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Abstract. Given a morphism of (small) groupoids with injective object map, we provide
sufficient and necessary conditions under which the induction and co-induction functors
between the categories of linear representations are naturally isomorphic. A morphism with
this property is termed a Frobenius morphism of groupoids. As a consequence, an extension
by a subgroupoid is Frobenius if and only if each fibre of the (left or right) pull-back biset
has finitely many orbits. Our results extend and clarify the classical Frobenius reciprocity
formulae in the theory of finite groups, and characterize Frobenius extension of algebras
with enough orthogonal idempotents.
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1 Introduction

In this section, we first explain the motivations behind this research and we give a general
overview of the theory developed here. Secondly, we introduce the notations and conventions
that are needed in order to give a detailed description of the main results obtained in this paper
and to make this introduction self-contained as much as possible.

1.1 Motivation and overview

Either as abstract objects or as geometrical ones, groupoids appear in different branches of math-
ematics and mathematical physics: see for instance the brief surveys [5, 21, 31]. It seems that the
most common motivation for studying groupoids has its roots in the concept of symmetry and in
the knowledge of its formalism. Apparently, groupoids do not only allow to consider symmetries
coming from transformations of the object (i.e., algebraic and/or geometric automorphisms),
but they also allow to deal with symmetries among the parts of the object.

As it was claimed in [13], to find a proper generalization of the formal definition of symmetry,
one doesn’t need to consider the class of all groupoids: for that, the equivalence relation and
action groupoids serve as an intermediate step. From an abstract point of view, equivalence
relation groupoids are too restrictive as they do not admit any non trivial isotropy group. In
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other words, there is no internal symmetry to be considered when these groupoids are employed.
Concerning action groupoids and their linear representations, where internal symmetries appear,
it is noteworthy to mention that they have been manifested implicitly in several physical situa-
tions a long time ago. In terms of homogeneous vector bundles, the study of molecular vibration
is, for instance, a situation where linear representations of action groupoids are exemplified (see
[30, Section 3.2, p. 97] for more details in the specific case of the space of motions of carbon
tetrachloride and [28] for others examples).

Let us explain with some details how this exemplification appears in a general situation.
Assume a group G is given together with a right G-set M (see [4] for the precise definition)
and consider the associated action groupoid (M × G,M) as in Example 2.2 below. Then, any
abstract homogeneous vector bundle π : E →M over M1 leads to a linear representation on the
action groupoid (M×G,M) given by the functor {x 7→ Ex}x∈M , where the vector spaces Ex’s are
the fibres of (E, π). This bundle also leads to a morphism (π×G, π) : (E×G,E)→ (M ×G,M)
of action groupoids. Additionally, there is an equivalence of symmetric monoidal categories
between the category of homogeneous vector bundles over the G-set M and the category of
linear representations of the groupoid (M ×G,M)2. Furthermore, the functor of global sections
can be identified with the induction functor attached to the canonical morphism of groupoids
(M ×G,M)→ (G, {∗}) (here the group G is considered as a groupoid with only one object {∗},
see Example 3.9 below). As we will see, in the groupoid context, the induction functor is related
to the restriction functor via the (right) Frobenius reciprocity formula.

Frobenius reciprocity formula appears in the framework of finite groups under different forms
(see for instance [30, equation (3.4), p. 109] or [30, equation (3.7), p. 111] and, e.g., [20, Propo-
sition 2.3.9]3) and it has been extended to other classes as well, like locally compact groups
[24, 27] or certain algebraic groups [15]. In the finite case, this formula compares the vector
space dimensions of homomorphism spaces of linear representations over two different groups
connected by a morphism of groups. In more conceptual terms, this amounts to say that for
a given morphism of groups (not necessarily finite), the restriction functor has the induction
functor as right adjoint and the co-induction functor as a left adjoint. From a categorical point
of view, these functors are well known constructions due to Kan and termed right and left Kan
extensions, respectively [22]. In the same direction, if both groups are finite and the connecting
morphism is injective, then the induction and co-induction functors are naturally isomorphic
and the resulting morphism between the group algebras produces a Frobenius extension of uni-
tal algebras [17] (this result becomes in fact a direct consequence of our main theorem, see the
forthcoming subsection).

Apart from the interest they generate in algebra, geometry and topology, Frobenius unital
algebras are objects that deserve to be studied on their own. For instance, commutative Frobe-
nius algebras over fields, like group algebras of finite abelian groups, play a prominent role in
2-dimensional topological quantum field theory, as it was corroborated in [19].

So far, we have been dealing with situations where only finitely many objects were available.
In other words, Frobenius unital algebras and groups (or finite bundles of these ones) are objects
mainly built from categories with finitely many objects. Up to our knowledge, the general case
of infinitely many objects is still unexplored in the literature. As an illustration, the Frobenius

1In the aforementioned physical situation, M is the finite set of four chlorine atoms at the vertices of a regular
tetrahedron including the carbon atom located in the centre and each fibre of E is the three-dimensional vector
space, which describes the displacement of the atom from its equilibrium position. The acting group is S4, the
symmetric group of four elements. The global sections of E are functions that parametrize the displacements of
the molecule in its whole shape.

2This perhaps suggests that certain spaces of motions could be better understood by appealing to the symmetric
rigid monoidal category of linear representations of finite type over adequate groupoids.

3We refer to [30, Section 3.6, p. 128] for an application of this formula to Raman spectrum in quantum
mechanics.



Linear Representations and Frobenius Morphisms of Groupoids 3

formulae for locally compact topological groupoids are far from being understood, since these
formulae are not even explicitly computed for the case of abstract groupoids.

Our motivation is to introduce the main ideas that underpin techniques from the theory of lin-
ear representation of groupoids in relation with their non-unital algebras, which however admits
enough orthogonal idempotents (see the subsequent subsection for the definition). Thus, this pa-
per intends to set up, in a very elementary way, the basic tools to establish Frobenius formulae in
the context of abstract groupoids and to employ these formulae to characterize Frobenius exten-
sions of groupoids on the one hand and Frobenius extensions of their associated path algebras on
the other, hoping in this way to fill in the lack that is present in the literature about this subject.

1.2 General notions and notations

We fix some conventions that will be held all along this paper. If C is a small category (the class
of objects is actually a set) and D is any other category, then the symbol [C,D] stands for the
category whose objects are functors and whose morphisms are natural transformations between
these. Since C is a small category, the resulting category is in fact a Hom-set category, which
means that the class of morphisms (or arrows) between any pair of objects forms a set and this
set will be denoted by Nat(F,G) for any pair of functors F , G. We shall represent a functor
F : C → D between small Hom-set categories as a pair of maps F = (F1, F0), where F1 : C1 → D1

and F0 : C0 → D0 are the associated maps on the sets of arrows and objects, respectively. Given
two objects d, d′ ∈ D, we denote as usual by D(d, d′) the set of all arrows from d to d′. Assume
now that we have a functor F : C → D. Then by D(d, F1(f)) we denote the map which sends
any arrow p ∈ D(d, F0(s(f))) to the composition F1(f)p ∈ D(d, F0(t(f))) (here s(h) and t(h)
stand for the source and the target of a given arrow h). In this way, for each object d ∈ D we
have a functor D(d, F (−)) from C to the category of sets. Similarly, for each object d′ ∈ D, we
have the functor D(F (−), d′), as well as the functor D(F (−), F (−)) from the category Cop × C
to the category of sets (Cop is the opposite category of C obtained by reversing the arrows of C).

Let k be a fixed base field and 1k its identity element. Vector spaces over k and their
morphisms (i.e., k-linear maps) form a category, denoted by Vectk. Finite dimensional ones form
a full subcategory of this, denoted by vectk. The symbol ⊗k denotes the tensor product between
k-vector spaces and their k-linear maps. For any set S, we denote by kS := Spank

{
x |x ∈ S

}
the k-vector space whose basis is the set S. Any element x ∈ S is identified with its image
1kx ∈ kS. By convention kS is the zero vector space whenever S is an empty set. When it is
needed, we will also consider kS as a set.

In this paper we shall consider rings without identity element (i.e., unity). Nevertheless, we
will consider a class of rings (or k-algebras) which have enough orthogonal idempotents in the
sense of [11, 12], and that are mainly constructed from small categories. Specifically, given any
small Hom-set category D, we can consider the path algebra or Gabriel’s ring of D: Its underlying
k-vector space is the direct sum R =

⊕
x,x′∈D0

kD(x, x′) of k-vector spaces. The multiplication
of this ring is given by the composition of D. Thus, for any two homogeneous generic elements
r, r′ ∈ D1, the multiplication (1kr).(1kr

′) is defined by the rule: (1kr).(1kr
′) = 1k(rr

′), the image of
the composition of r and r′ when s(r) = t(r′), otherwise we set (1kr).(1kr

′) = 0 (see [12, p. 346]).
For any x ∈ D0 we denote by 1x the image of the identity arrow of x in the k-vector space R.

In general, the ring R has no unit, unless the set of objects D0 is finite. Instead of that, it
has a set of local units4. Namely, the local units are given by the set of idempotent elements:{

1x1 u · · ·u 1xn ∈ R |xi ∈ D0, i = 1, . . . , n, and n ∈ N \ {0}
}
.

4Recall that a k-vector space R endowed with an associative k-bilinear multiplication is said to be a ring with
local units over k if it has a set of idempotent elements, say E ⊂ R, such that for any finite subset of elements
{r1, . . . , rn} ⊂ R, there is an element e ∈ E such that rie = eri = ri, for any i = 1, . . . , n. This means that
any two elements r, r′ ∈ R are contained in an unital subring of the form Re = eRe, for some e ∈ E, and R is
a directed limit of the Re’s, see [1, 2, 3] and [7].
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For example, if we assume that D is a discrete category, that is, the only arrows are the identities
(or equivalently D0 = D1 = X) then R = k(X) is the ring defined as the direct sum of X-copies
of the base field.

A unital right R-module is a right R-module M such that MR = M , left unital modules are
similarly defined (see [12, p. 347]). For instance, the previous ring R attached to the category D
decomposes as a direct sum of left and also of right unital R-modules:

R =
⊕
x∈D0

R1x =
⊕
x∈D0

1xR.

Following [11], a ring which satisfies these two equalities is referred to as a ring with enough
orthogonal idempotents, whose complete set of idempotents is the set {1x}x∈D0 . A morphism in
this category of rings is obviously defined.

The k-vector space of all homomorphisms between two left R-modules M and M ′ will be
denoted by HomR- (M,M ′). If T is another ring with enough orthogonal idempotents and if M
is an (R, T )-bimodule (R acts on the left and T on the right), then HomR- (M,M ′) is considered
as left T -module by using the standard action (a.f) : M → M ′ sending m to f(ma) for every
a ∈ T and f ∈ HomR- (M,M ′).

1.3 Description of the main results

A groupoid is a small Hom-set category where each morphism is an isomorphism. More precisely,
this is a pair of sets G := (G1,G0) with diagram of sets

G1
s //
t // G0
ιoo ,

where as above s and t are the source and the target of a given arrow respectively, and ι assigns
to each object its identity arrow. In addition, there is an associative and unital multiplication
G2 := G1s×tG1 → G1 acting by (f, g) 7→ fg, as well as a map G1 → G1 which associates to
each arrow its inverse. Notice that ι is an injective map, and so G0 is identified with a subset
of G1. Then a groupoid is a category with additional structure, namely the map which sends any
arrow to its inverse. We implicitly identify a groupoid with its underlying category. A morphism
between two groupoids is just a functor between the underlying categories.

Given a groupoid G, we denote by Repk(G) its category of k-linear representations, that is,
Repk(G) = [G,Vectk], the category of functors from G to Vectk. Let φ : H → G be a morphism
of groupoids and denote by φ∗ : Repk(G) → Repk(H) the associated restriction functor. The
induction and the co-induction functors are denoted by φ∗ and ∗φ, respectively (see Lemmas 3.8
and 3.12 for the precise definitions of these functors). These are the right and the left adjoint
functor of φ∗. We say that φ is a Frobenius morphism (see Definition 5.1 below) provided that φ∗

and ∗φ are naturally isomorphic.

