Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 014, 27 pages      arXiv:1608.07835      https://doi.org/10.3842/SIGMA.2019.014
Contribution to the Special Issue on Moonshine and String Theory

Generalised Umbral Moonshine

Miranda C.N. Cheng ab, Paul de Lange c and Daniel P.Z. Whalen d
a) Korteweg-de Vries Institute for Mathematics, Amsterdam, The Netherlands
b) Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
c) Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA
d) Stanford Institute for Theoretical Physics, Department of Physics and Theory Group, SLAC, Stanford University, Stanford, CA 94305, USA

Received October 08, 2018, in final form January 30, 2019; Published online March 02, 2019

Abstract
Umbral moonshine describes an unexpected relation between 23 finite groups arising from lattice symmetries and special mock modular forms. It includes the Mathieu moonshine as a special case and can itself be viewed as an example of the more general moonshine phenomenon which connects finite groups and distinguished modular objects. In this paper we introduce the notion of generalised umbral moonshine, which includes the generalised Mathieu moonshine [Gaberdiel M.R., Persson D., Ronellenfitsch H., Volpato R., Commun. Number Theory Phys. 7 (2013), 145-223] as a special case, and provide supporting data for it. A central role is played by the deformed Drinfel'd (or quantum) double of each umbral finite group $G$, specified by a cohomology class in $H^3(G,U(1))$. We conjecture that in each of the 23 cases there exists a rule to assign an infinite-dimensional module for the deformed Drinfel'd double of the umbral finite group underlying the mock modular forms of umbral moonshine and generalised umbral moonshine. We also discuss the possible origin of the generalised umbral moonshine.

Key words: moonshine; mock modular form; finite group representations; group cohomology.

pdf (526 kb)   tex (41 kb) Ancillary Files (16 kb)

