact that the coefficient w = 1//det(0) = \/det(w,)

resembles the metric coefficient /|g| = |det(g,,)|'/? in general relativity, indicates that the

3This is reminiscent of the introduction and form of the Newton-Wigner position operator for the Klein-Gordon
wave equation in relativistic quantum mechanics [96]. Indeed, for the positive energy solutions of the Klein—Gordon

equation in R*, the scalar product of momentum space wave functions ¢, 1 reads (p, 1) = f]Rg = (p) %) ;13')1&( p) where

d3p/w(p) with w(p) = /P2 + m? represents the Lorentz invariant integration measure over the mass hyperb0101d

p2 = m?. The usual expression for the position operator in momentum space, i.e., X X = 164 = 18/8}0, is not

Hermitian with respect to the given scalar product, but the Newton—Wigner position operator is and reads
X = i[é;;—ﬁ— 5ﬁ(lnw71/2)] = 1[8*—

§ﬁ}
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gauge potential (3.3) may be viewed as the analogue of the contraction Iy, = 8M(ln \/W) of
the Christoffel symbols Fﬁy which appear in the covariant derivatives on a pseudo-Riemannian
manifold (equipped with the Levi-Civita connection).

Before considering some field theoretical models, we mention a general identity [74] for star
products involving derivatives D,, which is useful for the derivation of conservation laws in field
theory. By differentiating equation (2.13) with respect to x* we obtain

Nulw(f *9)l = w[Dufg + [Dugl + 0,0,a"(f, 9)- (3.4)

If we now apply equation (2.13) to the first contribution on the right hand side, we conclude
that

w[Dpf * g+ [+ Dugl = Ou[w(f * g)l + 0,b,(f, 9); (3.5)

where the last term is given by

b.(f,9) = a”(Dyuf. g) + a”(f, Dug) — 9ua’(f,9) = jwdub* (9s.fg — fOs9) + O(67).

Here, the Poisson—Jacobi identity was again taken into account for deriving the last expression.
The derivative (3.4) can also be expanded by using the Leibniz rule for partial derivatives:

ulw(f * 9)] = w0y + Ou(Inw)](f x g). (3.6)

Comparison of this result with expression (3.2), i.e., D, f = [@L + %8H(ln w)] f, then suggests to
attribute a weight (or degree or charge) 1/2 to a function f and a weight 1 to the star product of
two such functions, so that (3.6) represents the covariant derivative of f*g. With this notation,
relation (3.5) reads

Oulw(f x9)] = wDu(f * g) = w[Duf g+ f > Dugl = b ([, 9), (3.7)

i.e., the Leibniz rule for covariant derivatives with a correction term 9,bf(f,g). Some mathe-
matical considerations concerning the deformed Leibniz rule (3.7) are presented in Appendix B.
Here, we only note that some alternative approaches are based on the introduction of deriva-
tives D, which satisfy the Leibniz rule, but which do not commute with each other and which
generally represent infinite power series in the elements of the matrix (##") and of its inverse,
e.g., see [49]. The Leibniz rule can also be imposed within a more abstract approach based
on Hopf algebras and Drinfeld twists or by following an approach based on L..-algebras, i.e.,
generalized DGLA’s (differential graded Lie algebras) with a ‘mild’ violation of associativity,
see [22].

Lagrangian models: With the ingredients introduced above, field theoretical Lagrangian
models on noncommutative space with a given 6-tensor can now be defined by starting with
models on ordinary space, replacing the integration measure fRn d"™x by fR” d"xw, ordinary
derivatives 9, by the covariant derivative D, and ordinary products by star products. For
a complex scalar field ¢ with a quadratic self-interaction we thus obtain the action functio-
nal [73, 76]

S[6, 6] = (Dy", D) — mP(9",6) — £ (6"  6,6" % ),
ie.,

S(6.67) = [ daw [Dr6"Dy0 — mPeo— 567+ 0] (33

4An alternative self-interaction [1] given by the monomial ¢* % ¢* x ¢ * ¢ could be considered as well, but we
will not discuss this other model here.



Field Theory with Coordinate Dependent Noncommutativity 9

where we dropped one star in each term in accordance with the general property (2.6). For the
Dirac spinor 9 coupled to an external U(1)-gauge field (A*), we have the action [74]

S[ip, @Z_J] = " d"zw [%@Z_J'Vpppw - % pTZJ'pr - Wl—}w + qu'YpAp * @Z)} . (3.9)
For a U(1)-gauge field (A*) in four dimensions, the action functional reads

S[A] = -1 /]R dlwE « PP, with  Fu = Dydy — Doy —ig[A T AL (3.00)

For an action functional S depending on a bosonic field ¢ (i.e., a scalar field ¢ or a gauge
field (A*)), the functional derivative is defined by

08 = dn$w§5g0.
R" o
The components of a Dirac spinor v are supposed to be anticommuting variables and the cor-
responding functional derivatives are defined by
B n 08 -6S
0S = ]Rnd Tw [5¢(w+5w5¢] .
The equations of motion associated to the action functionals (3.8)—(3.10) are respectively

given by the vanishing of the following functional derivatives:

08 %
oo = (D#DM+m2)¢+C(¢*¢ ) * ¢,

55 " 2 * E3 *
i (DuD" 4+ m*) ¢ + c(¢" % ¢) % ¢, (3.11a)
55, } 05
50" (IY'Dy — m)Y + e Ay x 9, 50 =Dy —myp + eyt x Ay, (3.11Db)
;TS =D, " =D, F" —ig[A,* F"]. (3.11c¢)

Concerning the Dirac field action (3.9), we recall that a classically equivalent (though non-
real) expression for the kinetic term can be obtained by partial integration and presently reads
Jgn A" zw [P D).

Under an infinitesimal gauge transformation parametrized by a function x — «a(x), the U(1)-
gauge field (A#) transforms with the gauge covariant derivative,

0A, =Dya =D, —ig[A, ¥ af.

By virtue of relation (3.7), this induces the following transformation law of the field strength
tensor Fj,:

6F,, = —ig[Fu ¥ a] +igw 10, [bZ(AV,a) —bh(a, Ay) — (p <> v)].

This variation leaves the gauge field action (3.10) invariant. Concerning the field strength we
remark that the modified Leibniz rule (3.7) for the derivatives D,, implies a modified Bianchi
identity:

D,F,, + cyclic permut. = igw™ 19, (b (Au, Ay) — b5 (Ay, Ay) + cyclic permut. . (3.12)

Since the Bianchi identity for the field strength generally reflects the Jacobi identity for the gauge
covariant derivatives, the right hand side of equation (3.12) (which expresses the deviation from
the Jacobi identity for star-commutators of gauge covariant derivatives) may be qualified as
‘gauge’ Jacobiator [66, 107] for these commutators. The noncommutative U(1)-gauge theory
as well as the Chern—Simons theory in three dimensions have been discussed in terms of Lo.-
algebras in [22].
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Limiting cases: If the noncommutativity parameters 8*¥ are constant, then the weight factor
is constant too. Then, it can be factored out of the integrals (3.8), (3.9), (3.10) and simply be
dropped: thus we recover the canonical deformation case described by the Groenewold—Moyal
star product. The commutative theory is obtained from the latter case (which does not involve w
anymore) by letting the constant parameters 0¥ go to zero.

Free field models: Let us have a closer look at the free scalar and Dirac field actions. From
the definition (3.2) of the covariant derivative, it follows that

Seolnd') = [ da[00'0,0 - mPe'e],  with  ®= o,

n

n

Se—olt), 9] = / A"z [ 0yP0,V — 18,¥7*V — mIV], with ¥ = . (3.13)

Thus, contrary to the case of constant noncommutativity parameters, the free field actions
presently do not have the same form as in commutative space: they only do so after having ex-
pressed these actions in terms of the f-dependent fields ®, W. In terms of the original fields ¢, 1,
the free field equations have the form
1 1

0= —9,0"(vwo) +m?o, 0 = —iv*9, (Vwy) — map. 3.14
These equations have a formal analogy with the equation of motion for a damped harmonic
oscillator in non-relativistic mechanics (see Appendix C): The latter equation reads

1
0 = —d(wg) + wiq, with — w=e¢
W

=+ 74+ w’q, (3.15)

and can be rewritten in an undamped form, Q +Q2Q = 0, by virtue of the redefinition Q = Vg
which is analogous to the redefinition (3.13) of fields. In field theory, the time variable ¢ becomes

the space-time variable = and the function w(t) = e?* becomes w(z) = 1/y/det (#**(z)). This

analogy is of interest in view of the fact that the damped harmonic oscillator is known to possess
conserved charges involving an explicit time-dependence, see Appendix C. The generalization of
the latter result to the energy-momentum tensor in field theory will be discussed in Section 4.2.