Let φ : H → G be a morphism as above and denote by A and B the rings with enough
orthogonal idempotents attached toH and G, respectively. Then there is a k-linear map given by

φ : A −→ B,

(∑
i

λihi 7−→
∑
i

λiφ1(hi)

)
. (1.1)

As it is shown in Example 5.2 below, this map is not in general multiplicative. However, under
the assumption that φ0 : H0 → G0 is an injective map, φ : A→ B becomes a homomorphism (or
extension) of rings with enough orthogonal idempotents and the complete set of idempotents
{1φ0(u)

}u∈H0 is injected into the set {1x}x∈G0 . In this way, B becomes an A-bimodule via the
restriction of scalars, although not necessarily a unital one.
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The notion of right (left) groupoid-set and that of groupoid-biset are explicitly recalled in
Definitions 2.7 and 2.12, respectively. For any morphism φ of groupoids as above, we denote
U φ(G) := G1s×φ0

H0 and similarly φU (G) := H0φ0
×tG1. These are the right and the left pull-back

bisets associated to φ. More precisely, U φ(G) is the right pull-back (G,H)-biset with structure
maps ς : U φ(G)→ G0, (a, u) 7→ t(a) and pr2 : U φ(G)→ H0, (a, u) 7→ u. Its rightH-action is given
by (a, u)h = (aφ1(h), s(h)), whenever u = t(h), and its left G-action is given by g(a, u) = (ga, u),
whenever s(g) = t(a). Similarly, we find that the left pull-back φU (G) is an (H,G)-biset with
structure maps ϑ : φU (G) → G0, (u, a) 7→ s(a), pr1 : φU (G) → H0, (u, a) 7→ u. The left H-
action is given by h(u, a) = (t(h), φ1(h)a), where s(h) = u, while the right G-action is given by
(u, a)g = (u, ag), where s(a) = t(g) (see Examples 2.9 and 2.13 below).

Now that we have all the ingredients at our disposal, we proceed to articulate our main result
in the subsequent theorem, which is stated below as Theorem 5.3.

Theorem 1.1. Let φ : H → G be a morphism of groupoids and consider as above the associated
rings A and B, respectively. Assume that φ0 is an injective map. Then the following are
equivalent.

(i) φ is a Frobenius morphism;

(ii) There exists a natural transformation E(u,v) : G(φ0(u), φ0(v)) −→ kH(u, v) in Hop×H, and
for every x ∈ G0, there exists a finite set {

(
(ui, bi), ci

)
}i=1,...,N ∈ ς−1

(
{x}
)
× kG(x, φ0(ui))

such that, for every pair of elements (b, b′) ∈ G(x, φ0(u))× G(φ0(u), x), we have∑
i

E(bbi)ci = b ∈ kG(x, φ0(u)) and b′ =
∑
i

biE(cib
′) ∈ kG(φ0(u), x).

(iii) For every x ∈ G0, the left unital A-module AB1x is finitely generated and projective and
there is a natural isomorphism B1u ∼= BHomA− (AB,A1u), of left unital B-modules, for
every u ∈ H0.

In what follows a groupoid is said to be finite if it has finitely many connected components
and each of its isotropy group is finite. On the other hand, it is noteworthy to mention that if
the arrow map φ1 : H1 → G1 of a given morphism of groupoids φ : H → G is injective, then φ

is obviously a faithful functor and the object map φ0 : H0 → G0 is also injective. The following
result, which characterizes the case of an extension by subgroupoids, is a corollary of Theorem 1.1
and stated below as Corollary 5.6.

Corollary 1.2. Let φ : H → G be a morphism of groupoids such that φ is a faithful functor and
φ0 : H0 → G0 is an injective map. Then the following are equivalent:

(a) φ is a Frobenius extension;

(b) For any x ∈ G0, the left H-set ϑ−1
(
{x}
)

has finitely many orbits;

(c) For any x ∈ G0, the right H-set ς−1
(
{x}
)

has finitely many orbits.

In particular, any inclusion of finite groupoids is a Frobenius extension.

If we consider, in both Theorem 1.1 and Corollary 1.2, groupoids with only one object, then
we recover the classical result on Frobenius extensions of group algebras, see Corollary 5.7 below
for more details.
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2 Abstract groupoids: General definition, basic properties
and examples

This section contains all the material: definitions, properties and examples of abstract groupoids
that will be used in the course of the following sections. This material was recollected form
[8, 9, 10] and from the references quoted therein. All groupoids discussed below are abstract
and small ones, in the sense that the class of arrows is actually a set, and they do not admit
any topological or combinatorial structures.

2.1 Notations, basic notions and examples

Let G be a groupoid and consider an object x ∈ G0. The isotropy group of G at x, is the group:

Gx := G(x, x) =
{
g ∈ G1 | s(g) = t(g) = x

}
. (2.1)

Clearly, for any two objects x, y ∈ G0, we have that each of the sets G(x, y) is, by the
groupoid multiplication, a right Gx-set and left Gy-set. Notice here that the multiplication of
the groupoid is by convention defined as the map G1s×tG1 → G1 sending (f, g) to f ◦ g := fg, so
that Gy × G(x, y) and G(x, y)× Gx are both subsets of G1s×tG1. In fact, each of the G(x, y)’s is
a (Gy,Gx)-biset, see [4] for pertinent definitions.

The (left) star of an object x ∈ G0 is defined by Starl(x) := t−1
(
{x}
)

= {g ∈ G1 | t(g) = x}.
The right star is defined using the source map, and both left and right stars are in bijection.
Now, given an arrow g ∈ G1, we define the conjugation operation (or the adjoint operator) as
the morphism of groups:

adg : Gs(g) −→ Gt(g),
(
f 7−→ gfg−1

)
. (2.2)

Let φ : H → G be a morphism of groupoids. Obviously φ induces homomorphisms of groups
between the isotropy groups: φy : Hy → Gφ0(y), for every y ∈ H0. The family of homomorphisms
{φy}y∈H0 is referred to as the isotropy maps of φ. For a fixed object x ∈ G0, its fibre φ−1

0 ({x}),
if not empty, leads to the following “star” of homomorphisms of groups:

Gx Hy

Hy
Hy

Hy

Hy

Hy
Hy Hy

where y runs in the fibre φ−1
0 ({x}).

Example 2.1 (trivial groupoid). Let X be any set. Then the pair (X,X) can be considered as
a groupoid with a trivial structure. Thus, the only arrows are the identities. This groupoid is
known as a trivial groupoid.

Example 2.2 (action groupoid). Any groupG can be considered as a groupoid by takingG1 = G
and G0 = {∗} (a set with one element). Now, if X is a right G-set with action ρ : X ×G→ X,
then one can define the so called the action groupoid : G1 = X ×G and G0 = X, the source and
the target are s = ρ and t = pr1, the identity map sends x 7→ (x, e) = ιx, where e is the identity
element of G. The multiplication is given by (x, g)(x′, g′) = (x, gg′), whenever xg = x′, and the
inverse is defined by (x, g)−1 =

(
xg, g−1

)
. Clearly the pair of maps (pr2, ∗) : G := (G1, G0) →

(G, {∗}) defines a morphism of groupoids. For a given x ∈ X, the isotropy group Gx is clearly
identified with the stabilizer StabG(x) = {g ∈ G | gx = x} subgroup of G.
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Given σ : X → Y a morphism of right G-sets, then the pair of maps (X×G,X)→ (Y ×G, Y )
sending

(
(x, g), x′

)
7→
(
(σ(x), g), σ(x′)

)
defines a morphism of action groupoids.

Example 2.3 (equivalence relation groupoid). We expound here several examples which, in
fact, belong to the same class, that of equivalence relation groupoids.

(1) One can associate to a given set X the so called the groupoid of pairs (called fine groupoid
in [5] and simplicial groupoid in [14]), its set of arrows is defined by G1 = X×X and the set
of objects by G0 = X; the source and the target are s = pr2 and t = pr1, the second and the
first projections, and the map of identity arrows ι is the diagonal map. The multiplication
and the inverse maps are given by

(x, x′)(x′, x′′) = (x, x′′), and (x, x′)−1 = (x′, x).

Let f : X → Y be any map and consider the trivial groupoid (X,X) as in Example 2.1
together with the groupoid of pairs (Y × Y, Y ). Then, the pair of maps (F1, F0) : (X,X)→
(Y ×Y, Y ), where F1 : X → Y ×Y , x 7→ (f(x), f(x)) and F0 = f , establishes a morphism of
groupoids.

(2) Let ν : X → Y be a map. Consider the fibre product Xν× νX as a set of arrows of the
groupoid Xν× νX

pr2 //
pr1 // X,ιoo where as before s = pr2 and t = pr1, and the map of identities

arrows is ι the diagonal map. The multiplication and the inverse are the obvious ones.

(3) Assume that R ⊆ X × X is an equivalence relation on the set X. One can construct
a groupoid R pr2 //

pr1 // X,ιoo with structure maps as before. This is an important class of
groupoids known as the groupoid of equivalence relation (or equivalence relation groupoid).
Obviously (R, X) ↪→ (X×X,X) is a morphism of groupoid, see for instance [6, Example 1.4,
p. 301].

Notice that in all these examples each of the isotropy groups is the trivial group.

Example 2.4 (induced groupoid). Let G = (G1, G0) be a groupoid and ς : X → G0 a map.
Consider the following pair of sets:

Gς
1 := Xς×tG1 s×ςX =

{
(x, g, x′) ∈ X ×G1 ×X | ς(x) = t(g), ς(x′) = s(g)

}
, Gς

0 := X.

Then Gς = (Gς
1, G

ς
0) is a groupoid, with structure maps: s = pr3, t = pr1, ιx = (ς(x), ις(x), ς(x)),

x ∈ X. The multiplication is defined by (x, g, y)(x′, g′, y′) = (x, gg′, y′), whenever y = x′, and the
inverse is given by (x, g, y)−1 =

(
y, g−1, x

)
. The groupoid Gς is known as the induced groupoid

of G by the map ς, (or the pull-back groupoid of G along ς, see [14] for dual notion). Clearly,
there is a canonical morphism φς := (pr2, ς) : Gς → G of groupoids. A particular instance of an
induced groupoid, is the one when G = G is a groupoid with one object. Thus, for any group G,
one can consider the Cartesian product X ×G×X as a set of arrows of a groupoid with set of
objects X.

Example 2.5 (frame groupoid). Let π : Y → X be a surjective map, and write Y =
⊎
x∈X Yx,

where Yx := π−1({x}) (the fibres of π at x). For any pair of elements x, x′ ∈ X, we set

G(x, x′) :=
{
f : Yx → Yx′ | f is a bijective map

}
,

then the pair (G1,G0) :=
(⊎

x,x′∈X G(x, x′), X
)

admits a structure of groupoid (possibly a trivial
one), referred to as the frame groupoid of (Y, π) and denoted by Iso(Y, π), see also [29].

In a more general setting, one can similarly define the frame groupoid of a given family
{Yx}x∈X of objects in a certain category, indexed by a set X. For instance, we could take each
of the Yx’s as an abelian group (resp. k-vector space), in this case, the set of arrows G(x, x′)
should be the set of all abelian group isomorphisms (resp. k-linear isomorphisms).
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Example 2.6 (isotropy groupoid). Let G be a groupoid, then the disjoint union
⊎
x∈G0
Gx of all

its isotropy groups form the set of arrows of a subgroupoid of G whose source is equal to its
target, namely the projection ς :

⊎
x∈G0
Gx → G0. We denote this groupoid by G(i) and refer to

it as the isotropy groupoid of G. For instance, the isotropy groupoid of any equivalence relation
groupoid is a trivial one as in Example 2.1.

2.2 Groupoids actions and equivariant maps

The subsequent definition is, in fact, an abstract formulation of that given in [23, Definition 1.6.1]
for Lie groupoids, and essentially the same definition based on the Sets-bundles notion given in
[29, Definition 1.11].

Definition 2.7. Given a groupoid G and a map ς : X → G0. We say that (X, ς) is a right G-set
(with a structure map ς), if there is a map (the action) ρ : Xς×tG1 → X sending (x, g) 7→ xg,
satisfying the following conditions:

1) s(g) = ς(xg), for any x ∈ X and g ∈ G1 with ς(x) = t(g),

2) xις(x) = x, for every x ∈ X,

3) (xg)h = x(gh), for every x ∈ X, g, h ∈ G1 with ς(x) = t(g) and t(h) = s(g).

A left action is analogously defined by interchanging the source with the target. In general,
a set with a (right or left) groupoid action is called a groupoid-set.

