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Abstract. We study twisted products H = αrHr of natural autonomous Hamiltonians Hr,
each one depending on a separate set, called here separate r-block, of variables. We show
that, when the twist functions αr are a row of the inverse of a block-Stäckel matrix, the
dynamics of H reduces to the dynamics of the Hr, modified by a scalar potential depending
only on variables of the corresponding r-block. It is a kind of partial separation of variables.
We characterize this block-separation in an invariant way by writing in block-form classical
results of Stäckel separation of variables. We classify the block-separable coordinates of E3.

Key words: Stäckel systems; partial separation of variables; position-dependent time para-
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1 Introduction

In [28] Paul Stäckel started the study of (complete) separation of variables in orthogonal coor-
dinates for the Hamilton–Jacobi equation of natural Hamiltonians with N degrees of freedom.
The characterization given by Stäckel is both coordinate dependent – involving N ×N Stäckel
matrices (see Theorem 2.1 below) – and invariant – involving N quadratic first integrals of the
Hamiltonian. In the following years, the theory was widely developed by Levi-Civita [21], Eisen-
hart [13, 14] and many others (see [18, 19, 24] for more complete references). We point out that
complete separation implies the completeness of the separated integral of the Hamilton–Jacobi
equation, because of the existence of N independent constants of motion in involution and,
consequently, the Liouville integrability of the Hamiltonian system.

Stäckel himself considered in [29] the case of partial separation of variables and obtained
a sufficient characterization of it in terms of Stäckel matrices of reduced dimension and of a cor-
responding number of quadratic first integrals of the Hamiltonian. Partial separation of variables
gained much less interest than complete separation. This fact is certainly related with the little
use of partial separation in the search of solutions of the Hamilton–Jacobi equation. Moreover,
partial separation does not guarantee the existence of complete integrals of the partially sepa-
rated Hamilton–Jacobi equation, neither Liouville integrability. Nevertheless, as pointed out
by [20], in this case the Jacobi method of inversion can, sometimes, produce additional first
integrals of the Hamiltonian. Recent papers develop partial separation theory for Hamilton–
Jacobi and Schrödinger equations, improving somehow the results of Stäckel, by giving a more
detailed characterization of the metric coefficients in partially separable coordinates and by
providing further conditions for the separation of the quantum systems [17, 22]. Partial sep-
aration of Hamilton–Jacobi and Helmholtz equations on four-dimensional manifolds is briefly
considered in [4]. A different approach to non-complete additive separation is represented by
non-regular separation which relies on the existence of an additively separated solution on proper
submanifolds only [5, 6, 19].
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In our study, we shift for the first time the interest from the Hamilton–Jacobi equation to
the dynamics of the system. We observe that the partial separation introduced by Stäckel,
as well as the complete separation, establishes a dynamical relationship between H and the
(partially) separated equations when these are considered as Hamiltonians on submanifolds of
the original phase space. Namely, we find that the projection of the orbits of H on these
submanifolds, spanned by the separated blocks of coordinates, coincides with the orbits of the
separated Hamiltonians on the same submanifolds. The only difference is a position-dependent
rescaling of the corresponding Hamiltonian parameters. As a consequence, the dynamics of H
can be decomposed into a number of lower-dimensional Hamiltonian systems, allowing in some
case a simpler analysis of the original system. The separated blocks of coordinates, consid-
ered together, form a N -dimensional coordinate system on the base manifold of H and in
these coordinates the N -dimensional metric tensor takes a block-diagonal form. This fact mo-
tivates the name we choose for this kind of separation. We prefer to not use the expression
partial separation since it is already associated with Hamilton–Jacobi theory, which we do not
consider here. By shifting the focus from Hamilton–Jacobi theory to the dynamics, we re-
move the obstruction represented by the completeness of the integral of the Hamilton–Jacobi
equation, which is strictly connected with Stäckel theory of complete separation of variables.
Indeed, partial separation does not imply the existence of a complete integral, so that the
Jacobi method (the construction of a canonical transformation to a trivially integrable Hamil-
tonian) generally fails. On the contrary, our dynamical interpretation of block separation is
basically insensitive to complete or partial separation. We find useful and natural to relate
block-separation with the structure of twisted product that the Hamiltonian assumes when the
separation is possible. This allows us to state our results in a form very close to analogous
results in classical Stäckel separation, analogy missing in all the other studies about partial
separation. Namely, we can characterize block-separation by introducing “block” versions of
celebrated Levi-Civita and Eisenhart equations, and of more recent theorems about complete
separation.

The main result of block-separation is the splitting of a N -dimensional Hamiltonian system
into lower-dimensional systems (the blocks). Thus, methods of analysis disposable only for
low-dimensional systems become available, such as, for example, the topological classification of
integrable Hamiltonian systems [3].

In Section 2 we recall the basic theorems about Stäckel complete separation of variables which
we rewrite in block-separable form. In Section 3 we define twisted products of Hamiltonians
and state some relevant properties of them. In Section 4 we give a dynamical interpretation of
Stäckel separation, providing examples of the related properties of time-scaling. In Section 5
we introduce block-separation and our main results about its characterization, with the block-
like formulations of Levi-Civita, Eisenhart and other theorems, and we provide an invariant
characterization of block separation. The explicit example we deal with is the four-body Calogero
system. In Section 6, we characterize, at least with necessary conditions, all the possible block-
separable coordinates of E3. Section 7 contains our final considerations and comments.

2 Outline of Stäckel separation

We briefly recall the principal theorems regarding complete separation of the Hamilton–Jacobi
equation, see [18] and [1] for further details. The theory of complete additive separation of the
Hamilton–Jacobi equation begins with the work of Stäckel [28, 29] about separability of the
Hamilton–Jacobi equation in orthogonal coordinates. The Einstein summation convention on
equal indices is understood, unless otherwise stated.
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Theorem 2.1. In a given orthogonal coordinate system (qi), the Hamilton–Jacobi equation

H =
1

2

(
gii
(
∂W

∂qi

)2

+ V (q)

)
= c1, (2.1)

admits a complete integral in the separated form,

W =
N∑
i=1

Wi

(
qi, c1, ca

)
, a = 2, . . . , N, det

(
∂2W

∂qi∂cj

)
6= 0, cj = (c1, ca),

if and only if

1) there exists a N×N matrix S which is invertible and such that each element of its j-th row
depends on qj only, such that the

(
gii
)

are a row of S−1. The matrix S is called Stäckel
matrix.