Symmetries: If the field 6*” transforms under Poincaré transformations z# — ' = A", 2" +
a* as a classical relativistic field, i.e., as

0" (2') = AP AY 5077 (1), (3.16)

then the weight function w = 1/4/det(0#¥) is Poincaré invariant and the derivative D,, trans-
forms covariantly. The given action functionals are then Poincaré invariant (as noted in [74] for
the case of a Dirac field).

The action (3.8) for a scalar field of charge e is invariant under global U(1)-gauge transfor-
mations whose infinitesimal form is given by

S = iec, 09" = —iec”, (3.17)

where ¢ is a constant real parameter. For the Dirac field action (3.9), we also have such an
U(1)-invariance for the fields ¢, ¥. By virtue of Noether’s first theorem, one thus expects the
existence of locally conserved current densities associated to the global U(1)-invariance of the
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models describing the scalar and Dirac fields: the corresponding expressions will be derived in
Section 5, see equations (5.1) and (5.2) below.

Due to the coupling of fields to the x-dependent external fields 6#¥, one does not expect the
energy-momentum tensor of matter or gauge fields to be locally conserved, even for the case
of free scalar or Dirac fields. However, the analogy of the corresponding free field models with
the damped harmonic oscillator in mechanics and the existence of a conserved charge for the
latter dynamical system indicate that a local conservation law also holds for these models on
noncommutative space-time. The corresponding expression will be derived in Section 5 along
with the energy-momentum balance equation which holds for interacting fields.

4 Simple derivation of conservation laws

Before deriving conservation laws for the field theoretical models on noncommutative space-
time discussed above, we outline a simple derivation of conservation laws in Minkowski space
which can be generalized straightforwardly to noncommutative space. We proceed as in non-
relativistic mechanics (where the conservation of energy is obtained by multiplying the equation
of motion by dZ/dt) or in nonrelativistic quantum mechanics (where the continuity equation
for the probability current density is obtained by multiplying the wave equation for v by )*
and then subtracting the complex conjugate expression). The application of this procedure in
relativistic field theory amounts to a simple derivation of Noether’s first theorem in this setting.

4.1 General procedure

General procedure in relativistic field theory: Consider a collection ¢ = (¢ )r=1,.. v Of
classical relativistic fields in Minkowski space and suppose that their dynamics is described by
an action functional S[p] = [ d"zL(y, d,p, x) which involves a Lagrangian density £ which may
explicitly depend on the space-time coordinates x. The associated equations of motion are given
by 65/d¢ = 0 where the functional derivative has the following form if the Lagrangian depends
at most on the first order partial derivatives of ¢:

5S  oc oL
05 _ 0L _ 41
Sp g On <03us0> (1)

Let us now consider the case of an z-independent Lagrangian density and some active symmetry
transformations dp(x) = ¢'(x)—¢(x) which depend continuously on one, or several, real constant
symmetry parameters. We suppose that the Lagrangian density is quasi-invariant under these
transformations ( “divergence symmetry”), i.e., 0L = 0,9 for some (possibly vanishing) vector
field (2*) depending on ¢. Let us multiply the functional derivative (4.1) by d¢ and apply the
Leibniz rule to the partial derivative term:

55 oL oL oL oL oL
C 50 =0, (L) 50— s =0, (L= 60 — | “Z=0,60+ 50| 4.2
50°7 Ou (O%w) 7T 000" O <93us0 SO) [aawa“ YT %% (4.2)
—6L=0, Q"
Thus we have
55 oL
0=260+08," with j*= S — QM 4.3
spt T 7000 (43)

i.e., the general form of Noether’s first theorem in relativistic field theory. This suggests a similar
procedure to be followed in the next section for noncommutative space: we multiply the func-
tional derivative by an appropriate variation of fields and then express the product as a total
derivative 0,,j", hence this derivative vanishes for the solutions of the equations of motion.
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Some examples: For instance, for space-time translations (by a € R™), we have dp = a,0"¢
and 0L = a,0"L = 9,(n""a,L). After factorizing the symmetry parameters, j* = a,Téan, we
conclude that the local conservation law for the canonical energy-momentum tensor (EMT) Tan
holds for all solutions of the equations of motion:

, | ,_ or
0Tt =0, with THY = A0ne)

o —ntvL.

If the Lagrangian density £ depends explicitly on the space-time coordinates x, then the last
term in equation (4.2) reads a,(0”L — 0y, L) so that we obtain the energy-momentum balance
equation

0T = 0

can ex

plLs (4.4)

where 8gxp1£ reflects the explicit x-dependence of £. A simple illustration which is relevant
for the coupling of matter fields to a given symplectic structure (that we address in the next
subsection) is given by the linear coupling of a real scalar field ¢ to a fixed x-dependent external
source J, i.e., the Lagrangian density £ = %8“(]5@@ — %2q§2 — J¢. The energy-momentum
balance equation (4.4) then reads

oIy = (0"J)o, with THY = Hpd" ¢ — ntV L. (4.5)

can can

Another illustration of the general procedure (4.2)—(4.3) is given by internal symmetries for
charged fields, e.g., for ¢ = (¢, ¢*) where ¢ represents a complex scalar field. The real-valued
Lagrangian density is invariant under internal symmetry transformations labeled by a constant
real parameter ¢ (and the electric charge e of the field ¢),

0p = ieg, 0p" = —iec™.
In this case, the procedure (4.2)—(4.3) yields the off-shell identity

0= |f5e-co|+aan  wim =g SEs - ce. (4.6)

0 8(au¢)
The local conservation law 0d,,j# = 0 (which holds for any solution of the equation of motion)
now expresses the conservation of electric charge.

In gauge field theories, multiplication of the functional derivative §S5/6A* with the field
strength tensor F*" readily yields the physical, gauge invariant EMT T of the gauge field (A*)
whereas the standard Noether procedure leads to the canonical, non-gauge invariant EMT Téan
(which has to be improved by the Belinfante or other procedures [20]).

4.2 Scalar field coupled to a symplectic structure

It is instructive to apply the general procedure outlined above to the action for a self-interacting
complex scalar field coupled to a given symplectic structure (wy, ), this action being given by
expression (3.8) without the star products:

So,0)= [ daw [Do D0 - mieo -SR] = [ dawtio.). @D

n n

We presently multiply the functional derivatives §.5,,/d¢ and §S,,/d¢* by the covariant deriva-
tives of fields and apply the Leibniz rule for these derivatives as well as the relation [D,, D,] = 0:

—w |:6S"JDV¢ + Dy(b* 55&1
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For the covariant derivatives, we have to keep in mind the weight of the fields on which they
act, e.g., ¢, ¢* have weight 1/2, ¢¢* has weight 1 and (¢¢*)? has weight 2, hence D, (¢¢*)? =
u(¢pd*)? + 20, (Inw)(¢pp*)?. From this fact we deduce that equation (4.8) reads as follows for
the solutions of the equations of motion (for which the left hand side of (4.8) vanishes):

0=9,T" + g(@”w)(¢¢*)2 with  TH = w[DHg* DV + DY¢™ Dl — " L,]. (4.9)

This result means that the EMT T" of matter fields is conserved for ¢ = 0, i.e., in the absence
of a self-interaction, though it is not in the presence of the latter. This result can be traced
back to the fact that the matter fields are coupled to a fixed external field (w,,) (by means of
the variable w = y/det(w,,)) and is reminiscent of the coupling of a scalar field to an external
scalar source described above, see equation (4.5).

The previous conclusions can be further elucidated by rescaling the matter fields as we did
in equation (3.13): with ® = /w¢ and ®* = /we*, the action (4.7) reads

cl

S, [®, D] :/ d"z [apqﬁap@—m?@*q) (@*@)Q] z/ d"zL,,(®, %), (4.10)

2w

i.e., the external field w now only appears in the last term of the Lagrangian®. In terms of ®
and ®*, the EMT (4.9) reads

THY = 0H®* 0" D + 0V P*O*D — M L,

and one can readily verify the energy-momentum balance equation (4.9) by using the equation of
motion 0 = (D+m2)<b+c%q>*<b2 and its complex conjugate. For ¢ = 0, we have the analogy with
the damped harmonic oscillator in classical mechanics pointed out in equations (3.13)—(3.15).
The expression (C.5) of the conserved charge for the latter dynamical system then allows us to
get a physical understanding of the local conservation law 8, T%4" = 0 for matter fields which
holds for ¢ = 0 despite their coupling to an external field w: in the course of the temporal
evolution of matter fields ¢, the presence of w in T}," is compensated by the dependence on w of
the solutions ¢ of field equations, thus ensuing the existence of conserved charges f]Rnfl d" T
forve{0,1,...,n—1}.