Remark 2.8. If we think of group as a groupoid with a single object, then Definition 2.7 leads
to the definition of the usual action of a group on a set (see [4]). From a categorical point of
view, this action is nothing but a functor from the underlying category of such a groupoid to the
core category of sets5. Writing down this formulation for groupoids with several objects, will
leads to the Definition 2.7. Specifically, following [10, Remark 2.6], for any groupoid G, there
is a (symmetric monoidal) equivalence between the category of right G-sets and the category of
functors from Gop to the core category of sets. An analogue equivalence of categories holds true
for left G-sets. Following the same reasons that were explained in [10, Remark 2.6, Section 5.3],
in this paper we will work with Definition 2.7 instead of the aforementioned functorial approach.

Obviously, any groupoid G acts over itself on both sides by using the regular action, i.e., the
multiplication G1s×tG1 → G1. That is, (G1, s) is a right G-set and (G1, t) is a left G-set with
this action. On the other hand, the pair (G0, id) admits a structure of right G-set, as well as
a structure of a left G-set. For instance, the right action is given by the map G0id×tG1 → G0

sending (x, g) 7→ x.g = s(g).
A morphism of right G-sets (or G-equivariant map) F : (X, ς)→ (X ′, ς ′) is a map F : X → X ′

such that the diagrams

X
ς

yy
F

��

G0

X ′
ς′

ee

Xς×tG1
//

F×id

��

X

F

��
X ′ς′×tG1

// X ′

(2.3)

commute. The category so is constructed is termed the category of right G-sets and denoted by
G-Sets. It is noteworthy to mention that this category admits a structure of symmetric monoidal
category, which is isomorphic to the category of left G-sets. Indeed, to any right G-set (X, ς)
one associated its opposite left G-set (X, ς)o whose underlying set is X and structure maps is ς,

5The core category of a given category is the subcategory whose arrows are all the isomorphisms.
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while the left action is given by gx = x
(
g−1
)
, for every pair (g, x) ∈ G1s×ςX, see [9] for more

properties of these categories.

Given two right G-sets (X, ς) and (X ′, ς ′), we denote by HomG-Sets (X,X ′) the set of all G-
equivariant maps from (X, ς) to (X ′, ς ′). A subset Y ⊆ X of a right G-set (X, ς), is said to be
G-invariant whenever the inclusion Y ↪→ X is a G-equivariant map. For instance, any left star
Starl(x) of any object x ∈ G0, is a G-invariant subset of the right G-set (G1, s).

A trivial example of right groupoid-set is a right group-set. Specifically, if we consider a group
as a groupoid with only one object, then its category of group-sets coincides with its category
of groupoid-sets. The following example, which will be used in the sequel, describes non trivial
examples of groupoids-sets.

Example 2.9. Let φ : H→G be a morphism of groupoids. Consider the triple (H0φ0
×tG1, pr1, ϑ),

where ϑ : H0φ0
×tG1 → G0 sends (u, a) 7→ s(a), and pr1 is the first projection. Then the following

maps (
H0φ0
×tG1

)
ϑ×tG1

// H0φ0
×tG1,(

(u, a), g
) � // (u, ag),

H1s×pr1

(
H0φ0
×tG1

)
// H0φ0

×tG1,(
h, (u, a)

) � // (t(h), φ1(h)a)

define, respectively, a structure of right G-sets and that of left H-set. Analogously, the maps(
G1s×φ0

H0

)
pr2
×tH1

// G1s×φ0
H0,(

(a, u), h
) � // (aφ1(h), s(h)),

G1s×ς
(
G1s×φ0

H1

)
// G1s×φ0

H0,(
g, (a, u)

) � // (ga, u),

where ς : G1s×φ0
H0 → G0 sends (a, u) 7→ t(a), define, respectively, a right H-set and left G-set

structures on G1s×φ0
H0. This in particular can be applied to the morphisms described in Exam-

ples 2.2 and 2.3(1). More precisely, keeping the notation of these two examples, then in the first
one, we have that Xσ×pr1

(Y ×G) =
{

(x, (σ(x), g)) |x ∈ X, g ∈ G
}

is a right groupoid-set with
structure map (x, (σ(x), g)) 7→ σ(xg) and action (x, (σ(x), g))(y, g′) = (x, (σ(x), gg′)), whenever
σ(xg) = y. Moreover, this set is also a left groupoid-set with structure map (x, (σ(x), g)) 7→ x
and action (x′, g′)(x, (σ(x), g)) = (x′, (σ(x′), g′g)), whenever σ(x′g′) = σ(x). Concerning the
second example, we have that the set (Y × Y )pr1×fX =

{
(y, f(x)), x)|x ∈ X, y ∈ Y

}
is a left

groupoid-set with structure map sending ((y, f(x)), x) 7→ y and action (y′, y)((y, f(x)), x) =
((y′, f(x)), x), while its right groupoid-set structure is the trivial one.

2.3 Translation groupoids and the orbits sets

Let G be a groupoid and (X, ς) a right G-set. Consider the pair of sets
(
Xς×tG1, X

)
as a groupoid

with structure maps s = ρ, t = pr1, ιx = (x, ις(x)). The multiplication and the inverse maps are
defined by (x, g)(x′, g′) = (x, gg′) and (x, g)−1 =

(
xg, g−1

)
. This groupoid is denoted by X o G

and it is known in the literature as the right translation groupoid of X by G (or semi-direct product
groupoid, see for instance [26, p. 163] and [9]). Furthermore, there is a canonical morphism of
groupoids σ : XoG → G, given by the pair of maps σ = (pr2, ς). Clearly any G-equivariant map
F : (X, ς)→ (X ′, ς ′), induces a morphism F : X o G → X ′ o G of groupoids, whose arrows map
is given by Xς×tG1 → X ′ς′×tG1, (x, g) 7→ (F (x), g), and its objects map is F : X → X ′.

Example 2.10. Any groupoid G can be seen as a (right) translation groupoid of G0 along G
itself. Thus, the right translation groupoid of the right G-set (G0, id) coincides (up to a canonical
iso) with G itself. Now, let G be a group and X a right G-set. Then the attached action groupoid,
as described in Example 2.2, is precisely the right translation groupoid of X along G, where G
is considered as a groupoid with one object.
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Next we recall the notion of the orbit set attached to a right groupoid-set. This notion is
a generalization of the orbit set in the context of group-sets. Here we use the (right) translation
groupoid to introduce this set. First we recall the notion of the orbit set of a given groupoid.
The orbit set of a groupoid G is the quotient set of G0 by the following equivalence relation: Two
objects x, x′ ∈ G0 are said to be equivalent if and only if there is an arrow connecting them,
that is, there is g ∈ G1 such that t(g) = x and s(g) = x′. Viewing x, x′ ∈ G0 as elements in the
right (or left) G-set (G0, id), then this means that x and x′ are equivalent if and only if, there
exists g ∈ G1 such that x.g = x′. The quotient set of G0 by this equivalence relation, is nothing
but the set of all connected components of G, which we denote by π0(G) := G0/G.

Given a right G-set (X, ς), the orbit set X/G of (X, ς) is the orbit set of the (right) translation
groupoid X o G, that is, X/G = π0(X o G). If G = (X × G,X) is an action groupoid as in
Example 2.2, then obviously the orbit set of this groupoid coincides with the classical set of
orbits X/G, see also Example 2.10. Of course, the orbit set of an equivalence relation groupoid
(R, X), see Example 2.3, is precisely the quotient set X/R modulo the equivalence relation R.

Remark 2.11. In this remark we exhibit the connection between a given groupoid and its
attached equivalence relation groupoid. So, let G be a groupoid and consider the pair of maps(
(t, s), id

)
: (G1,G0)→ (G0 × G0,G0), where the first component sends g 7→ (t(g), s(g)). The pair(

(t, s), id
)

establishes a morphism of groupoids from G to the groupoid of pairs (G0 × G0,G0).
Now, denotes by R the equivalence relation defined as above by the action of G on G0, that is,
for a given pair of objects x, x′ ∈ G0, we have that x ∼R x′, if and only if, there is an arrow
g ∈ G1 such that s(g) = x and t(g) = x′. In this way, we obtain another groupoid, namely, the
equivalence relation groupoid (R,G0) as in Example 2.3(3).

These three groupoids are connected by the following commutative diagram of groupoids:

G1(t,s)

tt

����

s

��
t

��G0 × G0
s //
t // G0.ιoo

ιmm

ι
qq

R s

@@

t

@@
7 W

jj (2.4)

More precisely, we already know from Example 2.3(3) that there is a morphism of groupoids
(R,G0)→ (G0×G0,G0), and since the image of (t, s) lands in R, we obtain the vertical morphism
of groupoids, whose arrow map is by definition surjective. If in diagram (2.4) the lower left hand
map is an identity, i.e., if R = G0×G0, then G posses only one connected component. Thus π0(G)
is a set with one element, and this happens if and only if G is a transitive groupoid.

Summing up, the vertical map in diagram (2.4) is injective, if and only if, G ∼= (R,G0) an
isomorphism of groupoids, if and only if, G has no parallel arrows, that is, none of the forms

• •
•

As a conclusion, a groupoid is an equivalence relation one, if and only if, its has no parallel
arrows.

2.4 Bisets, two sided translation groupoid and the tensor product

Let G and H be two groupoids and (X,ϑ, ς) a triple consisting of a set X and two maps
ς : X → G0, ϑ : X → H0. The following definitions are abstract formulations of those given
in [16, 26] for topological and Lie groupoids, see also [8, 10].
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Definition 2.12. The triple (X,ϑ, ς) is said to be an (H,G)-biset (or groupoid-bisets) if there
is a left H-action λ : H1s×ϑX → X and right G-action ρ : Xς×tG1 → X such that

1. For any x ∈ X, h ∈ H1, g ∈ G1 with ϑ(x) = s(h) and ς(x) = t(g), we have

ϑ(xg) = ϑ(x) and ς(hx) = ς(x).

2. For any x ∈ X, h ∈ H1 and g ∈ G1 with ς(x) = t(g), ϑ(x) = s(h), we have h(xg) = (hx)g.

In analogy with that was mentioned in Remark 2.8, groupoids-bisets can be also realized
as functors from the Cartesian product of groupoids to the core category of sets. Thus, the
category of groupoid-bisets is isomorphic (as a symmetric monoidal category) to the category
of (right) groupoid-sets over the Cartesian product groupoid, see [10, Proposition 3.12].

The two sided translation groupoid associated to a given (H,G)-biset (X, ς, ϑ) is defined to
be the groupoid HnX o G whose set of objects is X and set of arrows is

H1s×ϑXς×sG1 =
{

(h, x, g) ∈ H1 ×X × G1 | s(h) = ϑ(x), s(g) = ς(x)
}
.

The structure maps are

s(h, x, g) = x, t(h, x, g) = hxg−1 and ιx = (ιϑ(x), x, ις(x)).

The multiplication and the inverse are given by:

(h, x, g)(h′, x′, g′) = (hh′, x′, gg′), (h, x, g)−1 =
(
h−1, hxg−1, g−1

)
.

The orbit space of X, is the quotient set X/(H,G) defined using the equivalence relation
x ∼ x′, if and only if, there exist h ∈ H1 and g ∈ G1 with s(h) = ϑ(x) and t(g) = ς(x′), such
that hx = x′g. Thus it is the set of connected components of the associated two translation
groupoid.

Example 2.13. Let φ : H → G be a morphism of groupoids. Consider, as in Example 2.9, the
associated triples (H0φ0

×tG1, ϑ,pr1, ) and (G1s×φ0
H0, pr2, ς). These are (H,G)-biset and (G,H)-

biset,, respectively.

Next we recall the definition of the tensor product of two groupoid-bisets, see for instance [8, 10]
or [9]. Fix three groupoids G, H and K. Given (Y,κ, %) and (X,ϑ, ς), a (G,H)-biset and (H,K)-
biset, respectively. Consider the map ω : Y %×ϑX → H0 sending (y, x) 7→ %(y) = ϑ(x). Then the
pair

(
Y %×ϑX,ω

)
admits a structure of right H-set with action(

Y %×ϑX
)

ω×tH1 −→
(
Y %×ϑX

)
,

((
(y, x), h

)
7−→

(
yh, h−1x

))
.