2) V is a Stäckel multiplier, i.e., there exist N functions vi
(
qi
)

such that

V = vi
(
qi
)
gii.

As a consequence of (1) and (2), there exist N − 1 independent quadratic first integrals (Ka)
of H (a = 2, . . . , N) such that (ci) = (c1, ca) are the constant values of (H,Ka), where (Ka) =
K2, . . . ,KN .

A complete integral of (2.1) is then determined by the N separated equations(
dWr

dqr

)2

+ vr = 2Sirci,

where all Sir depend (i = 1, . . . , N) on the coordinate qr only.

We remark that completeness for the integral W of the Hamilton–Jacobi equation means that
it depends on N parameters (cj), constants of motion, such that

det

(
∂W

∂qi∂cj

)
6= 0.

Therefore, the (cj) can be part of a new set of canonical coordinates in which the Hamiltonian
flow becomes trivially integrable.

Later, Levi-Civita [21] obtained necessary and sufficient conditions for the complete separa-
bility of a generic Hamiltonian in a general coordinate system. For natural Hamiltonians and
orthogonal coordinates, H = 1

2g
iip2i + V (q), the Levi-Civita equations split into

giigjj∂ijg
kk − gii∂igjj∂jgkk − gjj∂jgii∂igkk = 0, (2.2)

with i 6= j not summed, i, j, k = 1, . . . , N , for the components of the metric tensor, and

giigjj∂ijV − gii∂igjj∂jV − gjj∂jgii∂iV = 0,

with i 6= j not summed, i, j = 1, . . . , N , called Bertrand–Darboux equations and whose solution
(for gii satisfying (2.2)) is V in the form of a Stäckel multiplier.

In [13], Eisenhart provided a geometrical characterization of complete separation of variables
in orthogonal coordinates introducing Killing tensors and, later, determined all the possible
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orthogonal separable coordinate systems of E3. He determined eleven types of orthogonal sepa-
rable coordinate systems, which are described, for example, in [24]. The fundamental Eisenhart
equations

∂iλj = (λi − λj)∂i ln
∣∣gjj∣∣, i, j = 1, . . . , N

characterize the eigenvalues of a Killing tensor: let K be a 2-tensor with eigenvalues (λi) and
eigenvectors (∂i), then K is a Killing tensor if and only if the Eisenhart equations are satis-
fied. The integrability conditions of the Eisenhart equations for a Killing tensor with simple
eigenvalues coincide with the Levi-Civita equations (2.2).

The coordinate systems can be geometrically understood as foliations of hypersurfaces called
coordinate webs. The separability of a coordinate web can be characterized by a single charac-
teristic Killing tensor, i.e., a symmetric Killing 2-tensor with pointwise simple eigenvalues and
normally integrable eigenvectors, which determine in each point of the space (up to possible
singular sets of zero measure) the basis of coordinate vectors [1]. We recall that a symmetric
Killing 2-tensor K is defined by the equivalent equations

[g,K] = 0, ∇(iKjk) = 0,

where [·, ·] is the Schouten bracket and ∇ is the covariant derivative with respect to the metric g.

Theorem 2.2. The Hamilton–Jacobi equation of a natural Hamiltonian with scalar potential V
is completely separable in an orthogonal coordinate web if and only if there exists a characteristic
Killing 2-tensor K whose eigenvectors are normal to the foliations of the web and such that
d(KdV ) = 0.

The last condition is equivalent to say that V is a Stäckel multiplier in the orthogonal coor-
dinates associated with K. In the formula of Theorem 2.2 K is considered as a linear operator
mapping one-forms into one-forms.

Necessary and sufficient conditions for a Killing tensor to be characteristic are given in [10].

Theorem 2.3 (Tonolo–Schouten–Nijenhuis [26, 27, 30]). A 2-tensor K with real distinct eigen-
values has normal eigenvectors if and only if the following conditions are satisfied

N l
[ijgk]l = 0, N l

[ijKk]l = 0, N l
[ijKk]mK

m
l = 0,

where N i
jk are the components of the Nijenhuis tensor of Ki

j defined by

N i
jk = Ki

lK[j,k] +K l
[jK

i
k],l.

An equivalent formulation of Theorem 2.2 involves N independent quadratic first integrals,
therefore, N Killing 2-tensors, instead of a single characteristic Killing tensor [1].

Theorem 2.4. The natural Hamiltonian H is separable in some orthogonal coordinates
(
qi
)
, if

and only if

1) there exist other N − 1 independent quadratic in the momenta functions Ka such that

{H,Ka} = 0,

2) the Killing two-tensors (ka) associated with (Ka) are simultaneously diagonalized with
pointwise independent eigenvalues and have common normally integrable eigevectors.

It follows that {Ka,Kb} = 0.

The original formulation of the theorem requires the reality of the eigenvalues, however, this
request is unnecessary if one accepts also complex separable coordinates [11].
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3 Twisted products of Hamiltonians

Let

M = ×nr=1Mr,

be the product of n Riemannian or pseudo-Riemannian manifolds (Mr, gr) of dimension nr, so
that dim(M) = n1 + · · ·+ nn = N , and let αr be n non zero functions on M . The manifold M
with metric tensor

G = α1g1 + · · ·+ αngn,

is a Riemannian or pseudo-Riemannian manifold called twisted product manifold of the (Mr)
with twist functions (αr) [23]. In the case when α1 = 1 and α2, . . . , αn are functions on M1, the
manifold M is called warped product. We extend to functions on T ∗M and T ∗Mr the concept
of twisted and warped products in a natural way. In particular, for each r we consider natural
Hamiltonians

Hr =
1

2

(
g
rirj
r priprj + Vr

(
qri
))
,

where
(
qri , pri

)
, i = 1, . . . , nr, are canonical coordinates on T ∗Mr, we construct twisted product

H = αrHr = α1H1 + · · ·+ αnHn,

of the Hr with twist functions αr ∈ F(M).

Then, H is a natural Hamiltonian on T ∗M with metric G and potential V = αrVr.

The manifold M is naturally endowed with block-diagonal coordinates (qri) such that the
components of G are in the form

Grirj = αrg
rirj
r , Grisj = 0, s 6= r,

we call these coordinates twisted coordinates.