5 Conservation laws for noncommutative field theories

In the previous section, we presented a derivation of the local conservation laws for the charge
and for the energy-momentum which only relies on the equations of motion. The application
of this procedure for Lagrangian field theories on noncommutative space simply consists of
replacing the multiplication by a field ¢ (or by its derivative 9 ¢) by the star product with this
field (or by its covariant derivative D). Furthermore, for the differentiation of star products,
one has to consider the product rule (3.5) which applies to this kind of products. (We note
that Noether’s first theorem for constant noncommutativity parameters has been discussed by
numerous authors, e.g., see [8, 15, 55, 83, 88] and references therein.)

5.1 Charge conservation law

For the complex scalar field described by the action (3.8) and the associated functional deriva-
tives (3.11a), the procedure (4.6) (generalized to the noncommutative setting [76]) yields upon

®We will come back to the factor 1/w (and the introduction of more general functions of w) at the end
of Section 6.1.
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application of the product rule (3.5)

ciew |97 5~ 50 w0 | = 0,771d),
with
J416] = iew[§" x D#G — DI x 6] +ie[t(6", D) — H(DY6", 0)]. (5.1

We note that by symmetrizing these expressions with respect to ¢ and ¢*, we can eliminate the
terms of b}, which are linear in 0 since by, (f, g) is antisymmetric in f, g at this order:

i ) 0 5
—sew|{or i b= {55 1o}] —adme

with

J1¢] = gew[ {1 DI} — (D6 1 6} + O(6%).
In the particular case where n = 3 and where the noncommutativity is given by 9 = gk gF
with 4, 7,k € {1,2,3} (in which case one can choose w = 1 [76]), the result (5.1) coincides, upon
exchange ¢ <> ¢*, with the one derived in [76].
For the Dirac field described by the action (3.9) and the associated functional derivatives
(3.11b), the same procedure gives (in agreement with [74])

. - 08 68 . . . - -
siew [Px o= Soxd| =0 ] with ] = ew(@ x 9) + e 0). (5.2
Once more, the terms in b, which are of order 6 can be eliminated by symmetrization.
These conservation laws (which hold for all solutions of the equations of motion) reflect the
invariance of the underlying models under the global U(1)-gauge transformations (3.17).
The conserved electric charge @) then has the standard form fRn—l d" 'z, e.g., for the Dirac
field,

Q= A"tz [ewy iy + ebd ¥y, )]
Rn_l

In the commutative limit, the conserved current densities reduce to the familiar expressions

3*1¢] = ie[¢*0"d — pOM¢*] and jH[¢] = eyt

5.2 Energy-momentum conservation law

Free field case: We start with the case of a free complex scalar field ¢ described by the
action (3.8) with ¢ = 0, and by the associated functional derivatives (3.11a). By following the
procedure (4.2)—(4.3) for the collection of fields ¢ = (¢, ¢*), we have

5S L., 4S
—w |5 * DG+ DY o

= w[D,D"¢* x D" ¢ + D' ¢* x D, D¢ + m*(¢* x D"¢ + D" ¢* x ¢)]. (5.3)

By virtue of the product rule (3.5), the term proportional to m? reads

"m0, [w (9" % §)] + 0,b7,(%,9) }.
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For the second order derivative terms, we add and subtract the terms which are missing in order
to apply relation (3.5) with respect to the indices p and v:

w[D,D"¢* x DV¢ + D,,¢* » D" ¢| + w[D,D"¢* x D' + DV ¢* « D, D*¢]
— w|[D,¢* x DD ¢ + D, DV ¢* x D'o|.
For the second order derivatives in the last line, we use the fact that the covariant derivatives
commute with each other. Thus, relation (3.5) allows us to rewrite each of the three expressions

appearing in the previous equation as a total derivative. Altogether we obtain the off-shell
identity

0S U 08
—w %*D o+D" *5¢*

involving the (on-shell conserved) EMT of the scalar field given by

= OuTieold], (5.4)

Theold] = w[(D"¢" x D¢ + D"¢" x D) — 1" (D*¢" x Dy = m*¢" x )]
+ b5 (D67, DY) + b (D"¢", DPg) — [V (D67, D,pg) =m0 (¢7,9)],  (55)

where b*Y = n¥9bl;. For the case of constant noncommutativity parameters, this tensor reduces
(up to a multiplicative constant) to the expression

T —const [B] = 040" % 0"+ 0" ¢* % ") — " (0°9* x Dpp — m*9* x ¢).
For real-valued fields ¢ we thus recover the well-known result which has been obtained by other
arguments in the literature [83]. In the commutative limit, the expression Thee g=const reduces
to the familiar result from Minkowski space [20].

As for the derivation of the local conservation law of electric charge, one can start from a sym-
metrized expression in equation (5.3), i.e., replace the star products by star anticommutators:
this again allows us to eliminate in the final result the terms of b, which are linear in 0.

For the free Dirac field, the same line of reasoning (see [74] for the case of quantum mechanics)
yields an equation which is completely analogous to equation (5.4):

08 - 08 v
—Ww @*Dyw_i_pyw*@ :8HTfl:ee[w]
Upon use of the equations of motion, the contributions to the EMT T§! eVe [¢] of the Dirac field
which involve n*¥ and n*?bl; vanish and we are left with the expression
T[] = w (Y7 * DY — DY+ Ap) + bh (1, 1P D ) — bh (3DVpr", ). (5.6)
In the commutative limit, we again recover the familiar expression T}~ o—ol¥] = %(1/_17”8” P —

" PyHap).

The fact that the EMT of matter fields is locally conserved despite the coupling of these
fields to the space-time dependent external field 6 (x) is somewhat unexpected. However, in
this respect it is worthwhile to remember the close analogies which exist in various instances
between the noncommutativity parameters and a magnetic field, as well as the fact that the
energy of a charged particle coupled to a magnetic field is conserved. Furthermore, the analogy
that we described in equations (3.13)—(3.15) between the dynamics of free matter fields in non-
commutative space-time and the damped harmonic oscillator in classical mechanics allows us
to get an understanding for the appearance and form of conserved quantities: For the damped
harmonic oscillator, the conserved quantity (C.5) does not represent the total energy Hy of the
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(undamped) oscillator (which is not conserved) and analogously expressions (5.5) and (5.6) rep-
resent locally conserved quantities for fields which are coupled to (6*”) rather than the EMT of
uncoupled fields.

The symmetry which is at the origin of the local conservation law (5.5) can easily be identified
in view of the derivation (5.4) of this conservation law (and similarly for the Dirac field). Indeed,
by using the fact that the covariant derivatives D, and D, commute with each other and by
applying the modified Leibniz rule (3.7), one can check that the free scalar field action (i.e.,
expression (3.8) with ¢ = 0) is invariant under the infinitesimal transformations (parametrized

by a* € R)
8¢ = a'Dud, 60" = a"D,o", (5.7)

due to the fact that the integrand of the action transforms into a total derivative. Thus,
we have a divergence symmetry parametrized by the real constants a”. In fact, the varia-
tion d,¢ = D¢ = [ém + (8u Inw'/ 2)]¢) is completely analogous to the infinitesimal symmetry
transformation (C.6) (i.e., ¢ = [0+ (9; In wl/Z)] q) which is at the origin of the conserved quan-
tity (C.5) for the damped harmonic oscillator. Although the variation 6¢ = a#*D,¢ = a*0up+co
with ¢ = 0, (a“ In wl/ 2) involves the infinitesimal translation a#9d,¢ of the field ¢, the symmetry
transformations (5.7) cannot be identified with the Poincaré invariance of the action that we
pointed out at the end of Section 3 since this invariance assumes that the field (0*") trans-
forms as a classical relativistic field under Poincaré transformations: the latter transformation
of 0" is “compensated” here by the incorporation of the local, 8-dependent scale transforma-
tion 6.¢ = cp = 0, (a” In wl/ 2)¢ which ensures that the variation a*0,¢ + c¢ = d¢ represents
a symmetry transformation giving rise to the local conservation law (5.5).