Following the notation and the terminology of [8, Remark 2.12], we denote by
(
Y %×ϑX

)
/H :=

Y ⊗H X the orbit set of the right H-set
(
Y %×ϑX,ω

)
. We refer to Y ⊗H X as the tensor

product over H of Y and X. It turns out that Y ⊗HX admits a structure of (G,K)-biset whose
structure maps are given as follows. First, denote by y⊗H x the equivalence class of an element
(y, x) ∈ Y %×ϑX. That is, we have yh⊗H x = y⊗H hx for every h ∈ H1 with %(y) = t(h) = ϑ(x).
Second, one can easily check that, the maps

κ̃ : Y ⊗H X → G0,
(
y ⊗H x 7−→ κ(y)

)
; ς̃ : Y ⊗H X → K0,

(
y ⊗H x 7−→ ς(x)

)
are well defined, in such a way that the following ones(

Y ⊗H X
)
κ̃×tK1 −→ Y ⊗H X,

((
y ⊗H x, k

)
−→ y ⊗H xk

)
,

G1s×κ̃

(
Y ⊗H X

)
−→

(
Y ⊗H X

)
,

((
g, y ⊗H x

)
−→ gy ⊗H x

)
define a structure of (G,K)-biset on Y ⊗H X, as claimed.
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2.5 Normal subgroupoids and quotients

Given a morphism of groupoids φ : H → G, we define the kernel of φ and denote by Ker(φ) (or
by φk : Ker(φ) ↪→ H), the groupoid whose underlying category is a subcategory of H given by
following pair of sets:

Ker(φ)0 = H0, Ker(φ)1 =
{
h ∈ H1 | φ1(h) = ιφ0(s(h))

= ιφ0(t(h))

}
.

In other words, Ker(φ) is the subcategory of H whose arrows are mapped to identities by φ.
In particular, the isotropy groups of Ker(φ) coincide with the kernels of the isotropy maps. Thus,
we have that

Ker(φ)u = Ker
(
φ
u : Hu → Gφ0(u)

)
, for any object u ∈ H0.

Furthermore, for any arrow h ∈ H1, we have that

adh
(
Ker(φ)s(h)

)
= Ker(φ)t(h),

where adh is the adjoint operator of h defined in (2.2). These properties motivate the following
definition.

Definition 2.14. Let H be a groupoid. A normal subgroupoid of H is a subcategory N ↪→ H
such that

(i) N0 = H0;

(ii) For every h ∈ H1, we have adh
(
N s(h)

)
= N t(h) as subgroups of Ht(h).

Notice that given a normal subgroupoid N of H, then each of the isotropy groups N u,
u ∈ N0, is a normal subgroup of Hu. In particular the isotropy groupoid N (i) of N , as defined
in Example 2.6, is a normal subgroupoid of the isotropy groupoid H(i) of H.

Example 2.15. As we have seen above the kernel of any morphism of groupoids is a normal
subgroupoid. The converse also holds true (see Proposition 2.16 below). On the other hand,
if H � G is a normal subgroup, then (X × H × X,X) is clearly a normal subgroupoid of the
induced groupoid (X × G × X,X), see Example 2.4. Now taking R any equivalence relation
on a set X, and consider the associated groupoid as in Example 2.3. Then (R, X) is a normal
subgroupoid of the groupoid of pairs (X ×X,X).

Next we recall the construction of the quotient groupoid from a given normal subgroupoid.
Let N be a normal subgroupoid of H. Clearly (H1, s) and (H1, t) are, respectively, right N -set
and left N -set with actions given by the multiplication of H:

H1s×tN1 −→ H1,
(
(h, e) 7−→ he

)
N1s×tH1 −→ H1,

(
(e, h) 7−→ eh

)
.

Therefore (H1, s, t) is a N -biset in the sense of Section 2.4. We denote its orbit set by H1/N .
That is, the quotient set of H1 modulo the equivalence relation h ∼ h′ ⇔ ∃ (e, h, e′) ∈ N1s×tH1

s×sN1 such that eh = h′e′. On the other hand, we can consider the quotient set of H0 modulo
the relation: u ∼ u′ ⇔ ∃ e ∈ N1 such that s(e) = u and t(e) = u′. Denotes by H0/N the
associated quotient set and by H/N :=

(
H1/N ,H0/N

)
the pair of sets, which going to be the

quotient groupoid.

Proposition 2.16. Let N be a normal subgroupoid of H. Then the pair of orbit sets H/N
admits a structure of groupoid such that there is a “sequence” of groupoids:

N �
� // H // // H/N .
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Furthermore, any morphism of groupoids φ : H → G with N ⊆ Ker(φ), factors uniquely as

H
φ //

π "" ""

G

H/N .

φ

OO

Proof. The source, the target and the identity maps of H/N , are defined using those of H, that
is, for a given arrow h ∈ H1/N , we set s

(
h
)

= s(h), t(h) = t(h) and ιu = ιu, for any u ∈ H0/N .
These are well defined maps, since they are independent form the chosen representative of the
equivalence class. The multiplication is defined by(

H/N
)
s×t
(
H/N

)
−→

(
H/N

)
,

(
(h, h′) 7−→ hh′

)
this is a well defined associative multiplication thanks to condition (ii) of Definition 2.14. Lastly,
the inverse of an arrow h ∈ H/N is given by the class of the inverse h−1. The canonical map
(h, u) 7→ (h, u) defines morphism of groupoids H → H/N whose kernel is N ↪→ H. The proof
of the rest of the statements is immediate. �

The fact that normal subgroups can be characterize as the invariant subgroups under the
conjugation action, can be immediately extended to the groupoids context, as the following
Lemma shows. But first let us observe that the conjugation operation of equation (2.2), induces
a left H-action on the set of objects of the isotropy groupoid H(i)

1 with the structure map
ς : H(i)

1 = ∪u∈H0Hu → H0 (source or the target of the isotropy groupoid H(i)). That is,

H1s×ςH(i)
1 −→ H(i)

1,
(
(h, l) 7−→ hlh−1

)
(2.5)

defines a left H-action on H(i)
1.

Lemma 2.17. Let H be a groupoid and N ↪→ H a subcategory with N0 = H0. Then N is
a normal subgroupoids if and only if N (i)

1 is an H-invariant subset of H(i)
1 with respect to the

action of equation (2.5).

Proof. Straightforward. �

3 Linear representations of groupoid. Revisited

We provide in this section the construction and the basic properties of the induction, restriction
and co-induction functors attached to a morphism of groupoids, and connect the categories of
linear representations. These properties are essential to follow the arguments presented in the
forthcoming sections. The material presented here is probably well known to specialists, with
the exception perhaps the result dealing with the characterization of linear representations of
quotient groupoid that has its own interest. Nevertheless, we have preferred to give a self-
contained and elementary exposition, which we think is accessible to wide range of the audience.

3.1 Linear representations: basic properties

Given a groupoid G, we denote, as in Section 1.3, by Repk(G) the category of all k-linear G-
representations. The k-vector space of morphisms between two G-representations V and V ′, will
be denoted by HomG (V,V ′).

To any representation V one associated the functor Ṽ : G → Sets by forgetting the k-vector
space structure of the representation. The same notation f̃ will be used for any morphism f ∈
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HomG (V,V ′). The resulting functor (̃−) : Repk(G) = [G,Vectk]→ [G,Sets] is called the forgetful
functor. The image of an object x ∈ G0 by the representation V, is denoted by Vx = V(x). Given
an arrow g ∈ G1, we denote by Vg : Vs(g) → Vt(g) the image of g by V.

Remark 3.1. As in the case of groups, a linear representation can be defined via a morphism
of groupoids, see also [29, Definition 1.11]. Namely, fix a groupoid G and recall (see for instance
[30, p. 98]) that a “vector bundle” or a Vectk-bundle over G0, is a disjoint union E =

⊎
x∈G0 Ex of

k-vector spaces with the canonical projection π : E → G0
6. We denote a vector bundle over G0

simply by (E, π) and call the vector space Ex the fibre of E at x. In this way, the frame groupoid
Iso(E, π) of (E, π), defined in Example 2.5, has G0 as a set of objects, and the set of arrows
from x to x′ is determined by Iso(E, π)(x, x′) := Isok(Ex, Ex′) the set of all k-linear isomorphisms
from Ex to Ex′ . In the same direction, any morphism of groupoids µ : G → Iso(E, π) whose
objects map is the identity µ0 = idG0 , gives rise to a linear representation of G. Namely, the
corresponding representation is given by the functor E : G → Vectk acting on objects by x 7→ Ex

(the fibre of E at x) and on arrows by g 7→
[
Eg = µ1(g) : Es(g) → Et(g)

]
.

Conversely, assume we are given a G-representation V. Then the pair (V, πV) which consists
of the disjoint union V =

⊎
x∈G0 Vx and the projection πV : V̄ → G0, clearly defines a vector

bundle over G0. Moreover, we have a morphism of groupoids, defined by

%V := ν : G −→ Iso(V, πV), ν0(x) = x, and ν1(g) = Vg, (3.1)

for every x ∈ G0 and g ∈ G1.

On the other hand it is clear that for any G-representation V, the pair (V, πV) with the map

G1s×πVV −→ V,
(
(g, v) 7−→ gv := Vg(v)

)
(3.2)

lead to a left G-set structure on the bundle V, in the sense of the left version of Definition 2.7.
This in fact establishes a faithful functor from the category of G-representations to the category

of left G-sets, which is in turn the composition of the forgetful functor (̃−) and the functor
discussed in the Remark 2.8, that goes from the category of functors [G,Sets] to the category of
left G-sets.

It is well known, see for instance [25], that the category Repk(G) is an abelian symmetric
monoidal category with a set of small generators. The monoidal structure is extracted from
that of Vectk, that is, for any two representations U and V, their tensor product is the functor
U ⊗ V : G → Vectk defined by (U ⊗ V)x = Ux ⊗k Vx and (U ⊗ V)g = Ug ⊗k Vg, for every x ∈ G0

and g ∈ G1.

The category Repk(G), is in particular locally small, in the sense that the class of subobjects
of any object is actually a set. The zero representation well be denoted by 0 and the identity
representation (with respect to the tensor product), or the trivial representation, by 1. Moreover,
to any representation one can associate its dual representation. Indeed, take a representation V,
for any object x ∈ G0, set (V∗)x := (Vx)∗ = Homk (Vx, k) the linear dual of the k-vector space Vx,
and set (V∗)g :=

(
Vg−1)∗

for a given arrow g ∈ G1. In this way, we obtain a representation V∗
with a canonical morphism of representations V∗ ⊗ V → 1 fibrewise given by the evaluation
maps V∗x ⊗k Vx → k acting by ϕ⊗k v 7→ ϕ(v), for every x ∈ G0.

We say that a representation V ∈ Repk(G) is finite, when its image lands in the subcategory
vectk of finite dimensional k-vector spaces. The full subcategory of finite representations is then
an abelian symmetric rigid monoidal category.

6This is a vector bundle (possibly with infinite dimensional fibers) in the topological sense [18, Definition 2.1],
by taking the discrete topology on both sets G0 and k.
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Example 3.2. For instance a finite representation where each one of its fibres is a one-dimen-
sional k-vector space can be identified with a family of elements {λ(s(g),t(g))}g∈G1 in k×, the
multiplicative group of k, satisfying

λ(s(g),t(g))λ(s(h),t(h)) = λ(s(hg),t(hg)), whenever t(g) = s(h), and

λ(x,x) = 1k, for every x ∈ G0.

In the second condition, the term λ(x,x) stands for the ιx’s projection of λ. The family
{λ(s(g),t(g))}g∈G1 in k×, where λ(s(g),t(g)) = 1k, for every g ∈ G1, corresponds then to the trivial
representation 1.

To any representation V ∈ Repk(G), one can consider the projective and the inductive limits
of its underlying functor, since this one lands in the Grothendieck category Vectk. These k-vector
spaces, are denoted by lim←−G (V) and lim−→G (V), respectively.

Given a representation V we can define as follows its G-invariant subrepresentation. For any
x ∈ G0, we set VGx the subspace of Vx invariant under the action of the isotropy group Gx. That
is,

VGx =
{
v ∈ Vx | V l(v) := lv = v, for all l ∈ Gx

}
.

Now, take an arrow g ∈ G1, and a vector v ∈ VGs(g). Then, for any q ∈ Gt(g), we have that

q(gv) = g
((
g−1qg

)
v
)

= gv.