We have now n + 1 Hamiltonians, each one with its own Hamiltonian parameter. We call t
the Hamiltonian parameter of H and τr the Hamiltonian parameter of Hr. From Hamilton’s
equations we get

dqri

dt
=

∂H

∂pri
= αr

∂Hr

∂pri
= αr

dqri

dτr
,

and

dpri
dt

= − ∂H
∂qri

= −αr ∂Hr

∂qri
−Hs

∂αs

∂qri
= αr

dpri
dτr
−Hs

∂αs

∂qri
.

Therefore, the relation between the Hamiltonian vector fields XH of H and Xr of Hr is

XH = X̄1 + · · ·+ X̄N −Hs
∂αs

∂qri
∂

∂pri
,

where

X̄r = αrXr, r not summed,

is the rescaled Hamiltonian vector field of Hr.
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4 Stäckel systems as twisted Hamiltonians

In this section we study Stäckel systems in their nature of twisted Hamiltonians. Our aim
is to enlighten the relations among the dynamics of the N -dimensional Hamiltonian system
determined by H and the dynamics of the N one-dimensional Hamiltonians Hr, so that n1 =
· · · = nN = 1, determined by the separated equations of H. Separation of variables for the
Hamilton–Jacobi equation of H will not be of primary interest in what follows. See Section 2
for definitions of Stäckel matrix, Stäckel multiplier and separated equations.

Let be Hr = 1
2(p2r + Vr) and assume that αr are a row (say the first one) of the inverse of

a Stäckel matrix S for given coordinates (qr). Then, the twisted product H = αrHr admits
separation of variables and we have the separated equations

Hr = Sirci, (4.1)

where ci are N constants, corresponding to the N constants of motion Ki of H = K1 and

Ka =
(
S−1

)r
a
Hr, a = 2, . . . , N.

The Hamilton–Jacobi complete separated integral W = W1

(
q1, ci

)
+ · · · + WN

(
qN , ci

)
is given

by integration of(
dWr

dqr

)2

+ Vr = 2Sirci.

The Hamilton’s equations of H, in time t, are

q̇r = αrpr,

ṗr = −∂rαiHi − αi∂rHi = −∂rαiSji cj −
1

2
αr

d

dqr
Vr, (4.2)

where we use the separated equations (4.1) to replace Hr along the integral curves. Since
αr =

(
S−1

)r
1

is a row of the inverse of S, we have

∂rα
rSji = ∂r

(
αiSji

)
− αi∂rSji = ∂r

(
δj1
)
− αr d

dqr
Sjr = −αr dSjr

dqr
, (4.3)

and the same for all other elements of the rows of S−1. Then, we can write

ṗr = αr
d

dqr

(
cjS

j
r −

1

2
Vr

)
. (4.4)

Let γP be the integral curve of XH containing a point P ∈ T ∗M . We consider the values
ci = Ki(P ) and we introduce the Hamiltonians

H̃r = Hr − cjSjr ,

with Hamiltonian parameters τ̃r. We can write the equations of Hamilton for H̃r as

d

dτ̃r
qr = pr = ∂rH̃r, (4.5)

d

dτ̃r
pr =

d

dqr

(
cjS

j
r −

1

2
Vr

)
= −∂rH̃r. (4.6)

Therefore,
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Proposition 4.1. For each orbit of H, the N Hamiltonian vector fields XH̃r
of the H̃r are

proportional to the components with respect to (∂r, ∂
r) of the Hamiltonian vector field XH of H,

where αr are the proportionality functions.

Proof. Let be

XH̃r
=
∂H̃r

∂pr
∂r −

∂H̃r

∂qr
∂r,

and

(XH)r = q̇r∂r + ṗr∂
r.

Due to (4.5) and (4.6) we can write (4.2) and (4.4) as

q̇r = αr∂rH̃r, ṗr = −αr∂rH̃r,

and it follows immediately

(XH)r = αrXH̃r
. �

Remark 4.2. After Proposition 4.1 we can put

αr =
dτ̃r
dt
,

and consider the twist functions as determining position-dependent time-scalings between the
Hamiltonian parameters t and τ̃r.

From Proposition 4.1 follows the important result

Proposition 4.3. The projection of each orbit of H on each coordinate manifold
(
qr, pr

)
coin-

cides with the orbit of H̃r = Hr − cjSjr .

Remark 4.4. The Lagrange equations of the dynamics of H̃r, expressed in times τ̃r are

d2qr

dτ̃2r
=

d

dqr

(
cjS

j
r −

1

2
Vr

)
.

Remark 4.5. Observe that

H̃ = αrH̃r = H − c1, K̃j =
(
S−1

)r
j
H̃r = Kj − cj , j 6= 1,

i.e., the Stäckel systems associated with H and H̃ coincide up to additive constants. To the
constants (ci) for (H,Ka) correspond the costants (c̃i = 0) for

(
H̃, K̃a

)
.

Example 4.6. Twisted product of pendula. In order to show the effect of the time-scaling
described above, we consider the twisted product of the following three one-dimensional Hamil-
tonians

Hi =
1

2

(
p2i − cos qi

)
, i = 1, 2, H3 =

1

2
p23,

corresponding to two pendula and a purely inertial term, coupled together by the first row of
the inverse of the 3× 3 matrix

S =

2 1 + q1 2
(
q1
)2

+ 2

3 q2
(
q2
)3

+ 2

4 q3
(
q3
)2

+ 1

 ,
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Figure 1. Projections of the orbits of H and H̃1 on
(
p1, q

1
)
.

Figure 2. Projections of the orbits of H and H̃1 on
(
t, p1, q

1
)

and
(
τ1, p1, q

1
)
.

which is a Stäckel matrix in a neighborhood of the origin, since the Taylor expansion up to
the second order terms of its determinant ∆ around (0, 0, 0) is ∆ = 5 + 5q1 − 6q2 + 2q3. The
elements of the matrix S−1 are therefore quite complicated rational functions that we do not
need to compute explicitly but make the coupling of the Hr suitable to enhance the effect of the
time-scaling. We take as (αr) the first row of S−1 and consider

H = αrHr = c1.

The quadratic first integrals of H are determined by the remaining rows of
(
S−1

)
Ka =

(
S−1

)r
a
Hr = ca, a = 2, 3.

We already know from the previous section that, despite the complicated expression of the
coupling terms (αr), the relation among the dynamics of H and of the separated Hamiltonians
H̃r = Hr − caSar reduces to a simple position-dependent time scaling.