Case of interacting fields: For the self-interacting complex scalar field ¢, we have an addi-
tional contribution on the right hand side of equation (5.3):

wel[¢* x px ¢ x D)+ D" * px ¢" x ¢].
This term can be rewritten as a sum C* 4+ BY where C" is a sum of star-commutators,

C" = w3 ([¢" %61 6" x D9 +[D'¢" 6t 6" % ¢]), (5.8)
and where BY is given by

B = wg(D”¢**¢*¢**¢+¢**D”¢*¢**¢+gb**¢*D”¢**¢+¢**¢*¢)**D”¢).
A quartic star monomial has weight 2, hence

O [w(¢" * ¢ % ¢ x §)] = wD" (¢ x ¢ % ¢* % ¢) — (0"w)d" % ¢ % ¢* * ¢.
From this relation and from the modified Leibniz rule (3.7) it follows that

B = 0, {1 [0S (6" % 0) % (6 % 0) + S0(6" 6, 6" % 9)] |

+ S w)6" kG 9" x )+ A,

where A" represents a star-anticommutator, A” = w3 {(;5* *Q* w_lﬁub“”(gb*,gb)}. Thus, the
EMT for the self-interacting theory reads

(6] = Tht, 6] = wn™ (=56" % 6% 6" % 6) + S0 (6" % 6, 6" x 9),
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and, for the solutions of the equations of motion, we have the energy-momentum balance equation
T [¢] = —g(a”w)qﬁ**qb*qb* *¢— (C” + A”). (5.9)

If we integrate this relation over space-time, then the integral over C¥ (i.e., a sum of star-
commutators) vanishes due to the cyclicity of the trace (2.6). However, this is not the case
for the other terms on the right hand side of (5.9). The non-conservation law of TH”[¢] for
interacting fields is related to the fact that the matter field ¢ is coupled to the external tensor
field (0" (x)) and its derivatives as noted already in Section 4.2 for the coupling of a scalar field
to a symplectic structure.

For constant noncommutativity parameters, we have w = const and D, ¢ = J,¢: the re-
sult (5.9), with C given by (5.8), can then be checked readily by using the equations of motion.
For real-valued fields, the latter result reduces to §[¢px ¢ % [¢ ¥ 0V¢]], i.e., the result which was
first obtained in [83] by other methods (and which has been further discussed in [55]).

For the gauge field (A*), an energy-momentum balance equation can be obtained by starting
from the product —w%FHM. We will not expand further on this point since it is already fairly
involved in the case of constant noncommutativity parameters, see [8] and references therein.

6 Field theory on curved noncommutative space-time

With the description of gravity in mind, the formulation of noncommutative field theories (and
in particular of gauge theories) on generic symplectic manifolds with curvature and/or torsion
has been addressed by various authors using diverse approaches, e.g., see [3, 4, 5, 11, 12, 24,
28, 29, 31, 32, 33, 43, 44, 46, 51, 59, 63, 64, 81, 94, 104, 105, 106] as well as [86, 95] for some
nice introductions and overviews of the literature up to the year 2010. In relationship with
the main subject of the present work (in particular the conservation laws for field theories on
flat noncommutative space-time) we note that it should also be possible to obtain the energy-
momentum tensor (EMT) of matter fields in flat space-time by coupling these fields to a metric
tensor field: the EMT is then given by the flat space limit of the curved space EMT defined as
the variational derivative of the matter field action with respect to the metric tensor (see [20]
and references therein for a justification of this procedure). Here we outline the approach to
curved noncommutative space which was recently put forward by M. Dobrski [44] who discussed
the case of pure gravity following a series of related works by the same author, notably [43]: this
formulation appears to fit nicely with the one that we considered here for flat noncommutative
space-time. In a separate work (in preparation), we further discuss star products on curved
manifolds and in particular different approaches to the description of tensor fields and differential
forms on noncommutative manifolds.

6.1 Curved space-time and symplectic structure

So far we discussed the star product on R™ (with n even) where R" is considered as a flat
symplectic manifold, i.e., as a flat smooth manifold equipped with a symplectic two-form w =
%wwdx“ A dz¥. In Einstein’s theory of gravity, the gravitational field is described by an z-
dependent metric, i.e., the space-time manifold M is endowed with a symmetric tensor field
g = guda* ® dz¥. Whatever the manifold under consideration, the definition of a parallel
transport of vectors (and more generally of tensor fields), requires the introduction of a linear
connection V: Its action on tensor fields (V#) or (V},) is locally defined in terms of the connection

coefficients T, of V, namely [100] (with the notation Vg, = V,,)

V VA =0,V +T), V", ViV =0uVa = T2,V
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To this connection one associates its curvature and its torsion given by the tensor fields (Rp UW)
and (T ;Z\V) defined by the relation

[V, Vo VA =R, VT — TS,V VA,
Linear connections exist on any smooth manifold M and if no further assumption is made they
are independent of other structures on M like the metric structure or the symplectic structure.

In the following, we successively consider the cases where M is endowed with a metric structure,
with a symplectic structure and with both structures.

Metric structure: We recall that on a pseudo-Riemannian manifold (M, g), there exists
a unique linear connection V (referred to as the Levi-Civita connection, its connection coefficients
being referred to as the Christoffel symbols) which is characterized by the following two proper-
ties:
V = torsionless: 0= Tj‘l, = Ff;y — Fl),‘w (6.1a)
V = metric compatible: 0= Vg, . (6.1b)

Thus, the connection coefficients Fﬁ,j are symmetric in the indices u, v and the metric is co-
variantly constant with respect to V. These relations imply the well-known expression for the
Christoffel symbols, i.e., Ff;l, = %g)‘p(ﬁﬂgpl,—i—&,g#p—apgm,) which implies I'},, = 9,In/|g| where
g = det(g,). This connection is used in Einstein’s theory of gravity and we will also consider
it here for the pseudo-Riemannian manifold (M, g) while denoting it as above by V with the
connection coeflicients F;\w.

Symplectic structure: Since we want the generalize our description of noncommutative field
theory in flat space to a more general manifold M, we suppose that the latter manifold is
endowed with a symplectic two-form w = %wwdx“ A dz¥. Like the metric (gu.), the sym-

plectic tensor (wy, ) is given by a non-degenerate matrix, and it is thus natural to consider
A

pvs
and torsion T;\W), which has properties that are completely analogous to (6.1): Indeed, on any

°p
curvature R

o [¢]
a linear connection (which we denote by vV with connection coefficients T’ o

o
symplectic manifold it is possible [17, 54, 107] to find a linear connection ¥ with the properties

%: torsionless: 0 = jo“;\w = f‘;\w - 123#, (6.2a)
%: symplectic: 0 :%A Wy - (6.2b)

We note that in the literature [17, 54, 107] a ‘symplectic connection’ is generally required to
be torsionless, but we do not include this condition in our definition of ‘symplectic’ (hence we
should rather use the terminology ‘almost symplectic’ [17, 81]). A symplectic manifold (M,w)
equipped with a torsionless, symplectic connection is referred to as a Fedosov manifold, e.g.,

see [17, 54] for a general study. We remark that the antisymmetry of (w,,) and the relation
[¢] [¢]
Va Wy = 0imply the closedness relation dw = 0 since V) wy,, +cyclic permutations of(\, i, v) =

O\wy + cyclic permutations of(A, i, v).

Metric/symplectic compatible structure: For the formulation of gravity on the even-
dimensional space-time manifold (M, g,w), it is natural to relate (wy,) and (g, ), or at least to
ensure their compatibility for the par;llel transport of vectors. Different conditions or relations
for the connection coefficients f‘iy and F;\W can be envisaged [44, 98]. The strongest condition
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which consists of equating both connections is very stringent since this condition entails that w
is covariantly constant with respect to the Levi-Civita connection V: in four dimensions this
implies that the metric locally decomposes into a sum of two-dimensional metrics [44, 99].
A weaker compatibility condition was considered by M. Dobrski who referred to it as a weakly
compatible metric/Fedosov structure:

opy

Ly =T (6.3)

Since the symplectic condition (6.2b) yields

o 1
FZV = 59’”8#000,) =0, Inw with w = \/m7

relation (6.3) is equivalent to

Ouln/|g| = 0, Inw, ie., Vgl = aw, (6.4)

with some strictly positive constant a. This means that the Riemann integration measure and the
Liouville (symplectic) integration measure are proportional to each other (with a coefficient of
proportionality which may be different for different connected components of the manifold M).
Moreover, the covariant divergences of an antisymmetric tensor field like the Poisson tensor

o
field (0*") with respect to the connections V and V now coincide with each other [44] since we
have

1
Vot = 8#(\/EQW) =

vl

Thus, the divergenceless condition J,, (w@’”’) = 0 that we imposed for M = R" in equation (2.8)
in order to have a closed star product amounts, on a general manifold M, to the vanishing of
expression (6.5).

%aﬂ (wo™) =v7,, 01, (6.5)

Dynamics of fields for a weakly compatible metric/Fedosov structure: Let us now
consider a space-time manifold (M, g, w) of dimension n = 2m together with a weakly compatible

metric/Fedosov structure, i.e., connections V, % satisfying the set of relations (6.1)—(6.3). The
dynamics of matter fields (e.g., of a scalar field ¢) which are coupled to the gravitational field
described by the metric tensor field (g,.,) can presently be described [44] by the standard action
functionals though involving the integration measure w/m! (see equation (2.10)). Thus, the
variables w,,,, become dynamical fields which only couple to the gravitational fields g,,, by means
A
: ) = 0
(where the square brackets denote antisymmetrization, as usual) and F/Vw = I}, can be imposed

o o
of their respective determinants. The set of anholonomic constraints V) wy, = 0, I’

by a set of Lagrange multiplier tensor fields mM¥ = —m?VH, tﬁ” = —tl)’\“ and s*. Thus, we have
a generally covariant total action (with kK = 8wG where G denotes Newton’s constant) given by

g’V‘Vl

m!