Therefore, the image under the linear map Vg of any vector in VGs(g) lands in VGt(g). The same
holds true interchanging g by g−1. This means that for any arrow g ∈ G1, we have a commutative
diagram

Vs(g) Vg // Vt(g)

VGs(g) //
?�

OO

VGt(g).
?�

OO

In this way we obtain a representation VG : G → Vectk with a monomorphism VG ↪→ V in
Repk(G). This representation is referred to as the G-invariant subrepresentation of V.

Remark 3.3. If G is a groupoid with only one object, that is a group, then VG = HomG (1,V).
In general, however, we can not directly relate this later vector space with the fibres of the G-
invariant representation. More precisely, we have that lim←−G (V) = HomG (1,V) as vector spaces,
and the following commutative diagram of vector spaces:

0 // lim←−G (V) //

&&

∏
x∈G0
Vx π //

∏
g∈G1
Vt(g)

0 // lim←−G (VG) //

OO

∏
x∈G0
VGx

OO

//
∏
g∈G1
Vt(g),

OO

0

OO

0

OO

where for every g ∈ G1, we have πg = Vg ◦ ps(g) − pt(g) and the p’s are the canonical projections.
Then the dashed monomorphism of vector spaces is not necessarily an isomorphism.
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In a dual way, one defines the co-invariant representation. Specifically, let V be a G-
representation, for any x ∈ G0, we set the quotient k-vector space

VGx := Vx/Spank

{
ev − v | e ∈ Gx, v ∈ Vx

}
.

Given now an arrow g ∈ G1, we have that the linear map Vg extend to the quotients, that is, we
have a commutative diagram

Vs(g) Vg //

����

Vt(g)

����
VGs(g)

Vg // VGt(g) .

Therefore, the family {(VGs(g) ,Vg)}x∈,G0 defines a representation which we denote by VG. In
this way, we have a canonical epimorphism V � VG in the category Repk(G) given fibrewise by
the linear map πx : Vx � VGx . In analogy with group theory context, the representation VG is
referred to as the coinvariant quotient representation of V.

Remark 3.4. Similar to Remark 3.3, the coinvaraint representation VG is related to the limit of
the representation lim−→G (V) and also to the vector space HomG (V,1). More precisely, we have,
form one hand, an isomorphism of k-vector spaces((

lim−→
G

(V)
)∗ −→ HomG (V,1) , ϕ 7−→

(
ϕ ◦ ζx

)
x∈G0

)
;(

HomG (V,1) −→
(

lim−→
G

(V)
)∗
, lim−→
G

(fx) 7−→
(
fx
)
x∈G0

)
,

where {ζx : Vx → lim−→G (V)}x∈G0 are the structural maps of the stated limit. On the other hand,

since each of the maps ζx factors through the quotient VGx , we have a family of maps ζx : VGx →
lim−→G (V) whose direct sum rends the following diagram

⊕
g∈G1 Vs(g)

τ //

��

⊕
x∈G0 Vx

τc //

��

lim−→G (V) //

��

0

⊕
g∈G1 VGs(g) //

⊕
x∈G0 VGx

��

⊕x∈G0ζx

66

// lim−→G (VG)

��

// 0

0 0

commutative, where τ is given by τg = τt(g)◦Vg−τs(g), for every g ∈ G1. The dashed epimorphism
is then not necessarily an isomorphism.

We finish this subsection by the following observation.

Lemma 3.5. Let G be a groupoid and V, U two representations in Repk(G). Then the fa-
mily of k-vector spaces

{
Homk (Ux,Vx)

}
x∈G0 defines a representation in Repk(G) denoted by

Homk (U ,V). In particular, if U is a finite representation then

V ⊗ U∗ ∼= Homk (U ,V) ,

an isomorphism in the category Repk(G). Furthermore, for any U and V, we have

lim←−
G

(
Homk (U ,V)G

)
= HomG (U ,V) .
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Proof. The action of Homk (U ,V) on a given arrow g ∈ G1, is defined by the following linear
isomorphism

Homk (Us(g),Vs(g)) −→ Homk (Ut(g),Vt(g)) ,
(
σ 7−→ Vg ◦ σ ◦ Ug−1)

.

This clearly defines an object in Repk(G). If U is a finite representation, then each fibre
Homk (Ux,Vx) is linearly isomorphic to the k-vector space Vx ⊗k U∗x . This family of linear iso-
morphisms leads in fact to the stated natural isomorphism.

For the proof of last statement, let us consider the following well defined map:

HomG (U ,V)
zx // Homk (Ux,Vx)G

x

,

α � // αx

for every x ∈ G0. Each one of these maps is a k-linear map where HomG (U ,V) is endowed with the
structure of k-vector space fibrewise inherited from that of V. This leads to a projective system
which is in turn the universal one. Thus, HomG (U ,V) = lim←−G

(
Homk (U ,V)G

)
as claimed. �

3.2 The restriction functor

Let φ : H → G be a morphism of groupoids. The restriction functor is the functor defined by

φ∗ : Repk(G) −→ Repk(H),
(
V −→ V ◦ φ; f −→ fφ

)
, (3.3)

where the notation is the obvious one. In the subsequent we analyze the property of the restric-
tion functor corresponding to a normal subgroupoid. Such a property is in fact a generalization
of [20, Proposition 2.3.2] and of course has its own interest in groupoids context.

Proposition 3.6 (representations of quotients). Let N be a normal subgroupoid of H and
denote by π : H → G = H/N the canonical projection. Then the restriction functor induces
an isomorphism of categories between Repk(G) and the full subcategory Repk(H)N of Repk(H)
whose representations are trivial on N , that is, an object in Repk(H)N is a representation V
of H such that N ⊂ Ker(%V), where %V is as in equation (3.1).

Proof. We know that π∗ : Repk(G)→Repk(H) has the image in the full subcategory Repk(H)N.
Let us denote also by π∗ : Repk(G) → Repk(H)N the resulting functor. The inverse of this
functor is construct with the help of Proposition 2.16. Explicitly, given a representation (V, %V)
in Repk(H)N , we have by equation (3.1) a morphism of groupoids %V : H → Iso(V, πV) with
N ⊂ Ker(%V). Then by Proposition 2.16, we have a representation %V : G = H/N → Iso(V, πV).
This establishes a functor π∗ : Repk(H)N → Repk(G) which turns out to be the inverse of π∗. �

Remark 3.7. LetN be a normal subgroupoid ofH. Then for any representationW ∈ Repk(H),
we can consider the assignment

WN : H0 −→ Vectk,
(
u 7−→ WNu

)
,

where the subspace WNu of Wu consists of those vectors which are invariant under the action
of loops in N , that is, those v ∈ Wu such that We(v) = ev = v, for every e ∈ N u. It turns
out that WN gives a well defined functor which acts by restriction on arrows, because N is
normal. Indeed, take a vector w ∈ WNs(h) for some h ∈ H1 and e ∈ N t(h). Then, we get that
e(hw) = h

((
h−1eh

)
w
)

= hw. Therefore,WN is a sub-representation of the H-representationW.
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3.3 The induction functor

Let φ : H → G be a morphism of groupoids. Fix an object x ∈ G0 and consider the functor

φ
x : H −→ Sets,

(
u 7−→ G(x, φ0(u))

)
,

which acts as follows: For any arrow h ∈ H1, we have φx(h) = G(x, φ1(h)):

φ
x(h) : G

(
x, φ0(s(h))

)
−→ G

(
x, φ0(t(h))

)
,

(
p 7−→ φ1(h)p

)
. (3.4)

As a contravariant functor φ− : G → [H, Sets], it acts by

φ
g
u = G(g, φ0(u)) : φ

x(u) = G(x, φ0(u)) −→ φ
x′(u) = G(x′, φ0(u)),

(
q 7−→ qg

)
, (3.5)

for every object u ∈ H0 and arrow g : x′ → x in G1.
Given a representation W in Repk(H), we can construct a family of k-vector spaces{

Nat
(
φx, W̃

)}
x∈G0 by using the fibrewise k-vector space structure of W, where W̃ : H → Sets is

the image ofW by the forgetful functor. More precisely, for each x ∈ G0, the set of natural trans-
formations Nat

(
φx, W̃

)
admits a canonical structure of k-vector space given componentwise by

(α+ β)u = αu + βu, (λα)u = λαu : φ
x
u −→Wu,

for every u ∈ H0 and α, β ∈ Nat
(
φx, W̃

)
. We have then construct a functor

φ∗(W) : G // Vectk,

x � // Nat
(
φx, W̃

)
,

g � // Nat
(
φg, W̃

)
.

(3.6)

Lemma 3.8. Let φ : H → G be a morphism of groupoids. Then the assignment φ∗ : Repk(H)→
Repk(G) given in equation (3.6), gives a well defined functor referred to as the induction functor.

Proof. Given a morphism f : W →W ′ in the category Repk(H) and an arrow g ∈ G1, we need
to check that the following diagram

Nat
(
φs(g), W̃

) φ∗(f)s(g)=Nat(φs(g),f̃)
//

Nat
(

φg ,W̃
)

��

Nat(φs(g), W̃ ′)

Nat(φg ,W̃ ′)

��
Nat

(
φt(g), W̃

) φ∗(f)t(g)=Nat(φt(g),f̃)
// Nat

(
φt(g), W̃ ′

)
of vector spaces, commutes. This follows from the equality

Nat
(
φ
t(g), f̃

)
◦Nat

(
φ
g, W̃

)
(α) = f̃ ◦ α ◦ φ

g = Nat
(
φ
g, W̃ ′

)
◦Nat

(
φ
s(g), f̃

)
(α),

for every α ∈ Nat
(
φs(g), W̃

)
. �

Example 3.9. Let H := (G×X,X) be an action groupoid as in Example 2.2 and consider the
morphism φ := pr1 : H → G of groupoids, where G is considered as a groupoid with one object.
Let W ∈ Repk(H) and set Γ(W) the k-vector space of global sections of the vector bundle W
attached to the representation W. Then Γ(W) ∈ Repk(G) and the assignment W → Γ(W)
establishes a functor from Repk(H) to Repk(G). Furthermore, we have a natural isomorphism
φ∗(W) ∼= Γ(W), for every H-representation W.
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Remark 3.10. Let φ : H → G be a morphism of groupoids. Denote by φU (G) := H0φ0
×tG1 the

(H,G)-biset of Example 2.13. Given an H-representation W and consider it associated vector
bundle (W, πW) as a left H-set by using the action of equation (3.2). Then we have a natural
isomorphism

HomH-Sets

(
φU (G),W

)
//
∏
x∈G0

φ∗(W)x,

f � //
(
fx
)
x∈G0

, where
(
fxu : φxu →Wu,

(
a 7→ f(u, a)

))
u∈H0

,[
(u, a) 7→ ps(a)u (a)

] (
px
)
x∈G0

.�oo

This in fact comes from the natural isomorphism

HomH-Sets

(
ϑ({x})−1,W

)
// Nat

(
φx, W̃

)
= φ∗(W)x,

F � //
[
φxu →Wu,

(
a 7→ F (u, a)

)]
,[

(u, a) 7→ ηu(a)
]

η,�oo

where ϑ : φU (G)→ G0 is as before, the map (u, a) 7→ s(a).

Remark 3.11 (projection formula). Analogue to the group case, see for instance [20, Proposi-
tion 2.10.18], one can show that there is a natural isomorphism

φ
∗
(
W ⊗ φ∗(V)

) ∼= φ
∗(W)⊗ V,

for any pair of representations V ∈ Repk(G) and W ∈ Repk(H). At the level of objects this
isomorphism is given by

Nat
(
φx, W̃

)
⊗k Vx // Nat

(
φx, ˜W ⊗ φ∗(V)

)
,

η⊗ v � //
[
φx(u)→Wu ⊗ Vφ(u),

(
b 7→ ηu(b)⊗ Vb(v)

)]
u∈H0

,

whose inverse is computed by fixing a dual basis {vj}j ⊂ Vx and employing the dual basis
{Vb(vj)}j ⊂ Vφ(u), for any b ∈ φx(u) and u ∈ H0. The rest of verifications are left to the reader.

A more conceptual proof can be given using Mitchell’s Theorem [25, Theorem 4.5.2] employing
the set of small projective generators that enjoy both categories Repk(H) and Repk(G).

3.4 The co-induction functor

Consider as before φ : H → G a morphism of groupoids. Denote by U φ(G) := G1s×φ0
H0 the

underlying set of the (G,H)-biset described in Example 2.13 with the two structure maps
ς : U φ(G)→ G0, (a, u) 7→ t(a) and pr2 : U φ(G)→ H0, (a, u) 7→ u.