We plot the numerical evaluation of the systems of Hamiltonian H and

H̃1 = H1 − 2c1 −
(
1 + q1

)
c2 − 2

((
q1
)2

+ 1
)
c3

respectively, and project the orbits on
(
q1, p1

)
, obtaining, for the initial conditions p1 = 0,

p2 = 0, p3 = 0, q1 = 0.2, q2 = −0.2, q3 = 0 and consequently c1 = H = 0.09494666248,
c2 = 0.0916913483, c3 = −0.3797866499, the graphs in Fig. 1, where we see that the orbits
on
(
q1, p1

)
of the two systems coincide. But, if we include the dependence on the different

Hamiltonian parameters (denoted in both the graphs as t), we get Fig. 2 and we can see how
the dependence on the Hamiltonian parameters can be extremely different in the two cases.
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Example 4.7. Twisted product with constant coefficients of harmonic oscillators. Taking
twisted products of Hamiltonians seems an interesting way to establish an interaction among
Hamiltonian systems. An example, even if somehow trivial, is provided by the twisted product
with constant coefficients of harmonic oscillators. Let

Hi =
1

2

(
p2i + ω2

i

(
qi
)2)

, i = 1, . . . , n

be a finite set of harmonic oscillators. Let

H = αiHi, αi ∈ R+,

be their twisted product with constant twist functions. The Hi are all constants of motion of H
and there is actually no interaction among them. However, some effect of the twisted product
is nevertheless evident. The Hamilton equations of H are

dqi

dt
= αi

dqi

dτi
= αipi,

dpi
dt

= −αidpi
dτi

= −αiω2
i q
i.

The general solution of these equations is

qi(t) = ci1 sin
(
αiωit

)
+ ci2 cos

(
αiωit

)
, cij ∈ R.

We see that, for example, the choice αi = k/ωi, for any real positive k, determines a time-scaling
that gives to all the oscillators the same frequency k with respect to t (as well as any other real
positive frequency for different choices of k for each i). Namely, the rescaling is in this case

t =
n∑
i=1

1

αi
τi + t0, or τi = αit+ τ0i .

The frequency of each oscillator Hi with respect to its own Hamiltonian parameter τi remains
clearly ωi.

5 Block-separation

The results of the previous section can be generalized as follows, leading to a kind of partial
separation of variables that we call block-separation.

Let M be a N -dimensional manifold. Let us consider a partition of a coordinate system on M
organized as follows. For n ≤ N , consider for each integer r = 1, . . . , n the integers nr such that

N = n1 + · · ·+ nn.

The coordinate system is therefore composed of n blocks, and for each r ≤ n we have an r-block
of coordinates that we denote as

(
qr1 , . . . , qrnr

)
. We call Mr the manifold spanned by the r-block

of coordinates. Consider T ∗M with the conjugate r-block momenta (pr1 , . . . , prnr
).

Let us consider

Hr =
1

2
g
rirj
r priprj + Vr

(
qrk
)
,

and the n block-separated equations

Hr = Sar ca, a = 1, . . . , n,
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where we assume that g
rirj
r , Sar and Vr are functions of coordinates of the r-block only and ca

are constants. If we assume that the n×n matrix (Sar ) is invertible, and we call it block-Stäckel
matrix, then we can write the n equations(

S−1
)r
a
Hr = ca. (5.1)

We denote αr =
(
S−1

)r
1

and call

H = αrHr, Ka =
(
S−1

)r
a
Hr, a = 2, . . . , n.

Hence, H is in the form of twisted product and it is a natural Hamiltonian whose metric tensor G
is block-diagonalized, with components

Grirj = αrg
rirj
r , Grisj = 0, s 6= r,

and whose scalar potential has the form

V = αrVr,

while the scalar potentials in Ka are

Wa =
(
S−1

)r
a
Vr. (5.2)

A necessary condition for the procedure of above is that the (5.1) are indeed constants of
motion of H.

Proposition 5.1. The n functions (H,Ka) are all independent, quadratic in the momenta and
pairwise in Poisson involution.

Proof. Since S is a block-Stäckel matrix, in analogy to (4.3) we have

∂riα
s
aS

j
s = ∂ri

(
αsaS

j
s

)
− αsa∂riSjs = ∂ri

(
δj1
)
− αra∂riSjr = −αra∂riSjr ,

where r is not summed and αra =
(
S−1

)r
a
. Then, from the definition of Poisson bracket and of

block-separated coordinates, we get the statement. �

For the dynamics of H, an analogue of Proposition 4.3 holds.

Proposition 5.2. The dynamics of H coincides in each r-block with the dynamics of

H̃r = Hr − caSar ,

up to a reparametrization of the Hamiltonian parameter given by αr = dτ̃r/dt. So, the projections
of the orbits of H on each T ∗Mr coincide with the orbits of H̃r.

Proof. The proof follows the same reasoning of the proof of Proposition 4.3. It follows that,
denoting with (XH)r the r-block component of the Hamiltonian vector field XH of H,

(XH)r = q̇ri∂ri + ṗri∂
ri ,

we have

(XH)r = αrXH̃r
,

where XH̃r
is the Hamiltonian vector field of H̃r. Therefore, if (XH)r is tangent to any sub-

manifold f ⊆ T ∗M , then also XH̃r
is, and vice-versa. Hence, just as for the Stäckel systems,

the dynamics of H is determined in each r-block, up to reparametrizations of the Hamilto-
nian parameter, by the dynamics of the H̃r, with the difference that the H̃r are no longer
one-dimensional. �
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In this way, the time-independent dynamics of H can be exactly decomposed into the n
lower-dimensional separated dynamics of Hamiltonians H̃r. The H̃r share with the Hr, factors
of the twisted product H, the same inertial terms, while the scalar potential is modified by the
addition of the term −caSar .