1 m
S=8,+Su+ 5L, with Sy = %/ R, Sy = / %EM(qﬁ,gW), (6.6)
M M

and

wm o Lo o
Sp = /M =5 [m)"“’ VA Wy + T + 8" Ty, — rzy)] ) (6.7)
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Variation of the action S with respect to the Lagrange multipliers of course yields the set of
o

. c . . A . .
constraints. Variation of S with respect to the fields g,,, I',,,, wu and ¢ entails the equations

of motion® .
%R’“’ b gV = T, (6.82)
05 s* 4+ 2mHPwy, = th”, (6.8b)
<21I{R + £M> 0VH = 2 7 AmM (6.8¢)
and

OzaﬁM_;a#< acM>:acM_ 1 aﬂ<\/m8£M>

¢ Y0@,9)) ~ 96 4l 9(9,9)
_O0Lm 0L
o aRatc) (09

In equation (6.8a), R*” denotes the Ricci tensor associated to the metric g and 7" denotes the
‘symplectic EMT’ which is related to the metric (or Einstein-Hilbert) EMT Thy = —2 95u

Vil

(satisfying the covariant conservation law V,Thy = 0) as follows:

O v . 1o 8[/M 1 aEM
T — 7 g th — 7" = -9 = ). 6.10
=T 20 " 0w \"00ngm) (010

The set of equations (6.8) can be combined in the following manner [44]. By applying 67 %u

e]
to equation (6.8b) and then substituting equation (6.8c), we get an expression for v, s* = Vst
substitution of the latter into equation (6.8a) leads to the result

1 v . K o
RM — iRg’W + Ag" = —kThy, with = p VvV th. (6.11)

Here, we recognize Einstein’s tensor G** = R* — %Rg‘“’ . By applying the covariant derivati-
ve V,, to equation (6.11) and by taking into account that V,G* = 0 = V Tk} as well as
V" = 0, one concludes that A is necessarily a constant. Henceforth, relation (6.11) is
FEinstein’s field equation (for the metric tensor) including a cosmological constant A. More
precisely [44], the solutions of the equations of motion (6.8) must include a metric g which
solves Einstein’s field equation (6.11) and, conversely, for each solution of equation (6.11) there
exists a weakly compatible metric/Fedosov structure and Lagrange multipliers satisfying the set
of equations (6.8). The symplectic data are determined by the set of equations (6.2a), (6.2b),
(6.3) which imply relation (6.4), i.e., the proportionality of w and \/m As noted in [44], the
action Sy + S, characterizing pure gravity (with a cosmological constant) might be of interest
for the canonical quantization since it does not involve the square root of the determinant of
the metric.

Scalar field coupled to a weakly compatible metric/Fedosov structure: Let us assume
that the complex scalar field ® is coupled minimally to the metric tensor (g,,). The matter field
action functional then reads

m
SM = / gi‘,CM, with ﬁM((I), CI)*;Q) = gm/a#q)*auq) - mQCI)*(I) - %((I)*CI))2 (612>
M T -

5Concerning the signs, we recall that the signature chosen for the metric is ‘mostly minus’.
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Under a general coordinate transformation (diffeomorphism) = — 2/(z), the fields ® and Lys
transform as scalar fields, e.g., ®'(2') = ®(x). The argumentation presented in equations (6.8)-
(6.11) then applies. In particular, the tensor 7" (as given in equation (6.10)) now only involves
the derivative with respect to g,., i.e., —%TW = 0L /09, and we obtain the usual, covariantly
conserved EMT for a complex scalar field:

TH — G P D + 0 B 0D — g L. (6.13)

Let us presently assume that we rescale the scalar field ® as we did in equation (3.13), i.e.,
® = /w¢. While the weight factor w = y/det(w,, ) was invariant under the Poincaré transforma-
tions (3.16) in flat space (due to the fact that | det(A*,)| = 1), it is no longer invariant in curved
space under general coordinate transformations: it rather transforms like the density +/|g|, i.e.,

m
w' = |A|w, with A = det <8x ) .

ax/lj

Thus, the field ¢ = ®/\/w transforms like a scalar density of weight 1/2 (i.e., the weight
attributed to matter fields in Section 3):

¢ =A%,

By rewriting the scalar field £y given in equation (6.12) as well as the associated, covariantly
conserved EMT (6.13) in terms of the densities ¢, ¢*, we obtain the result

Ly =w [ngm*DV(b ~m2étp— gw(¢*¢)2 , (6.142)
Thiy = w[D'¢*DY ¢ + DV ¢*DH¢| — g" Ly, (6.14Db)
where D¢ = ﬁ@u(\/ﬂ)qb) =9y + 3(0,Inw)¢ and D,¢* = (Dy¢)*. In the Lagrangian (6.14a)

we note the appearance of a global factor w (which implies that the action | M %EM =
I d"zw?|- - -] involves a global factor w?) as well as of an extra factor w in the quartic term.

If one considers the weakly compatible metric/Fedosov structure (i.e., w o 4/|g|), one cannot
directly recover a flat space model for the coupling of the field ¢ to the symplectic tensor
since \/|g| reduces to unity in the flat space limit (g, ~ 7w ) while w is an z-dependent
function in flat space’. Let us ignore for the moment being the relation w o \/@ and consider
the following procedure to obtain a Lagrangian model in flat space:

SME/ W'L'Moc/ d"z+/|g| Ly~ SM‘ E/
M T M 9=n

Then, the curved space Lagrangian (6.14a) yields the flat space action functional

g=n

n

SM‘ — [ d"zw [D“gb*Dqu —m2¢*p — Ew(qs*gb)ﬂ . (6.15)
g=n  JRre 2
Due to the extra factor w in the self-interaction term, this flat space model is different from the
one that we discussed in equation (4.7) (see also the equivalent expression (4.10)) and, more
generally, in equation (3.8) for flat noncommutative space. Indeed, for the self-interaction term
of a noncommutative model associated to the action (6.15) one could consider

c

—5 /n d"zw [Vw(¢* * ¢)] * [Vw(¢* x¢)] = —g /n d"zw [w(e* *¢)2} )

"This problem is reminiscent of the one of taking the commutative limit (#** — 0) of noncommutative models
involving w = (det(6"*))~'/2: this issue was circumvented in Section 3 by a two step procedure where the
parameters 0*" were first assumed to be constant so that w could be factored out of the integral.
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As a matter of fact, the factor w being invariant under Poincaré transformations in the flat
space case, one could then consider some general functions of w as coefficients in Ly;. These
alternative flat space models lead to energy-momentum balance equations which differ from
those we encountered, e.g., the EMT associated to the matter field functional (6.15) is locally
conserved by construction.

6.2 Curved noncommutative space-time

The Fedosov star product deformation of the field theoretic model (6.6)—(6.7) has been studied
by M. Dobrski [44] for the case of pure gravity so as to obtain a theory of noncommutative
gravity which is generally covariant and independent of the symplectic background, the latter
being dynamical. The first modification brought about the noncommutativity (which appears
at order #?) is already quite complex and has been determined by using a Mathematica package
for tensor calculus. The incorporation of matter fields is beyond the scope of the present work,
but in view of the previous discussion concerning the coupling of matter fields to gravity, the
matter action functionals that we studied for M = R" should appear naturally. Here, we only
outline the formulation for pure gravity in terms of the notation used so far and we comment
on matter fields.

One of the pioneering works on deformation quantization is the one of B. Fedosov who con-
structed a star product for a generic symplectic manifold (see [46, 107] for an introduction to
these topics). As a matter of fact, any star product on such a manifold is equivalent to a Fedosov
star product, i.e., the equivalence class of the latter star product comprises all other ones. The
approach of Fedosov amounts to a geometric extension of the Groenewold—Moyal quantization,
the latter applying only to a symplectic vector space. Quite generally, the deformation quantiza-
tion on a given space M is a deformation of the product of functions defined on this space in the
direction of the Poisson bracket of these functions. Since the Poisson bracket involves derivatives,
the formulation of star products on manifolds calls for the introduction of a linear connection,
the latter defining a covariant derivative®. On a symplectic manifold, a natural choice for such

o

a connection V is the one which is torsion-free and symplectic, see equations (6.2a) and (6.2b).
Indeed, the Fedosov scheme (and other constructions which it inspired like the globalization of
the local expression for star products on Poisson manifolds) relies on the introduction of such a
connection. The final results are usually presented in a somewhat abstract form, but an explicit
(iteratively determined) expansion for the Fedosov star product has recently been elaborated,
see [44] and references therein. For smooth complex-valued (i.e., scalar) functions f, g on the

Fedosov manifold (M, w, %), the Fedosov star product reads

frsg=Ffg+ 50" Yy fVyg— 20770 N,V f VeV g+ 0(6%), (6.16)

where the brackets denote symmetrization. The higher order terms in 8 involve explicitly the

o
associated to the connection V, e.g., see [44] for the third order term.