For a given x ∈ G0, we consider the fibre ς−1({x}) =
{

(a, u) ∈ U φ(G)|t(a) = x
}

as a left H-
invariant subset of U φ(G). We then consider its associated right translation groupoid ς−1({x})o
H, which we denote by Hφ,x, together with the canonical morphism of groupoids

V φ,x : Hφ,x = ς−1({x}) oH −→ H,
[(

((a′, u′), h), (a, u)
)
7−→ (h, u)

]
,

that is, V φ,x
0 (a, u) = u and V φ,x

1

(
((a′, u′), h)

)
= h. As in Section 3.2, we have the attached

restriction functor V φ,x
∗ : Repk(H) → Repk(Hφ,x), for any x ∈ G0. In this way, for any x ∈ G0,

and W ∈ Repk(H), we set

∗
φ(W)x := lim−→

Hφ,x

(V φ,x
∗ (W)) (3.7)
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and denote by
{

υx(a,u) : V φ,x
∗ (W)(a,u) =Wu −→ ∗φ(W)x

}
(a,u)∈ς−1({x})

the structural k-linear maps
of this limit.

Now, given an arrow g ∈ G1, we have a diagram of morphism of groupoids

ς−1({s(g)}) oH

��

V φ,s(g)

!!
ς−1({t(g)}) oH

V φ,t(g)
// H,

whose vertical arrow is the isomorphism sending ((a, u), h) 7→ ((ga, u), h). Therefore, by the
definition of the limit of equation (3.7), there is a unique k-linear map ∗φ(W)g : ∗φ(W)s(g) →
∗φ(W)t(g) rendering commutative the following diagrams

∗φ(W)s(g)
∗φ(W)g // ∗φ(W)t(g)

Wu = V φ,s(g)
∗ (W)(a,u)

υ
s(g)
(a,u)

OO

ζg
(a,u) // V φ,t(g)

∗ (W)(ga,u) =Wu

υ
t(g)
(ga,u)

OO
(3.8)

for every (a, u) ∈ ς−1({s(g)}), where ζg(a,u) acts by identity, that is,

ζg(a,u) : V φ,s(g)
∗ (W)(a,u) =Wu −→ V φ,t(g)

∗ (W)(ga,u) =Wu,
(
w 7−→ w

)
.

Equations (3.7) and (3.8) lead then to a functor

∗φ(W) : G // Vectk,

x � // ∗φ(W)x,

g � // ∗φ(W)g.

(3.9)

On the other hand, if f : W → W ′ is a morphism of H-representations, then, for every x ∈ G0,
we define the following k-linear map

∗
φ(f)x : ∗φ(W)x −→ ∗

φ(W ′)x (3.10)

as the unique k-linear map which renders commutative the following diagram of k-vector spaces

∗φ(W)x
∗φ(f)x // ∗φ(W ′)x

V φ,x
∗ (W)(a,u)

υW
(a,u)

OO

ξf
(a,u) // V φ,x

∗ (W ′)(a,u),

υW
′

(a,u)

OO

where ξf(a,u) : V φ,x
∗ (W)(a,u) → V φ,x

∗ (W ′)(a,u) is the k-linear map sending w 7→ fu(w).

Lemma 3.12. Let φ : H → G be a morphism of groupoids. Then the assignment ∗φ : Repk(H)→
Repk(G) described in equation (3.9), gives rise to a well defined functor, referred to as the co-
induction functor of φ.

Proof. Given a morphism f : W →W ′ in the category Repk(H) and an arrow g ∈ G1, we need
to check that the following diagram

∗φ(W)s(g)
∗φ(f)s(g) //

∗φ(W)g

��

∗φ(W ′)s(g)

∗φ(W ′)g

��
∗φ(W)t(g)

∗φ(f)t(g) // ∗φ(W ′)t(g)
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of vector spaces, commutes. This is equivalent to show the commutativity of the following
diagrams:

V φ,s(g)
∗ (W)(a,u)

ξf
(a,u) //

ζW,g
(a,u)

��

V φ,s(g)
∗ (W ′)(a,u)

ζW
′,g

(a,u)
��

V φ,t(g)
∗ (W)(ga,u)

ξf
(ga,u) // V φ,t(g)

∗ (W ′)(ga,u)

for any (a, u) ∈ ς−1({s(g)}). However, this is immediate from the definitions of the involved
maps. �

Remark 3.13. Given W an H-representation, then one can consider, as in Section 2.4, the
tensor product U φ(G) ⊗H W, where as above (W, πW) is the underlying vector bundle of W
endowed within its canonical left H-action, as in equation (3.2). An equivalence class of an
element ((a, u), w) ∈ U φ(G)pr2× πW will be denoted by (a, u) ⊗H w. Now, if we consider the

vector bundle
(
∗φ(W), π

)
endowed with its canonical left G-action, then we obtain the following

G-equivariant map

U φ(G)⊗HW // ∗φ(W),

(a, u)⊗H w � // υt(a)(a,u)(w),

which is not in general an isomorphism.

4 Frobenius reciprocity formulae

In this section we prove the left and the right Frobenius reciprocity formulae. This mainly
establishes, from one side an adjunction between the restriction and induction functors, and from
another one an adjunction between the restriction and co-induction functors. Form a categorical
point of view, this amounts to the notions of left and right Kan extensions. Here we follow an
elementary and direct exposition, taking advantage of groupoids structure, without appealing
to any heavy categorical notions.

4.1 Right Frobenius reciprocity formula

In this subsection we show that the induction functor is a right adjoint functor to the restriction
functor, that is, the right Frobenius reciprocity formula. So, let φ : H → G be a morphism of
groupoids and consider two representations V ∈ Repk(G) and W ∈ Repk(H). Take a morphism
σ ∈ HomH (φ∗(V),W), and define, for every x ∈ G0, the linear map

Ψ(σ)x : Vx −→ φ
∗(W)x = Nat

(
φ
x, W̃

)
,v 7−→

 φxu = G(x, φ0(u)) //Wu

p � // σu(pv)


u∈H0

 , (4.1)

where pv = Vp(v) ∈ Vφ0(u)
is the left G-action on V defined in equation (3.2).

Lemma 4.1. The family of linear map {Ψ(σ)x}x∈G0 stated in equation (4.1) defines a natural
transformation. That is, Ψ(σ) ∈ HomG (V, φ∗(W)).
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Proof. First let us check that each of the Ψ(σ)x’s is well defined. So given an arbitrary arrow
h ∈ H1, we need to show that the diagram

φxs(h)

Ψ(σ)x(v)s(h) //

φxh

��

Ws(h)

Wh

��
φxt(h)

Ψ(σ)x(v)t(h) //Wt(h)

(4.2)

is commutative. So take an arrow p ∈ φx(s(h)) = G(x, φ0(s(h)), then

hΨ(σ)x(v)s(h)(p) = hσs(h)(pv) = σt(h)(φ1(h)pv),

because σ is H-equivariant. On the other hand, we have that

Ψ(σ)x(v)t(h) ◦ φ
x
h(p) = Ψ(σ)x(v)t(h)(φ1(h)p) = σt(h)(φ1(h)pv),

and this shows the commutativity of (4.2). Therefore, Ψ(σ)x : Vx → φ∗(W)x is a well defined
linear map. Now, take an arrow g ∈ G1, we have to check that

Vs(g)
Ψ(σ)s(g) //

Vg

��

Nat
(
φs(g), W̃

)
Nat(φg ,W̃)
��

Vt(g)
Ψ(σ)t(g) // Nat

(
φt(g), W̃

)
is a commutative diagram of k-vector spaces. To this end, consider an arbitrary u ∈ H0 and an
arrow p ∈ φt(g)u = G(t(g), φ0(u)). Then, for any vector v ∈ Vs(g), we have from one hand that(

Nat
(
φ
g, W̃

)
◦Ψ(σ)s(g)(v)

)
u
(p) =

(
Ψ(σ)s(g)(v) ◦ φ

g
)
u
(p) = Ψ(σ)s(g)(v)u ◦ φ

g
u(p)

= Ψ(σ)s(g)(v)u
(
pg
)

= σu
(
pgv
)
,

and from the other one, we have that(
Ψ(σ)t(g)(gv)

)
u
(p) = σu(p(gv)) = σu(pgv),

whence the commutativity of that diagram. �

Reciprocally, take a morphism γ ∈ HomG (V, φ∗(W)), then for every object u ∈ H0, we set

Φ(γ)u : Vφ0(u)
−→Wu,

(
v 7−→ γφ0(u)

(v)u(ιφ0(u)
)
)
.

Lemma 4.2. The family of linear maps {Φ(γ)}u∈H0
defines a natural transformation. That is,

we have a morphism Φ(γ) ∈ HomH (φ∗(V),W).

Proof. Let h ∈ H1 and a vector v ∈ Vs(h). Then, from one hand, we have

Wh ◦ Φ(γ)s(h)(v) =Wh ◦ γφ0(s(h))(v)s(h)(ιφ0(s(h))
) = γφ0(s(h))(v)t(h)(φ1(h)), (4.3)

where the second equality follows from the fact that γφ0(s(h))(v) ∈ Nat
(
φφ0(s(h)), W̃

)
. On the other

hand, since γ ∈ HomG (V, φ∗(W)), we know that

γφ0(t(h))

(
φ1(h)v

)
u
(p) = γφ0(s(h))

(v)u ◦ φ
φ1(h)
u (p), (4.4)
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for every u ∈ H0 and p ∈ φφ1(h)(u) = G(φ0(t(h)), φ0(u)), see equation (3.5). Substituting in
equation (4.4), u = t(h) and p = ιφ0(t(h))

, we then get

γφ0(t(h))

(
φ1(h)v

)
t(h)

(ιφ0(t(h))
) = γφ0(s(h))

(v)t(h) ◦ φ
φ1(h)

t(h) (ιφ0(t(h))
) = γφ0(s(h))

(v)t(h)
(
φ1(h)

)
. (4.5)

Therefore,

Φ(γ)t(h) ◦ Vφ1(h)(v) = Φ(γ)t(h)
(
φ1(h)v

)
= γφ0(t(h))

(
φ1(h)v

)
t(h)

(
ιφ0(t(h))

)
(4.5)
= γφ0(s(h))

(v)t(h)
(
φ1(h)

) (4.3)
= γφ0(s(h))(v)t(h)(φ1(h)) =Wh ◦ Φ(γ)s(h)(v),

for every h ∈ H1 and v ∈ Vs(h), and this finishes the proof. �

Proposition 4.3 (right Frobenius reciprocity). Let φ : H → G be a morphism of groupoids and
consider the restriction φ∗ : Repk(G) → Repk(H) and the induction φ∗ : Repk(H) → Repk(G)
functors. Then the maps Ψ and Φ described, respectively, in Lemmas 4.1 and 4.2, define a natural
isomorphism

HomH (φ∗(V),W)
Ψ //

HomG (V, φ∗(W)) ,
Φ

oo

for every G-representation V and H-representation W. In other words, the induction functor is
a right adjoint functor of the restriction functor.

Proof. The naturality of both Ψ and Φ are fulfilled by construction. Let us check that they are
mutually inverse. So fixing σ ∈ HomH (φ∗(V),W) and γ ∈ HomG (V, φ∗(W)), for every u ∈ H0

and v ∈ Vφ0(u), we have that

Φ
(
Ψ(σ)

)
u
(v) = Ψ(σ)φ0(u)

(
v
)
u
(ιφ0(u)

) = σu(v),

which implies that Φ ◦Ψ = id. On the other way around, for every x ∈ G0, w ∈ Vx, u ∈ H0 and
p ∈ φx(u) = G(x, φ0(u)), we have that

Ψ
(
Φ(γ)

)
x
(w)u(p) = Φ(γ)u(pw) = γφ0(u)

(
pw
)
u
(ιφ0(u)) =

(
Nat

(
φ
p, W̃

)
◦ γx

)
(w)u(ιφ0(u))

= γx(w)u ◦ φ
p
u(ιφ0(u)) = γx(w)u

(
ιφ0(u)p

)
= γx(w)u(p),

where in the third equality we have used the naturality of γ. Therefore, for every x ∈ G0 and
w ∈ Vx, we have checked that Ψ

(
Φ(γ)

)
x
(w) = γx(w). This means that Ψ ◦ Φ(γ) = γ, for an

arbitrary γ, which implies that Ψ ◦ Φ = id and this finishes the proof. �

4.2 Left Frobenius reciprocity formula

Keep the notations occurring in Section 3.4. Next we proceed to show that the co-induction
functor is a left adjoint functor of the restriction functor. To this end, the subsequent lemma is
needed. We consider then a morphism of groupoids φ : H → G.