Partial separation of Hamilton–Jacobi equation was introduced by di Pirro in [12] and gene-
ralized by Stäckel in [29]. He introduced the n× n matrix S and his results are analogue to our
Proposition 5.1. Stäckel obtained sufficient conditions for partial separation of the Hamilton–
Jacobi equation of natural Hamiltonians. His work has been extended more recently in [17]
and [22], including the study of partial separation of the Schrödinger equation, obtaining again
sufficient conditions for partial separation, and a more detailed form of the components of
the metric tensor in partially separable coordinates. We remark that, by introducing twisted
products, our characterization of block-separation provides necessary and sufficient conditions
for it, in analogy with Stäckel theory of complete separation. We do not make here a strict
comparison between our results and those of [29] and [17], since these last results are strictly
related to Hamilton–Jacobi theory and there is no consideration of the dynamical relations
among the N -dimensional Hamiltonian and the separated Hamiltonians, which is our main
interest. The detailed characterization of the partially separable metric’s components in [17]
should eventually coincide with a similar characterization of block-separable metrics. We do
not consider here the distinction between linear and quadratic in the momenta first integrals
(from linear first integrals one can always obtain quadratic ones). It is remarkable that in
the last century very few works have been devoted to partial separation of Hamilton–Jacobi
equation. This is understandable when one considers that Hamilton–Jacobi theory is of not
easy application, apart the simplest cases, even when completely separated integrals of the
Hamilton–Jacobi equations do exist. Some applications of partially separated integrals of the
Hamilton–Jacobi equation, in order to generate new possible first integrals of the Hamiltonian,
are presented in [20] and [25]. Our approach based upon the block-separated dynamics, instead
of the partially separated Hamilton–Jacobi equation, appears to be completely new and could
be more suitable for applications of the theory, particularly in the analysis of systems with many
degrees of freedom.

5.1 Block-Eisenhart and block-Levi-Civita equations

We can see, with some surprise, that the characterisation of block-separation includes tools de-
veloped for Stäckel complete separation. Indeed, we can formulate classical results by Eisenhart
and Levi-Civita in block form. If we assume that

(
qi
)

are twisted coordinates
(
qri
)
, then for G

we have

Grirj =
1

αr
grrirj , r not summed,

so that

GrkaG
asj = δ

sj
rk .

Moreover, if we assume that the coordinates
(
qri
)

are block-separated

k
rirj
a =

(
S−1

)r
a
g
rirj
r ,

where kbca are the components of the 2-tensor associated with Ka. Then,

(ka)
ri
rj =

1

αr
(
S−1

)r
a
δrirj ,
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and we can consider the functions

λra =
1

αr
(
S−1

)r
a
, r not summed,

as the analogue of eigenvalues of Killing tensors ka in Stäckel theory. They are indeed the
eigenvalues with respect to G of the Killing tensors (ka) associated with the first integrals (Ka).

Proposition 5.3. In block-separated coordinates, we have that

{H,Ka} = 0,

if and only if the block-Eisenhart equations

∂rkλ
s
a =

(
λra − λsa

)
∂rk ln |αs|, (5.3)

hold, with r, s = 1, . . . , n, for all ri, sj in the respective separated blocks, and (5.2) hold.

Proof. By expanding

{H,Ka} = 0,

in block-separable coordinates, collecting homogeneous terms in the momenta and dividing
by αrαs, from the higher order terms in the momenta we have,(

λsa − λra
)
∂rkg

sisj + gsisj
[
∂rkλ

s
a −

(
λra − λsa

)
∂rk ln |αs|

]
= 0, (5.4)

for all r, s, rk, si, sj in the respective blocks. If r = s the equations become

gsisj∂skλ
s
a = 0,

and, if r 6= s, then ∂rkg
sisj = 0. Hence, (5.4) is equivalent to

gsisj
[
∂rkλ

s
a −

(
λra − λsa

)
∂rk ln |αs|

]
= 0.

If gsisj = 0, the equations are identically satisfied, otherwise, we have (5.3). Since not all the
gsisj are zero, we have the statement. The first-order terms in the momenta vanish if and only
if (5.2) hold. �

By definition of the λsa and of the αs, we have the equations

Ssrα
r = δs1, Ssrλ

r
aα

r = δsa.

We observe that, after putting αr = grr, the previous equations are identical to the relations
typical of Stäckel systems. In the same way, the block-Eisenhart equations become the standard
Eisenhart equations.

Proposition 5.4. The block-Eisenhart equations (5.3) hold if and only if (Sra) is a block-Stäckel
matrix.

As for the Stäckel systems, the block-Levi-Civita equations can be considered as the inte-
grability conditions of the block-Eisenhart equations. The derivation is essentially the same as
in [1].

It is therefore straightforward to see that the block-diagonalized coordinates
(
q1, . . . , qN

)
are

block-separated for the Hamiltonian H if and only if the block-Levi-Civita equations

αrαs∂risjα
m − αr∂riαs∂sjαm − αs∂sjαr∂riαm = 0,

are satisfied, where the coordinates ri, sj are in different blocks and m = 1, . . . , n. The scalar
potential V is already in the form of a block-Stäckel multiplier, thanks to the form of H, and
satisfies

αrαs∂risjV − αr∂riαs∂sjV − αs∂sjαr∂riV = 0.

See (2.2) for a comparison.
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5.2 Invariant characterization

As in Stäckel theory, we can use the previous results for an invariant characterization of block-
separation. Therefore, we have the analogue of the Eisenhart–Kalnins–Miller–Benenti theo-
rem [1].

Proposition 5.5. The twisted Hamiltonian H = αrHr, r = 1, . . . , n, is block-separated in
twisted coordinates

(
qri
)

if and only if

1) there exist other n− 1 independent quadratic in the momenta functions Ka = αraHr such
that

{H,Ka} = 0,

2) the Killing two-tensors (ka) are simultaneously block-diagonalized and have common nor-
mally integrable eigenspaces

Moreover, it follows that {Ka,Kb} = 0.

Remark 5.6. The proof of the previous statement relies on the assumption that each Hr

depends only on coordinates in T ∗Mr. Otherwise, if the metric tensor of H is only block-
diagonal in

(
qri
)
, conditions 1) and 2) are only necessary.

Consequently, the strategy for finding block-separated coordinates of a given N -dimensional
natural Hamiltonian H is the following

• Find a number n ≤ N of independent quadratic first integrals (Ka) of H in involution
among themselves, whose associated Killing tensors (ka) admit common block-diagonalized
normally integrable eigenspaces. The number n corresponds to the number of blocks. The
dimension of the common eigenspaces equals the dimension of each block.

• At this point, we have block-diagonalized coordinates and we can write H = αrHr for some
functions Hr, the αr being determined by the block-Stäckel matrix determined by (ka).

• The last step consists in checking that each Hr depends only on coordinates in T ∗Mr.

This is indeed the procedure applied in Example 5.9.

We recall (see [15]) that in a Riemannian manifold any symmetric 2-tensor is pointwise
diagonalizable, that is there exist n vector fields Ei, pointwise orthogonal eigenvectors of k, such
that k =

∑
i λ

iEi ⊗Ei. The λi are the roots of the characteristic equation det(k − λg) = 0 and
the geometric multiplicity of each eigenvalue λi coincides with its algebraic multiplicity.

