Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 002, 20 pages      arXiv:1806.07553      https://doi.org/10.3842/SIGMA.2019.002

Coadjoint Orbits of Lie Algebras and Cartan Class

Michel Goze a and Elisabeth Remm b
a) Ramm Algebra Center, 4 rue de Cluny, F-68800 Rammersmatt, France
b) Université de Haute-Alsace, IRIMAS EA 7499, Département de Mathématiques, F-68100 Mulhouse, France

Received September 13, 2018, in final form December 31, 2018; Published online January 09, 2019

Abstract
We study the coadjoint orbits of a Lie algebra in terms of Cartan class. In fact, the tangent space to a coadjoint orbit $\mathcal{O}(\alpha)$ at the point $\alpha$ corresponds to the characteristic space associated to the left invariant form $\alpha$ and its dimension is the even part of the Cartan class of $\alpha$. We apply this remark to determine Lie algebras such that all the nontrivial orbits (nonreduced to a point) have the same dimension, in particular when this dimension is $2$ or $4$. We determine also the Lie algebras of dimension $2n$ or $2n+1$ having an orbit of dimension $2n$.

Key words: Lie algebras; coadjoint representation; contact forms; Frobenius Lie algebras; Cartan class.

pdf (404 kb)   tex (24 kb)

References

  1. Adimi H., Makhlouf A., Index of graded filiform and quasi filiform Lie algebras, Filomat 27 (2013), 467-483, arXiv:1212.1650.
  2. Ancochéa-Bermúdez J.M., Goze M., Classification des algèbres de Lie nilpotentes complexes de dimension $7$, Arch. Math. (Basel) 52 (1989), 175-185.
  3. Arnal D., Cahen M., Ludwig J., Lie groups whose coadjoint orbits are of dimension smaller or equal to two, Lett. Math. Phys. 33 (1995), 183-186.
  4. Awane A., Goze M., Pfaffian systems, $k$-symplectic systems, Kluwer Academic Publishers, Dordrecht, 2000.
  5. Beltiţă D., Cahen B., Contractions of Lie algebras with 2-dimensional generic coadjoint orbits, Linear Algebra Appl. 466 (2015), 41-63, arXiv:1401.3272.
  6. Beltiţă I., Beltiţă D., Coadjoint orbits of stepwise square integrable representations, Proc. Amer. Math. Soc. 144 (2016), 1343-1350, arXiv:1408.1857.
  7. Beltiţă I., Beltiţă D., On the isomorphism problem for $C^*$-algebras of nilpotent Lie groups, arXiv:1804.05562.
  8. Burde D., Degenerations of 7-dimensional nilpotent Lie algebras, Comm. Algebra 33 (2005), 1259-1277, math.RA/0409275.
  9. Cartan E., Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. Sup. (3) 27 (1910), 109-192.
  10. de Graaf W.A., Classification of solvable Lie algebras, Experiment. Math. 14 (2005), 15-25, math.RA/0404071.
  11. Diatta A., Left invariant contact structures on Lie groups, Differential Geom. Appl. 26 (2008), 544-552, math.DG/0403555.
  12. Duflo M., Vergne M., Une propriété de la représentation coadjointe d'une algèbre de Lie, C. R Acad. Sci. Paris Sér. A-B 268 (1969), A583-A585.
  13. Godbillon C., Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969.
  14. Goze M., Algèbres de Lie de dimension finie, Ramm Algebra Center, available at http://ramm-algebra-center.monsite-orange.fr.
  15. Goze M., Sur la classe des formes et systèmes invariants à gauche sur un groupe de Lie, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), A499-A502.
  16. Goze M., Modèles d'algèbres de Lie frobeniusiennes, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 425-427.
  17. Goze M., Bouyakoub A., Sur les algèbres de Lie munies d'une forme symplectique, Rend. Sem. Fac. Sci. Univ. Cagliari 57 (1987), 85-97.
  18. Goze M., Haraguchi Y., Sur les $r$-systèmes de contact, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 95-97.
  19. Goze M., Remm E., Contact and Frobeniusian forms on Lie groups, Differential Geom. Appl. 35 (2014), 74-94.
  20. Goze M., Remm E., $k$-step nilpotent Lie algebras, Georgian Math. J. 22 (2015), 219-234, arXiv:1502.05016.
  21. Hatipoglu C., Injective hulls of simple modules over nilpotent Lie color algebras, arXiv:1411.1512.
  22. Khuhirun B., Misra K.C., Stitzinger E., On nilpotent Lie algebras of small breadth, J. Algebra 444 (2015), 328-338, arXiv:1410.2778.
  23. Kirillov A.A., Elements of the theory of representations, Grundlehren der Mathematischen Wissenschaften, Vol. 220, Springer-Verlag, Berlin - New York, 1976.
  24. Ooms A.I., On Frobenius Lie algebras, Comm. Algebra 8 (1980), 13-52.
  25. Pinczon G., Ushirobira R., New applications of graded Lie algebras to Lie algebras, generalized Lie algebras, and cohomology, J. Lie Theory 17 (2007), 633-667, math.RT/0507387.
  26. Remm E., Breadth and characteristic sequence of nilpotent Lie algebras, Comm. Algebra 45 (2017), 2956-2966, arXiv:1605.06583.
  27. Remm E., On filiform Lie algebras. Geometric and algebraic studies, Rev. Roumaine Math. Pures Appl. 63 (2018), 179-209, arXiv:1712.00318.

Previous article  Next article   Contents of Volume 15 (2019)