Lemma 4.4. Let V and W be, respectively, a G-representation and H-representation. For any
morphism θ ∈ HomG (∗φ(W),V), the family of k-linear maps:

{
Γ(θ)u : Wu = V φ,φ(u)

∗ (W)(ι
φ(u),u)

υ
φ(u)
(ι

φ(u),u) // ∗φ(W)φ(u)

θφ(u) // Vφ(u)

}
u∈H0

defines a morphism Γ(θ) ∈ HomH (W, φ∗(V)).
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Proof. Given an arrow h ∈ H1, we set f = υ
φ(t(h))

(ι
φ(t(h)),t(h))

◦ ζφ(h)

(ιφ(s(h)),s(h))
, see diagram (3.8). Then,

we have a commutative diagram

V φ,φ(s(h))
∗ (W)(ι

φ(s(h)),s(h))
=Ws(h)

υ
φ(s(h))
(ι

φ(s(h)),s(h)) //

Wh

��

f

))

∗φ(W)φ(s(h))

θφ(s(h)) //

∗φ(W)φ(h)

��

Vφ(s(h))

Vφ(h)

��
V φ,φ(t(h))
∗ (W)(ι

φ(t(h)),t(h))
=Wt(h)

υ
φ(t(h))
(ι

φ(t(h)),t(h))

// ∗φ(W)φ(t(h))
θφ(t(h))

// Vφ(t(h)),

where the left hand square commutes, since the upper triangle is so by diagram (3.8), while the
lower triangle commutes because of the limit defining ∗φ(W)φ(t(h)) and because the ζ map acts
by identities. This shows that Γ(θ) : W → φ∗(V) is a natural transformation, as desired. �

In the other way around, consider δ ∈ HomH (W, φ∗(V)). For a fixed object x ∈ G0, we set
the following family of k-linear maps{

σx(a,u) : V φ,x
∗ (W)(a,u) =Wu

δu // Vφ(u)
Va // Vx

}
(a,u)∈Hφ,x

, (4.6)

where Hφ,x is, as in Section 3.4, the right translation groupoid ς−1({x}) oH. It is from it own
definition that the family

{
σx(a,u)

}
(a,u)∈Hφ,x is an inductive system of k-vector spaces. Therefore,

for every x ∈ G0, there is a unique k-linear map

Σ(δ)x = lim−→
(a,u)∈Hφ,x

(
σ
x
(a,u)

)
: ∗φ(W)x −→ Vx (4.7)

such that Σ(δ)x ◦υx(a,u) = σx(a,u), for any object (a, u) in Hφ,x. Furthermore, given an arrow g ∈ G1

and an object (a, u) in Hφ, x, we have a commutative diagram

Vs(g) Vg // Vt(g)

V φ,s(g)
∗ (W)(a,u)

σ
s(g)
(a,u)

OO

ζg
(a,u) // V φ,t(g)

∗ (W)(ga,u),

σ
t(g)
(ga,u)

OO
(4.8)

where ζg(a,u) is as in diagram (3.8).

Lemma 4.5. Let W and V be, respectively, an H-representation and a G-representation with
a morphism δ ∈ HomH (W, φ∗(V)). Then the family of k-linear maps

{
Σ(δ)x

}
x∈G0

of equa-

tion (4.7), defines a morphism Σ(δ) ∈ HomG (∗φ(W),V).

Proof. For any arrow g ∈ G1 and an object (a, u) in Hφ,s(g), we have that the diagram

Vs(g) Vg // Vt(g)

∗φ(W)s(g)
∗φ(W)g //

Σ(δ)s(g)

99

∗φ(W)t(g)

Σ(δ)t(g)

99

V φ,s(g)
∗ (W)(a,u)

σ
s(g)
(a,u)

JJ

ζg
(a,u) //

υ
s(g)
(a,u)

OO

V φ,t(g)
∗ (W)(ga,u)

υ
t(g)
(ga,u)

OO

σ
t(g)
(ga,u)

II

commutes by the definition of the involved maps and diagram (4.8). Therefore, the upper
square should commutes as well, and this shows that Σ(δ) : ∗φ(W) → V is a morphism of G-
representations, as claimed. �
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Proposition 4.6 (left Frobenius reciprocity). Let φ : H → G be a morphism of groupoids and
consider the restriction φ∗ : Repk(G)→ Repk(H) and the co-induction ∗φ : Repk(H)→ Repk(G)
functors. Then the maps Γ and Σ described, respectively, in Lemmas 4.4 and 4.5, define a natural
isomorphism

HomH (W, φ∗(V))
Σ //

HomG (∗φ(W),V) ,
Γ

oo

for every G-representation V and H-representation W. In other words, the co-induction functor
is a left adjoint functor of the restriction functor.

Proof. For a given δ ∈ HomH (W, φ∗(V)) and u ∈ H0, we know from Lemma 4.4 that

Γ(Σ(δ))u : V φ,φ(u)
∗ (W)(ι

φ(u),u)

υ
φ(u)
(ι

φ(u),u) // ∗φ(W)φ(u)

Σ(δ)φ(u) // Vφ(u).

Therefore,

Γ(Σ(δ))u = Σ(δ)φ(u) ◦ υ
φ(u)

(ι
φ(u),u)

(4.7)
= σ

φ(u)

(ι
φ(u),u)

= δu

for every object u ∈ H0, and so Γ ◦ Σ = id. Conversely, starting with a morphism θ ∈
HomG (∗φ(W),V) and an object x ∈ G0, we have that

Σ(Γ(θ))x
(4.6), (4.7)

= lim−→
(a,u)∈Hφ,x

(Va ◦ Γ(θ)u)
4.4
= lim−→

(a,u)∈Hφ,x

(
Va ◦ θφ(u) ◦ υ

φ(u)

(ιφ(u),u)

)
= lim−→

(a,u)∈Hφ,x

(
θx ◦ ∗φ(W)g ◦ υ

φ(u)

(ιφ(u),u)

)
= lim−→

(a,u)∈Hφ,x

(
θx ◦ υ

x

(a,u)

)
= θx ◦ lim−→

(a,u)∈Hφ,x

(
υ
x

(a,u)

)
= θx,

where in the third equality we have used the naturality of θ and in the fourth one the dia-
gram (3.8). This shows that Σ ◦ Γ = id and finishes the proof. �

Remark 4.7. As the expertise reader can observe, the construction of the induction and co-
induction functors φ∗ and ∗φ corresponds, respectively, (up to natural isomorphisms) to the well
known universal construction of the right and left Kan extensions of the functor φ∗, see [22] for
more details. The proof presented here is somehow elementary and makes use of the groupoid
structure, for instance the notion of translation groupoid among others. This also have the
advantage of describing explicitly the natural isomorphisms establishing these adjuntions, which
in fact is crucial to follow the arguments of the main result of the paper stated in the forthcoming
section.

5 Frobenius extensions in groupoids context

The main aim of this section is to characterize Frobenius morphism of groupoids, see Defini-
tion 5.1 below. This in fact is a kind of an universal definition which can be applied to any
functor with left and right adjoints functors. Typical examples are Frobenius algebras over a
given field (or commutative ring), where the forgetful functor form the category of modules to
vector spaces has isomorphic left and right adjoint functors, namely, the tensor and the homs
functors (see [17]). Our main result can be seen also as an approach to Frobenius extensions of
algebras with enough orthogonal idempotents.
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Definition 5.1. Let φ : H → G be a morphism of groupoids. We say that φ is a Frobenius
morphism provided that the induction and the co-induction functors φ∗ and ∗φ are naturally
isomorphic.

From now on, we will freely use the notations and the notions expounded in Section 1.2. So
let us consider a morphism φ : H → G of groupoids, and denote by φ : A → B the associated
morphism of k-vector space defined in equation (1.1). If we assume that φ0 : G0 → G0 is injec-
tive, then φ becomes a morphism of rings with enough orthogonal idempotents. The following
counterexample shows that φ could not be multiplicative, without assuming φ0 injective:

Example 5.2. Let f : X → Y be a non injective map, by choosing two distinct elements
x, x′ ∈ X whose images are equal f(x) = f(x′). Take H := (X,X) to be a trivial groupoid as
in Example 2.1, and G = (Y × Y, Y ) to be a groupoid of pairs as in Example 2.3(1). It is by
definition that, for any two objects y, y′ in G, there is only one arrow from y to y′, namely, the
one defined by the pair (y, y′). We denote by 1(y,y′) the image of this arrow in the ring B, so that
we have 1(z,z) = 1z, for any z ∈ Y . In this situation, the associated rings with enough orthogonal
idempotents are the direct sums of the form A = k(X) and B = k(Y×Y ), respectively. Consider
the functor φ : H → G whose arrows map is φ1 : X → Y ×Y , which sends ιx 7→ ι(f(x),f(x)), and its
objects map is given by φ0 = f . Therefore, the k-linear map φ : k(X) → k(Y×Y ) attached to φ

sends 1u 7→ 1(f(u),f(u)), for any u ∈ X. Now coming back to the chosen elements x 6= x′, we know
that φ(1x′) = 1φ0(x

′) = 1f(x′) = 1f(x) = 1φ0(x)
= φ(1x), so that we get

φ(1x.1x′) = φ(0) = 0 and φ(1x).φ(1x′) = 1f(x).1f(x′) = 1f(x) 6= 0,

which show that φ(1x.1x′) 6= φ(1x).φ(1x′), and so φ is not multiplicative.

By scalar restriction, B is considered as an A-bimodule, although, this is not necessarily an
unital one. The underlying vector spaces of the unital left, right A-module and A-bimodule
parts of B are, respectively, given by the direct sums:

AB =
⊕

u∈H0,x∈G0

kG(x, φ0(u)), BA =
⊕

u∈H0,x∈G0

kG(φ0(u), x),

ABA =
⊕

u,u′∈H0

kG(φ0(u), φ0(u
′)).

Since we are in groupoids context, it is clear that AB ∼= BA as k-vector spaces. We refer to [7],
for more details on unital modules and on the notion of finitely generated and projective unital
modules over rings with local units, specially their characterization by means of tensor and homs
functors.

The following is our main result:

Theorem 5.3. Let φ : H → G be a morphism of groupoids and consider as above the associated
algebras A and B, respectively. Assume that φ0 is an injective map. Then the following are
equivalent.

(i) φ is a Frobenius morphism;

(ii) There exists a natural transformation E(u,v) : G(φ0(u), φ0(v)) −→ kH(u, v) in Hop×H, and
for every x ∈ G0, there exists a finite set {

(
(ui, bi), ci

)
}i=1,...,N ∈ ς−1

(
{x}
)
× kG(x, φ0(ui))

such that, for every pair of elements (b, b′) ∈ G(x, φ0(u))× G(φ0(u), x), we have∑
i

E(bbi)ci = b ∈ kG(x, φ0(u)) and b′ =
∑
i

biE(cib
′) ∈ kG(φ0(u), x).
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(iii) For every x ∈ G0, the left unital A-module AB1x is finitely generated and projective and
there is a natural isomorphism B1u ∼= BHomA− (AB,A1u), of left unital B-modules, for
every u ∈ H0.

The proof of this theorem will be done in several steps, following the path: (i) ⇒ (ii) ⇒
(iii)⇒ (i).

5.1 The proof of (i) ⇒ (ii) in Theorem 5.3

Assume that there is a natural isomorphism ∗φ ∼= φ∗. This in particular implies that, for every
x ∈ G0, there is a natural isomorphism

Nat(φ
x, ˜(−)) ∼= lim−→

Hφ,x

(V φ,x
∗ (−)) . (5.1)

Now, for a given object u ∈ H0, let us denote by Hu : H → Vectk the H-representation given over
objects by v → kH(u, v) and obviously defined over arrows. The natural isomorphism of (5.1),
leads then to a family of bijections

Nat
(
φ
x, H̃u

) ∼= lim−→
Hφ,x

(V φ,x
∗ (Hu)) ,

which is clearly natural in u ∈ H0. In the previous situation, we have

Lemma 5.4. For any x ∈ G0 and u ∈ H0, there is an isomorphism

lim−→
Hφ,x

(V φ,x
∗ (Hu)) ∼= kG(φ0(u), x),

which is natural in both components (u, x) ∈ Hop × G.