In our case, the algebraic multiplicity of each λra is nr at least (for some a, we can have
λra = λsa, and the algebraic multiplicity is in this case nr + ns).

Proposition 5.5 provides an invariant characterization of block-separable coordinates in terms
of what we can call block-Killing–Stäckel algebras generated by the (ka). See [1, 2] for a definition
of Killing–Stäckel algebras.

If we assume that for N -dimensional 2-tensors T κλ to each eigenvalue of algebraic multi-
plicity nr it corresponds a space of nr linearly independent covariant eigenvectors {Xa}, we can
consider the (N−nr)-dimensional space of vectors EN−nr such that

〈
Xa, E

b
〉

= 0, ∀Eb ∈ EN−nr .
We assume that EN−nr is a regular distribution of constant rank N − nr.

The necessary and sufficient condition for the integrability of the distributions EN−nr is given
by the Haantjes theorem [16].
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Theorem 5.7. Let T λκ be a tensor such that to each root with multiplicity nr of the character-
istic equation belongs a set of nr linearly independent covariant eigenvectors. Then the EN−nr

determined by these vectors are integrable if and only if

Hκ
νσT

ν
µT

σ
λ − 2Hσ

ν[λT
ν
µ]T

κ
σ +Hν

µλT
κ
σ T

σ
ν = 0,

where

Hκ
µλ = 2T ν[µ∂|ν|T

κ
λ] − 2T κν ∂[µT

ν
λ],

is the so-called Haantjes tensor of T .

Therefore, in analogy with the characterization of the Stäckel separable coordinate systems,
we have

Proposition 5.8. A natural Hamiltonian admits block-separable coordinates only if its metric
tensor admits a symmetric Killing 2-tensor T satisfying the Haantjes theorem and its scalar
potential V satisfies d(TdV ) = 0. We call T the characteristic tensor of the block-separable
coordinates.

The coordinates are therefore divided into n blocks, where n is the number of the pointwise
different eigenvalues of T , the dimension of each block equals the multiplicity of the correspond-
ing eigenspace.

An analogue result about characteristic Killing tensors of Stäckel systems is given in [10]
making use of theorems due to Tonolo, Schouten and Nijenhuis (see Section 2). The main
difference is due to the fact that, in that case, the eigenvalues of the tensors are simple.

The characterization of block-separation via Killing 2-tensors is extremely powerful in view
of applications. For example, in any Riemannian manifold of constant curvature, all Killing
tensors, of any order, are linear combinations with constant coefficients of symmetric products
of Killing vectors, i.e., isometries [18]. Many common computer-algebra softwares include specific
commands for the determination of Killing tensors of Riemannian manifolds.

Example 5.9. The four-body Calogero system. The N -body Calogero system is the Hamiltonian
system of N points of unitary mass on a line, subject to the interaction

V =

N−1∑
i=1

N∑
j=i+1

(xi − xj)−2.

The Hamiltonian is therefore

H(N) =
1

2

N∑
i=1

p2i + V,

in Cartesian coordinates
(
xi
)

and it is known to be maximally superintegrable for any N and
multiseparable for N < 4 [2, 31].

In constant curvature manifolds, quadratic first integrals Ka = 1
2k

ij
a pipj + Wa of natural

Hamiltonians can be determined in a systematic way. Indeed, see for example [2], Ka is a first
integral of H if and only if the functions kija are the components of a symmetric Killing 2-
tensor ka and dWa = kadV . It follows that a necessary condition on ka for Ka to be a first
integral of H is d(kadV ) = 0. As in any constant curvature manifold, the generic Killing 2-tensor
of E4 is a linear combination (depending on 50 real parameters) of symmetric product of pairs of
Killing vectors. By imposing the condition d(kadV ) = 0 to the elements of this space, one finds
that H(4) admits, other than the Hamiltonian, only two quadratic independent first integrals in
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involution, and not the three necessary for standard Stäckel separation. The two quadratic first
integrals of H(4) can be chosen as follows

Ka =
1

2
kija pipj +Wa,

where Wa are suitable functions that we will make explicit later on, and

kii1 =
∑
j,k

xjxk, j, k = 1, . . . , 4, j < k, j, k 6= i,

krs1 =
1

2

(xl)2 +
(
xm
)2

+ xrxs −
∑
j<k

xjxk

 ,

where j, k = 1, . . . , 4, l, m, r, s all different,

kii2 =
∑
j 6=i

(
xj
)2
, kij2 = −xixj , i 6= j.

The eigenvalues of k1 are{
0,
(
x1
)2

+
(
x2
)2

+
(
x3
)2

+
(
x4
)2}

with multiplicity 1, and∑
i,j

xixj − 1

2

((
x1
)2

+
(
x2
)2

+
(
x3
)2

+
(
x4
)2)

, i, j = 1, . . . , 4, i < j,

with multiplicity 2.

The eigenvalues of k2 are 0, of multiplicity 1, and(
x1
)2

+
(
x2
)2

+
(
x3
)2

+
(
x4
)2
,

of multiplicity 3. Since the tensors of components kij1 and kij2 commute as linear operators
and the metric is positive definite, they can be diagonalized simultaneously in some coordinate
system.

By using some properties of the eigenvalues of Killing tensors [9], one finds that these coor-
dinates (r, φ1, φ2, φ3) are spherical and determined by the consecutive transformations [7]

z1 = 2−1/2
(
x1 − x2

)
,

z2 = 6−1/2
(
x1 + x2 − 2x3

)
,

z3 = 12−1/2
(
x1 + x2 + x3 − 3x4

)
,

z4 = 2−1
(
x1 + x2 + x3 + x4

)
,

and

z4 = r cosφ1,

z3 = r sinφ1 cosφ2,

z2 = r sinφ1 sinφ2 cosφ3,

z1 = r sinφ1 sinφ2 sinφ3.