References

  1. Altschuler D., Coste A., Maillard J.M., Representation theory of twisted group double, Ann. Fond. Louis de Broglie 29 (2004), 681-694, arXiv:hep-th/0309257.
  2. Anagiannis V., Cheng M.C.N., Harrison S.M., $K3$ elliptic genus and an umbral moonshine module, arXiv:1709.01952.
  3. Bántay P., Orbifolds, Hopf algebras, and the moonshine, Lett. Math. Phys. 22 (1991), 187-194.
  4. Borcherds R.E., Vertex algebras, Kac-Moody algebras, and the monster, Proc. Nat. Acad. Sci. USA 83 (1986), 3068-3071.
  5. Borcherds R.E., Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), 405-444.
  6. Brown K.S., Cohomology of groups, Graduate Texts in Mathematics, Vol. 87, Springer-Verlag, New York, 1994.
  7. Cappelli A., Itzykson C., Zuber J.B., The ${\rm A}$-${\rm D}$-${\rm E}$ classification of minimal and $A^{(1)}_1$ conformal invariant theories, Comm. Math. Phys. 113 (1987), 1-26.
  8. Carnahan S., Generalized moonshine I: Genus-zero functions, Algebra Number Theory 4 (2010), 649-679, arXiv:0812.3440.
  9. Carnahan S., Generalized moonshine, II: Borcherds products, Duke Math. J. 161 (2012), 893-950, arXiv:0908.4223.
  10. Carnahan S., Generalized moonshine, IV: Monstrous Lie algebras, arXiv:1208.6254.
  11. Carnahan S., Miyamoto M., Regularity of fixed-point vertex operator subalgebras, arXiv:1603.05645.
  12. Cheng M.C.N., $K3$ surfaces, ${\mathcal N}=4$ dyons and the Mathieu group $M_{24}$, Commun. Number Theory Phys. 4 (2010), 623-657, arXiv:1005.5415.
  13. Cheng M.C.N., Duncan J.F.R., On Rademacher sums, the largest Mathieu group and the holographic modularity of moonshine, Commun. Number Theory Phys. 6 (2012), 697-758, arXiv:1110.3859.
  14. Cheng M.C.N., Duncan J.F.R., On the discrete groups of Mathieu moonshine, in Perspectives in Representation Theory, Contemp. Math., Vol. 610, Amer. Math. Soc., Providence, RI, 2014, 65-78, arXiv:1212.0906.
  15. Cheng M.C.N., Duncan J.F.R., Optimal mock Jacobi theta functions, arXiv:1605.04480.
  16. Cheng M.C.N., Duncan J.F.R., Meromorphic Jacobi forms of half-integral index and umbral moonshine modules, arXiv:1707.01336.
  17. Cheng M.C.N., Duncan J.F.R., Harvey J.A., Umbral moonshine, Commun. Number Theory Phys. 8 (2014), 101-242, arXiv:1204.2779.
  18. Cheng M.C.N., Duncan J.F.R., Harvey J.A., Umbral moonshine and the Niemeier lattices, Res. Math. Sci. 1 (2014), Art. 3, 81 pages, arXiv:1307.5793.
  19. Cheng M.C.N., Duncan J.F.R., Harvey J.A., Weight one Jacobi forms and umbral moonshine, J. Phys. A: Math. Theor. 51 (2018), 104002, 37 pages, arXiv:1703.03968.
  20. Cheng M.C.N., Ferrari F., Harrison S.M., Paquette N.M., Landau-Ginzburg orbifolds and symmetries of ${K}3$ CFTs, J. High Energy Phys. 2017 (2017), no. 1, 046, 49 pages, arXiv:1512.04942.
  21. Cheng M.C.N., Harrison S., Umbral moonshine and $K3$ surfaces, Comm. Math. Phys. 339 (2015), 221-261, arXiv:1406.0619.
  22. Conway J.H., Norton S.P., Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 308-339.
  23. Dabholkar A., Murthy S., Zagier D., Quantum black holes, wall crossing, and mock modular forms, arXiv:1208.4074.
  24. Dijkgraaf R., Pasquier V., Roche P., Quasi Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18B (1990), 60-72.
  25. Dijkgraaf R., Vafa C., Verlinde E., Verlinde H., The operator algebra of orbifold models, Comm. Math. Phys. 123 (1989), 485-526.
  26. Dijkgraaf R., Witten E., Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990), 393-429.
  27. Dixon L., Ginsparg P., Harvey J., Beauty and the beast: superconformal symmetry in a Monster module, Comm. Math. Phys. 119 (1988), 221-241.
  28. Dixon L., Harvey J.A., Vafa C., Witten E., Strings on orbifolds, Nuclear Phys. B 261 (1985), 678-686.
  29. Dixon L., Harvey J.A., Vafa C., Witten E., Strings on orbifolds. II, Nuclear Phys. B 274 (1986), 285-314.
  30. Dong C., Li H., Mason G., Modular-invariance of trace functions in orbifold theory and generalized moonshine, Comm. Math. Phys. 214 (2000), 1-56, arXiv:q-alg/9703016.
  31. Drinfel'd V.G., Quantum groups, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 798-820.