[¢] o o
. . p . g . A
For a flat connection V, i.e., R',,, = 0, one can choose vanishing coefficients I"" ,,, and Darboux

local coordinates on M (i.e., constant functions 6#"): the expression (6.16) then reduces to the
Groenewold—Moyal star product.

However the Fedosov construction is more general: for a given vector bundle £ over the base
manifold M (i.e., the fiber £, over any = € M is a vector space), the Fedosov construction defines

e}
P
curvature tensor R —_—

8A different possibility [5, 90, 95, 102] for obtaining globally well defined expressions for the higher order
derivatives 0,0, - -- f of a function on a manifold is to replace the partial derivatives 0,, by Lie derivatives with
respect to some vector fields X,: this amounts to the definition of star products in terms of Drinfeld twists or to
consider a so-called twisted manifold. This construction and its comparison with the approach based on a linear
connection will be addressed elsewhere.
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the associative deformation of the (noncommutative) product of matrices, i.e., the deformation
of the endomorphism bundle End€ over M. (The fiber (End€), over x € M is the set of
endomorphisms of the vector space £, and any such endomorphism is given by a square matrix
once a basis has been chosen for the vector space &, at each x.) The deformation of the matrix

E o
product requires the introduction of a connection V on £ which has to be added to V: thus we
have a total connection

~ o £
V=vVe1+18V,

acting on the vector bundle TM ® & (where T'M denotes the tangent bundle of M). For the
£

connection coefficients and the curvature associated to the connection V, we again have local
expressions of the form

£ E . E E E E E E &
Vi=0u+Tu  with  Tw=(Tw)  Rw =0Ty —Tu+ [Culy],

and analogously for the total connection V. The Fedosov star product of z-dependent matrices
(endomorphisms) F = (F',) and G = (F",) now reads [43, 44]

FxG=FG+ 50"V, FV,G — 1070" (V(,V,) FV(,V,)G

~ £ ~ ~ £ ~
+ {Vo . Ry }VuG + Vo F{ Ry, ViG} ) + O(67), (6.17)

& &
where {, -, -} denotes the anticommutator of matrices. For a flat connection V, i.e., for R, =0,

and the choice f‘u = 0, the star product (6.17) reduces to a star product of matrices for which
the multiplication of entries is given by the star product of functions (6.16). We note that the
Fedosov star product (6.17) is not closed [43].

For the formulation of field theories and more precisely of action functionals, it is again
necessary to introduce an appropriate cyclic trace functional try, i.e., tro(E x G) = tr (G x F)
for compactly supported endomorphisms F', G. Such a functional has also been introduced by
B. Fedosov and an explicit expression for it has been worked out by this author in [47] (see
also [43] where a Mathematica package for tensor calculus is applied):

m

w o€
try F' = M;!Tr [E— 50" @E—FO(@Z)}. (6.18)

o
For the formulation of pure gravity, the Fedosov manifold (M, w,T") endowed with a given metric
structure, one considers the vector bundle £ = T'M and the Levi-Civita connection on this bun-

dle, i.e., %: V (see equations (6.1a) and (6.1b)). Then, the natural choice for an endomorphism
F € EndTM in an action functional of the type (6.18) is given by the Ricci tensor with the first
index raised, i.e., F = R with R = (R")) = (R”,,). Indeed, with this choice one has the real,
diffeomorphism invariant action functional

1
Sheg = o try R = Sy + She- (6.19)

Here, the first term is the functional S; considered for pure gravity in commutative space-
time (see equation (6.6)) and Sy represents the noncommutative corrections. The latter are of
order 62 and higher order in 6 since the term in (6.18) which is linear in 6 vanishes for F = R

&
due to the symmetry properties of the curvature tensor: Tr ( RWE) = R’ UW,R)‘UP)\ = 0. This

appears to be a general feature of noncommutative gravity [44].
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The calculation (6.6)-(6.11) can now be generalized by starting from the complete action
functional Speg + S With Syeg given by (6.19) and Sy, given by (6.7). This leads to a set of
equations of the form (6.8) with T""= 0= L) and with a noncommutative correction term in
each equation. Explicit expressions for the latter terms up to order §? have been given in [44].
The elimination of the Lagrange multipliers is presently more complex than in the commutative
case due to the appearance of integrability conditions. In view of the complexity which already
underlies pure noncommutative gravity, the incorporation of matter fields (which also requires
the introduction of tetrad fields in the case of Dirac spinors) is beyond the scope of the present
work.

6.3 Particular examples of curved noncommutative space-time

Rather than studying the dynamics of space-time, we can also choose a given curved space-time
(e.g., four-dimensional space-time endowed with the Schwarzschild metric) and study deformed
field theories on such a background. A simple, but non trivial example for a Riemannian
manifold is given by an orientable surface. For such a space-time of dimension n = 2, the Poisson

tensor (#*) only involves a single independent component 6'2 (ml, x2) = 19(951, :cz) which implies

that w = /det(wyu,) = 1/4/det(6#) = 1/|9|. By virtue of equation (6.4), the compatibility of
the metric and Poisson structures then implies that 1/[¢| is proportional to /g where g denotes
the determinant of the metric tensor (g,,). For simplicity, we consider ¥ to be positive and

equal to 1/,/g [12], i.e.,

0 —w
w 0

e e B

Thus the symplectic volume (area) form (2.10), i.e., dV,, = w = swyda# Adz” = —wdz! A da?
and the Riemannian volume (area) form dV, = ,/gdz' A dz? coincide with each other up to
the sign. The Weyl star product formula (2.5) applied to the coordinates x!', z? then implies
[a:l * x2] = ih? (xl, x2) where we spelled out the formal deformation parameter h.

Let us now suppose for concreteness that the orientable surface under consideration has
constant curvature, i.e., it is (up to a homeomorphism) a 2-sphere for the case of positive
curvature or the hyperbolic plane for the case of negative curvature. We will elaborate briefly on
the example of the unit 2-sphere [12]. For the latter the upper hemisphere can be parametrized
by Cartesian coordinates (acl, x2, ac3) = (z,y,2) with 224+9% < land z = z(z,y) = /1 — 22 — 32
(and similarly for the lower hemisphere). In terms of these coordinates, the standard line element
ds? = d6? + sin? Odp? of the 2-sphere is given by

1
ds? = gdrtdz” = — [(1 — y2)dx2 + 2zydzdy + (1 — xQ)dyQ].
z
This entails that \/g = 1/z, hence we have coordinate dependent components for the Poisson
tensor which are given by 012 = z(x,y) = —6?'. The Weyl star product formula (2.5) or the
closed star product (2.12) then imply

[mi 5 :Uj] — ihetk gk | O(hQ), with 4,7 € {1,2,3}.

At the first order in h, these star-commutation relations are the ones which characterize the
fuzzy sphere. The Levi-Civita connection (associated to the standard metric) and the symplectic
two-form considered to be the (opposite of the) Riemannian volume form give the structure of
a Fedosov manifold to the 2-sphere [54].

The case of the hyperbolic plane modeled by the Poincaré upper halfplane {(x, y)ER? |y > ()}
endowed with the metric ds? = y—2 (dx2 + dy2) can be studied along the same lines and leads
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to the results w = 1/y? and [z * y] = ihy?. These considerations again fit into the general
framework discussed before, yet the dynamical study of matter fields on these spaces obviously
requires some further work.

7 Concluding remarks

About the quantum theory: For R3, i.e., R? with su(2)-noncommutativity (in which case
the commutator algebra [X ¢ } — ie"* X* which may be realized by the Pauli matrices), the
one-loop quantization of self-interacting scalar field theory has recently been investigated [68], in
particular for the scalar field model described by the classical action (3.8) (with w =1 for R}).
The main results may be summarized as follows [68] (see also [89] for some further recent work).
The 2-point function does not involve infrared singularities in the external momenta (even in
the massless case) which indicates the absence of the infamous UV /IR mixing problem for these
models. This result appears to have its origin in the Lie algebraic nature of the underlying
noncommutativity. Moreover, the 2-point function is finite in the ultraviolet regime where the
deformation parameter corresponds to an ultraviolet cut-off A o 1/6.