16 C.M. Chanu and G. Rastelli

The scalar potential V of H(4) becomes in these coordinates

V =
1

r2 sin2 φ1
f(φ2, φ3),

where f(φ2, φ3) is a rather complicated rational function of trigonometric functions of φ1, φ2.
Therefore, the Hamiltonian becomes

H(4) = α1H1 + α2H2 + α3H3,

with

α1 = 1, α2 =
1

r2
, α3 =

1

r2 sin2 φ1
,

H1 =
1

2
p2r + V1, H2 =

1

2
p2φ1 + V2, H3 =

1

2

(
p2φ2 +

1

sin2 φ2
p2φ3

)
+ V3,

where

V = αiVi,

with V1 = 0, V2 = 0, V3 = f(φ2, φ3). Moreover,

K1 = H2 +
1− 2 sin2 φ1

sin2 φ1
H3, K2 = H2 +

1

sin2 φ1
H3.

So that the inverse of the block-Stäckel matrix is

S−1 =


1

1

r2
1

r2 sin2 φ1

0 1
1− 2 sin2 φ1

sin2 φ1

0 1
1

sin2 φ1

 ,

and the block-Stäckel matrix

S =


1 0 − 1

r2

0
1

2 sin2 φ1

2 sin2 φ1 − 1

2 sin2 φ1

0 −1

2

1

2

 .

Therefore, the block-separated Hamiltonians are

H̃1 = H1 − c1 +
1

r2
c3,

H̃2 = H2 −
1

2 sin2 φ1
c2 −

2 sin2 φ1 − 1

2 sin2 φ1
c3,

H̃3 = H3 +
1

2
c2 −

1

2
c3.

The dynamics of the original Hamiltonian H is therefore decomposed into three separated
blocks, corresponding to the two dynamics of Hamiltonians H̃1, H̃2, with one degree of freedom,
and the two-degrees of freedom dynamics generated by H̃3.



Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians 17

Example 5.10. Killing tensor with an eigenvalue of multiplicity N − 1. If H admits a single
quadratic first integral, this one determines block-separable coordinates if it has exactly one
eigenvalue of multiplicity one and another one of multiplicity N − 1, so that we have a 2 × 2
Stäckel matrix. Indeed, from block-Eisenhart equations we have

X1λ1 = 0, X2iλ2 = 0, i = 1, . . . , N − 1,

where X1 is the eigenvector corresponding to the eigenvalue λ1 of multiplicity one and X2i the
eigenvectors of λ2 of multiplicity N − 1. Hence, provided λ1 is not a constant, we have that
the submanifolds λ1 = const are orthogonal to the eigenvector X1, which is therefore normally
integrable. We can put in this case X1 = ∂1 and the block separation is essentially determined
by the equations

λ1
(
q2, . . . , qN

)
= const,

moreover λ2(q
1).

We find in this way another (partial) analogy with Stäckel separation, since in that case,
the existence of a single Killing 2-tensor with distinct eigenvalues in dimension two is enough
to determine Stäckel separable coordinates and the eigenvalues themselves, if not constants,
generate the separable coordinates.

In [9] we show that Stäckel coordinates can be completely determined by the eigenvalues of
the associated Killing two-tensors. Part of those results can be easily extended to block-separable
systems. However, we leave the analysis of these questions for future researches.

6 Block-separable coordinates of E3

In dimension three, only two types of block-separable coordinates can exist, plus the trivial case
of a single three-dimensional block. So, or each block is one-dimensional, and the coordinates
are standard separable orthogonal coordinates, or one block is one-dimensional and the other
one is two-dimensional. In this last case, by denoting the separable coordinates as (u, v, w), the
geodesic Hamiltonian is

H = α1H1 + α2H2,

with

H1 = g1(u)p2u,

and, since any 2-dimensional Riemannian manifold is locally conformally flat,

H2 = g2(v, w)
(
p2v + p2w

)
,

where the choice of local Cartesian coordinates on the manifolds u = const is not restrictive.
Since g1 can always be set equal to 1 by a rescaling of u, we can assume g1 = 1 and call g2
simply g.

The corresponding general block-Stäckel matrix has the form

S =

(
S1
1(u) S2

1(u)
S1
2(v, w) S2

2(v, w)

)
.

Since

α1 =
(
S−1

)1
1
, α2 =

(
S−1

)2
1
,
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the contravariant metric G associated with H has components

Guu =
S2
2(v, w)

∆
, Gvv = Gww =

−S2
1(u)g

∆
,

with ∆ = S1
1(u)S2

2(v, w)− S2
1(u)S1

2(v, w).

We restrict ourselves to the space E3 by imposing that the Riemann tensor of the metric G
is identically zero. We have

R2132 = −
3
(
∂uS

2
1S

1
1 − ∂uS1

1S
2
1

)(
∂wS

2
2S

1
2 − ∂wS2

2S
2
2

)
4∆S2

1g
,

and

R3123 = −
3
(
∂uS

2
1S

1
1 − ∂uS1

1S
2
1

)(
∂vS

2
2S

1
2 − ∂vS2

2S
2
2

)
4∆S2

1g
.

Hence, two cases are possible

i)
(
∂uS

2
1S

1
1 − ∂uS1

1S
2
1

)
= 0,

ii)
(
∂wS

2
2S

1
2 − ∂wS2

2S
2
2

)
= 0 and (∂vS

2
2S

1
2 − ∂vS2

2S
2
2) = 0.

Case i

We have

S1
1 = aS2

1 ,

where a is a constant. We observe that the components of G become

Guu =
S2
2

S2
1

(
aS2

2 − S1
2

) , Gvv = Gww = − g

aS2
2 − S1

2

,

that is, we can write without restrictions

Guu = h(u)−2f(v, w)−2, Gvv = Gww = l(v, w)−2,

with the obvious definitions of h, f and l.

A further rescaling of u allows to set h = 1 and u can always be considered as an ignorable
coordinate, therefore, associated with a Killing vector ∂u.

The unknown functions are now reduced to two, and we can consider the remaining compo-
nents of the Riemann tensor. The resulting equations are

l (∂vvl + ∂wwl)− (∂vl)
2 − (∂wl)

2 = 0,

l∂vvf − ∂vl∂vf + ∂wl∂wf = 0,

l∂wwf + ∂vl∂vf − ∂wl∂wf = 0,

l∂vwf − ∂vl∂wf − ∂wl∂vf = 0. (6.1)

Proposition 6.1. The coordinate leaves u = const are planes and ∂u is proportional to a Killing
vector.

Proof. Equation (6.1) means that the Riemann tensor of the coordinate leaves u = const is
zero. �
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The block-Stäckel matrix is in this case

S =

 a 1(
1− a

f2

)
gl2 −gl

2

f2

 ,

and the Hamiltonian H = α1
1H1 + α2

1H2 and the first integral K = α1
2H1 + α2

2H2 are

H =
1

f2
p2u +

1

l2
(
p2v + p2w

)
, K =

(
1− a

f2

)
p2u −

a

l2
(
p2v + p2w

)
.