  32. Duncan J.F.R., Griffin M.J., Ono K., Proof of the umbral moonshine conjecture, Res. Math. Sci. 2 (2015), Art. 26, 47 pages, arXiv:1406.0571.
  33. Duncan J.F.R., Harvey J.A., The umbral moonshine module for the unique unimodular Niemeier root system, Algebra Number Theory 11 (2017), 505-535, arXiv:1412.8191.
  34. Duncan J.F.R., O'Desky A., Super vertex algebras, meromorphic Jacobi forms and umbral moonshine, J. Algebra 515 (2018), 389-407, arXiv:1705.09333.
  35. Eguchi T., Hikami K., Note on twisted elliptic genus of $K3$ surface, Phys. Lett. B 694 (2011), 446-455, arXiv:1008.4924.
  36. Eguchi T., Ooguri H., Tachikawa Y., Notes on the $K3$ surface and the Mathieu group $M_{24}$, Exp. Math. 20 (2011), 91-96, arXiv:1004.0956.
  37. Eichler M., Zagier D., The theory of Jacobi forms, Progress in Mathematics, Vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985.
  38. Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the monster, Pure and Applied Mathematics, Vol. 134, Academic Press, Inc., Boston, MA, 1988.
  39. Frenkel I.B., Lepowsky J., Meurman A., A natural representation of the Fischer-Griess monster with the modular function $J$ as character, Proc. Nat. Acad. Sci. USA 81 (1984), 3256-3260.
  40. Frenkel I.B., Lepowsky J., Meurman A., A moonshine module for the monster, in Vertex Operators in Mathematics and Physics (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., Vol. 3, Springer, New York, 1985, 231-273.
  41. Gaberdiel M.R., Hohenegger S., Volpato R., Mathieu twining characters for $K3$, J. High Energy Phys. 2010 (2010), no. 9, 058, 20 pages, arXiv:1006.0221.
  42. Gaberdiel M.R., Hohenegger S., Volpato R., Mathieu moonshine in the elliptic genus of $K3$, J. High Energy Phys. 2010 (2010), no. 10, 062, 24 pages, arXiv:1008.3778.
  43. Gaberdiel M.R., Persson D., Ronellenfitsch H., Volpato R., Generalized Mathieu moonshine, Commun. Number Theory Phys. 7 (2013), 145-223, arXiv:1211.7074.
  44. Gannon T., Much ado about Mathieu, Adv. Math. 301 (2016), 322-358, arXiv:1211.5531.
  45. Griffin M.J., Mertens M.H., A proof of the Thompson moonshine conjecture, Res. Math. Sci. 3 (2016), Art. 36, 32 pages, arXiv:1607.03078.
  46. Harvey J.A., Murthy S., Moonshine in fivebrane spacetimes, J. High Energy Phys. 2014 (2014), no. 1, 146, 29 pages, arXiv:1307.7717.
  47. Harvey J.A., Murthy S., Nazaroglu C., ADE double scaled little string theories, mock modular forms and umbral moonshine, J. High Energy Phys. 2015 (2015), no. 5, 126, 57 pages, arXiv:1410.6174.
  48. Höhn G., Generalized moonshine for the baby monster, 2003.
  49. Kachru S., Paquette N.M., Volpato R., 3D string theory and umbral moonshine, J. Phys. A: Math. Theor. 50 (2017), 404003, 21 pages, arXiv:1603.07330.
  50. Mason G., Finite groups and modular functions (with an appendix by S.P. Norton), in The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., Vol. 47, Amer. Math. Soc., Providence, RI, 1987, 181-210.
  51. Norton S., From moonshine to the monster, in Proceedings on Moonshine and Related Topics (Montréal, QC, 1999), CRM Proc. Lecture Notes, Vol. 30, Amer. Math. Soc., Providence, RI, 2001, 163-171.
  52. Paquette N.M., Persson D., Volpato R., Monstrous BPS-algebras and the superstring origin of moonshine, Commun. Number Theory Phys. 10 (2016), 433-526, arXiv:1601.05412.
  53. Shimura G., On modular forms of half integral weight, Ann. of Math. 97 (1973), 440-481.
  54. Tuite M.P., Generalised moonshine and abelian orbifold constructions, in Moonshine, the Monster, and Related Topics (South Hadley, MA, 1994), Contemp. Math., Vol. 193, Amer. Math. Soc., Providence, RI, 1996, 353-368, arXiv:hep-th/9412036.
  55. Whalen D., Vector-valued Rademacher sums and automorphic integrals, arXiv:1406.0571.
  56. Zhu Y., Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), 237-302.
  57. Zwegers S., Mock theta functions, Ph.D. Thesis, Utrecht University, 2002, arXiv:0807.4834.

Previous article  Next article   Contents of Volume 15 (2019)