Conclusion: The mathematical framework for field theories on a space-time defined by generic
noncommutativity parameters is more complex than the one for constant parameters. Neverthe-
less the classical theory can be formulated to a large extent along similar lines. In this context,
some interesting mathematical structures appear which may be worthwhile to explore further.
The simple approach to the conservation laws that we considered here is also of interest in
other contexts and its application to gauge field theories, supersymmetry, conformal models,
etc. will be discussed elsewhere. The presented analogy of free field models with the damped
harmonic oscillator is intriguing and may also be useful for the investigation of some aspects
of the quantum theory. For the latter one also has to tackle the subtleties of time ordering in
the noncommutative setting, see, e.g., [7] and references therein for a discussion on this point in
Moyal space. A scheme for describing the dynamics of the fields 6*”(z) was outlined in curved
space-time, but an elaboration and better understanding of this point definitely requires further
work. The case where the matrix (6" (z)) does not have maximal rank for all = (e.g., 02 vani-
shing on a line in the two-dimensional case) also requires extra work involving a regularization of
integrals, e.g., see [49]: this instance appears to be of interest for the study of boundary effects
occurring in condensed matter systems.

A Simple construction of star products

General star product: In this appendix we indicate how explicit expressions for a star
product can be obtained in a simple manner. By way of motivation, we start from the case
of constant noncommutativity parameters 6*¥ and the corresponding commutation relations in
quantum mechanics:

(X, X"] =i¢"1,  [B.B]=0,  [XM B)]=—idl1. (A.1)

Here, the operators X* and P, are supposed to act on a complex separable Hilbert space.
A representation of the algebra (A.1) in terms of the standard operators of position X* (which
acts on wave functions as multiplication by the real variable z*#) and of momentum P, = id,
satisfying canonical commutation relations is well known [30, 40, 82]:

Xt =Xt410mp, = X"+ 100, — P, =P, =i, (A.2)
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An operator function f of the operators Xn (defined by using the Weyl ordering prescription)
then acts on a smooth function g by means of the Groenewold-Moyal star product [18, 82]:

F(X)g = F(XF+10M0,)g = fg+ 26"0,f0,9+ L ()20 077 0,0,0,059 + - .

For general noncommutativity parameters 0" (z) = —6"#(z), a representation of the com-
mutation relations (2.1), i.e., of [X“, X”] = ign (X), can be found by generalizing the expres-
sion (A.2) of X" or, more precisely, by expanding the operators X* and 61 (X ) as polydif-
ferential operators while considering the Weyl ordering prescription. This procedure has been
worked out by Kupriyanov and Vassilevich [75] (see also [73]) so as to determine an explicit
expression for the star product up to fourth order in . The result to first order in 6 already

follows by considering the expression (A.2) for X" in terms of x-dependent parameters 617, i.e.,
XH =XHF+ %9‘“’8,,: one finds that

(X, X¥] = 6™ (X),
with
0 (X) = 0" (X7 + 16779, + O(6%)) = 0" + 16°79,0" 9, + O(6°), (A.3)

where the operator é‘“’(X ) acts as usual as multiplication by the function 0#¥(z). Moreover, one
readily checks that the Jacobi identity for commutators (i.e., the relation 0 = [X’\, [X“, X”H +
cyclic permutations of the indices A, u, v) is satisfied to order 6 if the antisymmetric tensor §*¥
satisfies the Poisson—Jacobi identity characterizing a Poisson tensor. Finally, the linear term of
the star product also follows straightforwardly:

Frg=F(X)g=F(X\+i0m,+0(0%)g=fg+ L0"0,f0,g+ O(6%).

For the terms of higher order in 6, one has to expand X* and 6" to higher order than first,
which yields [73, 75]

XH=XF 4 10m0, + L[0°70,0M + 677 0,0")0,0, + O(6%), (A4)

as well as an expression for 9/ (X ) (as a differential polynomial in the Poisson tensor 6#) which

extends the first order result (A.3). For the definition of a Weyl-ordered function f (X ), one
applies the general formula [16, 76, 103]

FX) = e | ke,

where f(k) = Jgn A"z f(x)e*# ™" denotes the Fourier transform of f. The latter relation defines

the Weyl symbol of the operator f (X ) The expression for the star product which results to
order #2 from this procedure is given by equation (2.5) and is commented upon in that context.

Closed star product: For physical applications, we are interested in a closed star prod-
uct [73], i.e., such that relation (2.6) holds for some integration measure wd"z. As we noted
in equation (2.7), the closure relation for the star product yields (at the first order in 6) the
divergenceless condition 9, (wf"”) = 0. By taking into account the latter as well as the Jacobi
identity for the Poisson tensor and by performing some integrations by parts, the closure relation
leads, to the second order in 6, to the result

0 _/ d"zw(fxg — fg) = 214/ d"xB"0,f0,9. (A.5)
n R’n
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Here, the matrix (B?”) whose elements are given by B” = 0,(w0?0,0"") is symmetric by
virtue of the divergenceless condition and the Jacobi identity for the Poisson tensor (0#"). The
result (A.5) means that the Weyl star product does not satisfy the closure relation. However,
this result suggests to make a judicious equivalence (or so-called gauge) transformation [70] of
the star product % so as to obtain a star product " which is closed to order §2 (see [73] for the
treatment of (A.5) and [76] for the general procedure to all orders in 6): by considering a linear
differential operator of the form D = 1 + d?”0,0, + (’)(93), one readily finds that the gauge
transformed star product ¥' induced by D has the following form (to order 6?):

f*g=D"YDfxDg)=fxg—2d"0,f0,g.

Thus the particular choice 2d”¥ = ﬁBPV allows to eliminate the nonvanishing term on the right
hand side of equation (A.5), i.e., to obtain a gauge equivalent star product x* which satisfies the
closure relation fIR" dzwfx'g = fIR" d"zwfg to order §2. Its explicit expression (up to order 62)
is spelled out in equation (2.12) where we suppressed the prime on the star product. The basic
operator X" now becomes X’* and its f-expansion follows from X 'hg = z# «' g: in comparison
to the operator X* given by expression (A.4) it thus involves, at order #2, a supplementary
contribution. The latter ensures [73, 74] that the operator X’# is Hermitian with respect to the
inner product (3.1).

B Some comments on Sections 2 and 3

In this appendix, we gather some mathematical remarks concerning Sections 2 and 3, respec-
tively.

About the star product approach: Concerning the mathematical framework, we note that
the transformation of the volume form d"z ~» wd™z with w = y/det(w,,) represents a resca-
ling. Although the general relationship between the definition of noncommutative geometry
by A. Connes in terms of spectral triples and the construction of noncommutative spaces by
deformations of commutative algebras (which we follow here) is not completely clear [36] (see
however [52] for some results), the rescaling d"z ~ wd™z appears to be related to the so-called
twisted spectral triples introduced in [37] and further studied in [84]. Indeed, an example for the
latter is given by the gauge transformed spectral triple induced by a rescaling of the Riemannian
metric.

The case of two space-time dimensions: In [75], it was pointed out that simplifications
should occur for the star products in two space-time dimensions, i.e., for n = 2. In this re-
spect we only note [87] that one can pass over from R? \ {(0,0)} parametrized by the variables
(wo =p ol = q) to the circle (i.e., real projective space RIP') parametrized by the single variable
€ = q/p: in this case, one identifies a tensor density & — ¢(£) of degree A € R on RIP! with the
homogeneous function Fy: R?\ {(0,0)} — C of degree —2\ given by

(p,q) — Fylp,q) = p2¢ (;) ‘

The Groenewold-Moyal star product Fy x F, can then be written as a star product of the
densities ¢, ¥ (of degree \ and p respectively) and represents a power series in the real variable
9 = 9

o] . k
srv=ovtY(5) R460) (B.1)
k=1
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Here, the quantities Jk/\ # are the Gordan transvectants which are well-known bilinear differential
operators that are invariant under projective (i.e., Mobius or fractional-linear) transformations
and which appear for instance in classical W-algebras and conformal models, e.g., see [56]
and references therein. In particular [87], the Gordan transvectant Jl’\ H(p, 1) o< Ay — g’y
represents the so-called Schouten bracket of ¢ and 1. The star product (B.1) is invariant under
the group PGL(2, R) of projective transformations which is homomorphic to the group Sp(2,R)
of symplectic transformations. The star product in two dimensions can also be generalized to
Riemann surfaces, e.g., see [19].