Since K = p2u− aH, we have that the first integral associated with this kind of block-separation
is simply p2u. An expected result, because the variable u is ignorable.

We observe that the solution of the equation (6.1) is

l = c2e
c0
2
(w2−v2)−c1v−c3w, (6.2)

where (ci) are real constants. The substitution of (6.2) in the remaining equations yields

∂vvf + (c1 − c0v)∂vf − (c3 + c0w)∂wf = 0,

∂wwf − (c1 − c0v)∂vf + (c3 + c0w)∂wf = 0,

∂vwf + (c3 + c0w)∂vf + (c1 − c0v)∂wf = 0. (6.3)

The sum of the first two equations implies that f is a solution of the Laplace equation. Then,

f = f1(v + iw) + f2(v − iw).

The substitution of this equation into (6.3) gives, after few manipulations, the equivalent system

f ′′1 + (c1 − ic3 − c0(v + iw))f ′1 = 0,

f ′′2 + (c1 + ic3 − c0(v − iw))f ′2 = 0.

Example 6.2. Rotational and cylindrical coordinates. Given in the Euclidean plane any coordi-
nate system with a symmetry axis, the coordinates of E3 obtained by rotating the plane around
the symmetry axis and by taking as third coordinate the angle of rotation, are of this form.
If f is constant and l−2 represents a metric in the Euclidean plane (v, w), then the cylindrical
coordinate system with the plane (v, w) as base is of this form.

Case ii

A similar analysis for Case ii gives the equivalent condition

S1
2 = aS2

2 .

We have

Guu =
1

S1
1 − aS2

1

, Gvv = Gww = − S2
1g

S2
2

(
S1
1 − aS2

1

) ,
and we can write without restrictions

Guu = h(u)2, Gvv = Gww = l(u)2f(v, w)2,

with the obvious definitions of h, f and l.
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Again, a rescaling of u allows to set h = 1, in this case, u is not necessarily ignorable, but
the metric has the structure of a warped metric. Therefore, ∂u must be parallel to a conformal
Killing vector [8].

The equations arising from the imposition that the Riemann tensor is equal to zero are now

l′′l − 2(l′)2 = 0,

l4
(
f(∂vvf + ∂wwf)− (∂vf)2 − (∂wf)2

)
− (l′)2 = 0. (6.4)

The block-Stäckel matrix is in this case

S =

(
1− al2 −l2

a
g

f2
g

f2

)
,

and the Hamiltonian H = α1
1H1 + α2

1H2 and first integral K = α1
2H1 + α2

2H2 are

H = p2u + l2f2
(
p2v + p2w

)
, K = −ap2u +

(
1− al2

)
f2
(
p2v + p2w

)
.

Since K = f2
(
p2v + p2w

)
− aH, we have that the first integral associated with this kind of

block-separation is

f2
(
p2v + p2w

)
,

as expected, due to the warped form of the metric.
The solutions of (6.4) are

l = −(c1u+ c2)
−1,

that, substituted in the second equation, give

f(∂uuf + ∂wwf)− (∂vf)2 − (∂wf)2 − c21 = 0. (6.5)

We remark that (6.5) means that the Ricci scalar of the submanifolds u = const is

R = 2l2(u)c21,

and its Riemann tensor has non null components

Ryzyz =
c21
f2
.

Therefore,

Proposition 6.3. In Case ii, all the coordinate leaves orthogonal to ∂u are planes (c1 = 0) or
spheres. The vector ∂u is proportional to a conformal Killing vector.

Example 6.4. Spherical and cylindrical coordinates. An example of Type ii of block separation
is given by spherical-type coordinates, where u is the radius of the spheres and (v, w) are any
coordinates on the sphere. If c1 = 0, c2 6= 0, then the coordinates are cylindrical with the plane
(v, w) as base.

Remark 6.5. From the previous remarks it follows that, if a coordinate system is block-
separable in n > m blocks, then, not necessarily it is block separable in m blocks too. Indeed,
if we consider the ellipsoidal coordinates in E3, they are Stäckel-separable, then block-separable
in three blocks, but they cannot be block-separable in 2 blocks, since these coordinates do not
include planes or spheres. This fact is not surprising, since it is known that Stäckel separation in
ellipsoidal coordinates cannot be achieved by successive separation of the single variables, and
block-separation into two blocks in dimension three means exactly that one of the variables can
be separated from the others.



Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians 21

The classification of 4D block-separable coordinates, even in Euclidean spaces, appears to
be much less simple than in 3D spaces. We must leave the classification of block-separable
coordinates in 4D Euclidean spaces for other works. Partial separation of Hamilton–Jacobi and
Helmholtz equations on 4D Riemannian manifolds is briefly considered in [4].

7 Conclusions and future directions

By introducing the idea of twisted product of natural Hamiltonians and the analysis of the
consequent relations among the Hamiltonian flows of the product and of its factors, we provide
a new, dynamical, interpretation of classical partial separation of variables of Hamilton–Jacobi
equation, as well as of complete separation. We find that our block-separation, when possi-
ble, allows the reconstruction of the orbits of the product Hamiltonian from the orbits of the
several lower-dimensional block-separated Hamiltonians. We characterize block-separation in
an invariant way, by adapting classical results of complete separation theory for the Hamilton–
Jacobi equation. A deeper characterisation of the twisted form of the Hamiltonian is in progress.
Furthermore, we extend Eisenhart’s classification of completely separable coordinate systems,
the Stäckel systems, in E3 to block-separable coordinate systems, finding essentially coordinate-
blocks of rotational, cylindrical, and spherical type. We are confident that the possibility of
reducing the analysis of the dynamics of Hamiltonians with many degrees of freedom to the
dynamics of its lower-dimensional, block-separated Hamiltonians can find many applications,
even in the field of numerical computations. We do not consider here the block-separation
of Schrödinger’s and other related equations of mathematical physics. Studies on partial sep-
aration of these equations are somehow more developed than those on partial separation of
Hamilton–Jacobi equation, probably because, for these equations, it is less relevant the absence
of completeness in partial separation and the consequent impossibility of application of the
Jacobi’s canonical transformation. We will study block-separation of Schrödinger and related
equations in next papers.
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