About the modified Leibniz rule: Consider the associative, commutative algebra A =

C>®(R™) of smooth functions on R™ and write the elements of the deformation matrix as

O* = hOH where the real parameter h represents a formal deformation parameter. Further-
o0

more, let A[[h]] denote the algebra of formal power series > h"a, with coefficients a, in A,

n=0

equipped with the star product. The fact that the linear operator D,,: A[[h]] — A[[h]] introduced
in equation (3.2) does not satisfy the Leibniz rule (i.e., D, does not represent a %-derivation)
is equivalent to the statement that the operator T = " P (with a# € R) does not represent
a x-automorphism, i.e., T(f x g) # (T'f) x (T'g) — see [107, Proposition 6.2.7].

Linear operators on associative algebras which do not satisfy the Leibniz rule appear in various
contexts in physics and in mathematics, e.g., in the Batalin—Vilkovisky anti-bracket formulation
of gauge field theories [71, 92, 109] or in general relativity, see [34] and references therein. The
deviation from the Leibniz rule of a linear operator (acting on an associative algebra like A[[h]]
equipped with the star product) is known in mathematics as the Hochschild differential 6 of this
operator [107]: for the operator D,,, the bilinear map 6D, : A[[h]] ® A[[h]] — A[[R]] is given by

_(5DM)(f7 g) = D,u(f*g) - (Duf) xg—fx* (Dug)-
According to relation (3.7), we thereby have

Thus, the Hochschild differential of D, looks like a coboundary term. In the physics literature,
the deviation from the Leibniz rule has also been qualified as the Leibniz bracket [34]. More
precisely, for the algebra A[[h]] equipped with the star product and the grading introduced
after equation (3.6), the Leibniz bracket of the linear operator D,, with respect to the star product
is defined (in terms of the notation of [34]) by

{f,9}p, = Lo, (x)(f,9) =Duf xg+ f*xDug — Du(f * g).

We will not elaborate on these mathematical aspects here, but their application should be worth
exploring in greater detail. We only mention that the fundamental property of the Leibniz
bracket is given by

Lip,,1(*) = LD, (LD, (*)) — LD, (LD, (¥))-

C Damped harmonic oscillator

The models of free Lagrangian field theories on noncommutative space discussed in this paper
and the corresponding energy-momentum conservation laws admit close analogies with the La-
grangian formulation of a damped harmonic oscillator in non-relativistic mechanics and with
a corresponding conserved quantity. Therefore, we describe the latter system in this appendix
by stressing the analogies using an appropriate choice of notation.
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For a mechanical system with one degree of freedom, i.e., a single second order differential
equation ¢ = f(q,q,t) for the particle’s position ¢ — ¢(t), it has already been shown by Jacobi
and Darboux that a Lagrangian function always exists. A simple example for a dissipative
system in one dimension is given by the damped harmonic oscillator, i.e., a dynamical system
governed by a differential equation with constant coefficients m > 0, k > 0, v > 0:

mq + kq 4+ ymqg = 0,

or, with w = y/k/m,
i+wiq+74=0. (C.1)

To simplify the notation, we will consider a unit mass in the following. As we just stated, a single
differential equation of second order like (C.1) can always be obtained as an Euler-Lagrange
equation, eventually after multiplying it by an integrating multiplier, i.e., a non-vanishing func-
tion ¢ — w(t) in the present one-dimensional case. Indeed [10, 23, 69], the Lagrangian
. L5 w? 2 . t

Lig.qt) =w|5q" —Za |, with w(t)=e", (C.2)
which describes a harmonic oscillator with time dependent mass and stiffness (or frequency),
yields the Euler—Lagrange equation

oL d (0L [ + a4 ]
= —-— — — —_— = —W w
8¢ dt \ g q qT74],
i.e., the equation of motion (C.1). Since v = 9;Inw, the last equation can also be written as

1
0= ;at(wq) + w?q,

and thus has the same structure as the equations of motion (3.14) of our field theoretical models
for free scalar and Dirac fields in noncommutative space.

For the discussion of the conservation law below, we spell out the solution of the equation
of motion (C.1) which satisfies given initial conditions ¢(0) = zo and ¢(0) = wvp: with Q2 =
w? — (%)2, we have

1
q(t) = e~ 2t [l‘o cos QU + 9 (vo + %m()) sin Qt] : (C.3)
We note that the canonical momentum associated to ¢ is given by p = dL/9¢ = wq, hence
the canonical Hamiltonian reads
2 w2
H(g,p,t)=pj—L =w’15 +w7q2. (C.4)

This function may also be expressed in terms of ¢, ¢ and ¢,

2

1
H=vwHy, — with  Ho= q*+ %q2,

where Hj represents the total energy of the undamped oscillator. However, due to the dissipa-
tion, the Hamiltonian H is not a conserved quantity: we have an energy balance equation which
can be determined straightforwardly by using the equation of motion for ¢:

dHy
dt

= —v¢* = — (0 Inw)¢*.
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Nevertheless, a conserved charge can be constructed by different methods and in particular
as follows by performing some redefinitions [78]. By virtue of the time-dependent rescaling

g~ Q=vu'’q

(which is analogous to the z-dependent rescaling of matter fields encountered for our field theo-
retical models in equation (3.13)), the equation of motion for ¢ takes the form of the one for an
undamped oscillator:

. 2

O+02Q=0, with ?=u?— (%) .
For the latter dynamical system parametrized by @, the total energy F is obviously conserved
and is given by

28 = Q* + Q*Q% = "' [¢* + w?¢* + vqq). (C.5)

Here the last expression is the rewriting of the conserved charge in terms of the original variable q.
It represents an explicitly time-dependent conserved quantity for the dissipative system under
consideration. Its physical interpretation can be elucidated by considering its value at the time
t=0:

2B(t) = 2E(0) = v + w2 4+ yaovo.

Thus, the conserved quantity is simply a particular combination of the initial conditions, the first
two terms representing the energy of the undamped oscillator. In the course of the motion, the
exponentially increasing factor in the charge (C.5) is compensated by the exponential decrease
of the solution (C.3) of the equation of motion.

Within the Hamiltonian formulation, the conserved quantity E (expressed in terms of the
phase space variables ¢, p) generates local transformations dq, dp of the phase space variables
by means of the Poisson brackets and, conversely, the latter transformations give rise to the
conserved charge FE by virtue of Noether’s first theorem. More precisely, with the standard
Poisson bracket of functions F', G on phase space,

OF 0G  OF 0G

=9~ ap g
we find
0g={¢, B} =4+ %q = [0 + (8 Inw'/?)]q,
dp={p,E} =p— %p = [Gt — (&g lnwl/z)}p. (C.6)

Hence the variation of the Lagrangian (C.2) under these transformations reads

dr

0L = —.
dt

(C.7)
Thus, we have a divergence symmetry of the action, namely §L = % with f = L. According to
Noether’s first theorem the conserved charge associated to such a divergence symmetry reads

oL

E=—0qg—1L,

aq "
where the last factor describes the divergence symmetry (C.7). Substitution of the expression
for L yields £ = E.
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We conclude with two comments concerning the conservation laws in a dissipative dynamical
system like the damped harmonic oscillator. First, we note that non-autonomous Hamiltonian
systems like the one given by the explicitly time-dependent Hamiltonian (C.4) can be described
in a symplectic extended phase space, see [101] for a general study. In that framework, a time-
dependent Hamiltonian can be mapped by a generalized canonical transformation into a time-
independent Hamiltonian. Indeed, our conserved charge (C.5) coincides with the invariant (46)
of [101] (upon considering n = 1, w = const, F(t) = ~vt, and £ = 1 in [101]).

Second, we remark that for a linear, explicitly time-dependent dynamical system like the
damped harmonic oscillator, one can perform a so-called Arnold transformation |2, Section 1.6.A]
which maps the equation of motion of the system into the one of a free particle by virtue of
a mapping (q,t) — (&, 7) of the underlying non-relativistic space-time into itself, see [26] and
references therein. Indeed, by decomposing the general solution (C.3) of the equation of motion
subject to the initial conditions ¢(0) = x¢ and ¢(0) = vy as
w(t) = e 31
q(t) = voui (t) + zousa(t) with 3 Q -

us(t) = e 2° (cos Ot + 20 sin Qt) ,

sin €t

we obtain the solution 7 +— £(7) of the free particle equation of motion,

It
€= q ez'q
= — = l - ,
§(7) = voT + o with up  cos{t + 50 Sin 2t
uy sin ¢
T=—

U9 - QcosQt + Fsin

An extension of the two-dimensional space-time, (¢,t) ~ (g, t,s), to a three-dimensional space
(which is referred to as Bargmann space or Eisenhart lift) and the related extension (q,t,s) —
(&, 7,0) of the Arnold map then allows to show [26] that the damped harmonic oscillator has
the same symmetries as the free particle (and thereby also admits corresponding conserved
quantities whose expression can be derived by means of the extended Arnold map).
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