Proof. Fix for the moment x and u as in the statement. We need to check that the vector
space kG(φ0(u), x) is the inductive limit of the inductive system{

V φ,x
∗ (Hu)(b,v) = kH(v, u)

}
(b,v)∈ς−1({x})

.

Let us first define an inductive cone over kG(φ0(u), x). So take (b, v) ∈ ς−1({x}), that is,
b ∈ G(φ0(v), x), then we have a linear map

τ(b,v) : kH(u, v) −→ kG(φ0(u), x),

(∑
i

λiai 7−→
∑
i

λibφ1(ai)

)
,

which is clearly compatible with the arrows of the groupoid Hφ,x, and this gives us the desired
inductive cone. We need then to check that this is an initial object among all others cones.
So given an arbitrary cone

{
ξx(b,v) : kH(u, v) → V

}
(b,v)∈ς−1({x})

, for any b ∈ G(φ0(u), x), we can

consider the vector ξx(b,u)(1u) ∈ V ; whence we have a linear map

ξ : kG(φ0(u), x) −→ V,
(
b 7−→ ξx(b,u)(1u)

)
.

It turns out that this is a morphism of inductive cones and this finishes the proof of the lem-
ma. �

By Lemma 5.4, the natural isomorphisms of equation (5.1), lead to a natural isomorphism

Nat
(
φ
x, H̃u

) ∼= kG(φ0(u), x),

for every x ∈ G0 and u ∈ H0. The following general lemma characterizes these kind of natural
transformations.
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Lemma 5.5. Let F : C → D be a covariant functor between small categories. Then there is
a natural isomorphism

Nat
[
D(F (−),+),Nat

(
D(+, F (?)), kC(−, ?)

)] ∼= Nat
(
D(F (†), F (‡)),kC(†, ‡)

)
,

where the left hand side term stands for the set of all natural transformations of the form:

ζ(c,d) : D(F (c), d) −→ Nat
(
D(d, F (?)),kC(c, ?)

)
, (c, d) ∈ Cop ×D,

and the right hand side term is the set of all natural transformations of the form:

E(c′,c′′) : D(F (c′), F (c′′)) −→ kC(c′, c′′), (c′, c′′) ∈ Cop × C.

Proof. The stated natural isomorphism is given by the following isomorphism:

Nat
[
D(F (−),+),Nat

(
D(+, F (?)),kC(−, ?)

)] Ω //
Nat

(
D(F (†), F (‡)), kC(†, ‡)

)
,

Γ
oo

where, for a given natural transformation ζ in the domain of Ω, we have

Ω(ζ)(c′,c′′) : D(F (c′), F (c′′)) −→ kC(c′, c′′),
(
p 7−→ ζ(c′,F (c′′))(p)c′′(1F (c′′))

)
.

As for a natural transformation E in the domain of Γ, we have that

Γ(E)(c,d) : D(F (c), d) −→ Nat
(
D(d, F (?)),kC(c, ?)

)
,

(
q 7−→ Γ(E)(c,d)(q)

)
,

which assigns to every object c′ ∈ C, the map

Γ(E)(c,d)(q)c′ : D(d, F (c′)) −→ kC(c, c′),
[
r 7→ E(c,c′)(rq)

]
.

The rest of the proof is left to the reader. �

Applying Lemma 5.5 to our case, we know that any natural transformation

Θ(u,x) : G(φ0(u), x) −→ Nat
(
φ
x, H̃u

)
gives rise to a natural transformation

E(v,w) : G
(
φ0(v), φ0(w)

)
−→ kH(v, w),

(
b 7−→ Θ(v,φ0(w))(b)w(1φ0(w))

)
. (5.2)

On the other hand, the left hand functor in the isomorphism of equation (5.1), that is, the
functor Nat

(
φx, ˜(−)

)
should preserves colimits, since the involves categories are Grothendieck

ones with a set of small projective generators. Namely, in the case of Repk(H) this set
of generators, is given by the family of representations {Hu}u∈H0

. In this way, saying that

Nat
(
φx, ˜(−)

)
preserves colimits, is equivalent to say that the H-representation kφx : H → Vectk,

u → kφxu = kG(x, φ0(u)), is finitely generated and projective. Therefore, we are assuming that
there exists a positive integer N ≥ 1 and a split monomorphism kφx ↪→ ⊕i=1,...,NHui

. Hence,
there is a set {ci}i=1,...,N such that each of the ci’s belong to kG(x, φ0(ui)), and natural transfor-
mations ϕi− : kG(x, φ0(−))→ kH(ui,−), such that, for every b ∈ G(x, φ0(u)), we have that∑

i

φ
(
ϕiu(b)

)
ci = b,
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equality in the vector space kG(x, φ0(u)). In this direction, one can consider the family of
elements {bi}i=1,...,N where each bi = Θ−1

(ui,x)

(
ϕi−
)
∈ G(φ0(ui), x). Using the natural transforma-

tions E of (5.2) together with the properties which Θ satisfies, we obtain∑
i

E(ui,u)

(
bbi
)
ci = b,

for every b as above. Take an element b′ ∈ G(φ0(u), x), then for every c ∈ G(x, φ0(v)) with
v ∈ H0, we have that

Θ(u,x)

(∑
i

biE(u,ui)

(
cib
′))

v

(c) =
∑
i

Θ(u,x)(bi)v(c)E(u,ui)

(
cib
′)

=
∑
i

Θ(u,x)

(
Θ−1

(ui,x)

(
ϕi−
))

v
(c)E(u,ui)

(
cib
′)

=
∑
i

ϕiv(c)E(u,ui)

(
cib
′) =

∑
i

E(u,v)

(
ϕiv(c)cib

′)
= E(u,v)

(∑
i

ϕiv(c)cib
′
)

= E(u,v)

(
cb′
)

= Θ(u,φ(v))(cb
′)v(1φ(v)) = Θ(u,x)(b

′)v(c).

Thus, Θ(u,x)

(∑
i biE(u,ui)

(
cib
′)) = Θ(u,x)(b

′) and so
∑

i biE(u,ui)

(
cib
′) = b′, which completes the

proof of (ii). �

5.2 The proof of (ii) ⇒ (iii) in Theorem 5.3

For every x ∈ G0, it is clear that we have

AB1x = ⊕
u∈H

kG(x, φ0(u)).

Define left A-linear maps ∗ei : AB1x → A1ui by sending b ∈ G(x, φ0(u)) 7→ E(ui,u)
(bbi). Then, by

hypothesis, the set {∗ei, ci}i=1,...,N is a dual basis for the left A-module AB1x. Thus each of the
modules AB1x is finitely generated and projective, which is the first statement of part (iii).

Now fixing u ∈ H0, we have a well defined left B-linear map

Ψu : B1u −→ BHomA− (AB,A1u) ,
(
b1u 7−→

[
ab′ 7→ E(ab′b)1u

])
,

which, by the naturality of E, is also natural. The maps Ψ are bijective as they have inverses
given by: f : BHomA− (AB,A1u)→ B1u sending α 7→

∑
i biα(ci). Indeed, for every a ∈ A and

b′ ∈ B with ab′ ∈ AB1u, we have

Ψf(α)(ab′) = Ψ

(∑
i

biα(ci)

)
(ab′)

=
∑
i

E
(
ab′biα(ci)

)
=
∑
i

aE
(
b′bi
)
α(ci) =

∑
i

aα
(
E
(
b′bi
)
ci
)

= α(ab′),

and so Ψf = id. In the other way around, we have that fΨ(b1u) =
∑

i biΨ(b1u)(ci) =∑
i biE(cib) = b. This gives the desired isomorphism and finishes the proof of part (iii). �
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5.3 The proof of (iii) ⇒ (i) in Theorem 5.3

To show this implication, it is sufficient to check, from one hand, that each of the functors
Nat

(
φx, ˜(−)

)
: Repk(H) → Vectk, with x ∈ G0, preserves colimits, and from another one, there

is a natural isomorphism Γ(u,x) : G(φ0(u), x) ∼= Nat(φx, H̃u), for ever pair (u, x) ∈ H0 × G0.

The fact that Nat
(
φx, ˜(−)

)
preserves colimits, is deduced by using the first statement of (iii)

and the natural isomorphism

HomA− (AB1x,M) −→ Nat
(
φ
x, ˜O(M)

)
,

(
f 7−→

[
φ
x
v → ˜O(M)

v
,
(
b 7→ f(b)

)]
v∈H0

)
, (5.3)

where O : AMod → Repk(H) is the inverse functor of the following (symmetric monoidal) iso-
morphism of categories

O−1 : Repk(H) −→ AMod,
(
W −→ ⊕u∈H0Wu

)
,

where AMod denotes the category of unital left A-modules. In particular, this induces a natural
isomorphism

HomA− (AB1x, A1u) ∼= Nat
(
φ
x, H̃u

)
.

As for the second condition, if we assume that there is a left B-linear natural isomorphism
Φu : B1u ∼= BHomA− (AB,A1u), for every u ∈ H0, then we can consider Γ(u,x) : G(φ0(u), x) →
Nat

(
φx, H̃u

)
to be defined by

Γ(u,x) : G(φ0(u), x) −→ Nat
(
φ
x, H̃u

)
,(

b 7−→
[
1xΦu(b) : φ

x
v → kH(u, v),

(
b′ 7→ Φu(b)(b′1x)

)]
v∈H0

)
.

The fact that Γ(u,x) ∈ Nat
(
φx, H̃u

)
, follows directly from the fact that Φu(b) is a left A-linear

for every b ∈ G(φ0(u), x). The naturality of Γ, that is, the commutativity of the diagrams of the
form

G(φ0(u), x) //

��

Nat
(
φx, H̃u

)
��

G(φ0(u
′), x′) // Nat

(
φx
′
, H̃u′

)
for every pairs a ∈ H(u′, u) and g ∈ G(x, x′), is computed as follows. Take an element b ∈
G(φ0(u), x), then, for every object v ∈ H0 and b′ ∈ φx

′
v = G(x′, φ0(v)), we have

Nat
(
φ
g, H̃a

)
◦ Γ(u,x)(b)v(b

′) = Γ(u,x)(b)v(b
′g)a = Φu(b)(b′g)a = Φu′(ba1u′)(b

′g).

On the other hand, we have

Γ(u′,x′)(gbφ(a))v(b
′) = Φu′(gbφ(a))(b′) = Φu′(bφ(a))(b′g).

Comparing the two computations shows the commutativity of that diagram. Lastly, the inverse
of Γ(u,x) is provided by that of 1xΦu combined with the inverse of the natural isomorphism of
equation (5.3). This completes the proof of Theorem 5.3. �

The notion of a finite groupoid is vague, in the sense that there are several interrelated notions
and all generalize that of a finite group. Next we adopt the following one: a groupoid G is said
to be finite, provided that π0(G) is a finite set as well as each of its isotropy groups Gx when x
runs in G0. This is the case when for instance G1 is a finite set. Given a morphism of groupoids
φ : H → G, we shall implicitly use the notations of Examples 2.9 and 2.13.

The following corollary characterizes Frobenius extension by subgroupoids, in terms of finite-
ness of the orbits of the fibres of the pull-back biset, which in particular applies to the case of
finite groupoids.
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Corollary 5.6. Let φ : H → G be a morphism of groupoids such that φ is a faithful functor and
φ0 : H0 → G0 is an injective map (e.g., φ1 : H1 → G1 is an injective map). Then the following are
equivalent:

(a) φ is a Frobenius extension;

(b) for any x ∈ G0, the left H-set ϑ−1
(
{x}
)

has finitely many orbits;

(c) for any x ∈ G0, the right H-set ς−1
(
{x}
)

has finitely many orbits.

In particular, any inclusion of finite groupoids is a Frobenius extension.

Proof. Let us first check the equivalence between conditions (c) and (b). To this aim, we
recall from Section 2.2, that the category of right groupoid-sets is isomorphic to left groupoid-
sets (both categories are defined over the same groupoid). In particular the image, under this
isomorphism, of the right H-set ς−1

(
{x}
)

is ς−1
(
{x}
)o

its opposite left H-set. As a consequence,
there is a bijection between the orbits set of ς−1

(
{x}
)

and that of ς−1
(
{x}
)o

, which sends
any orbit to its opposite. Thus, ς−1

(
{x}
)

and has finitely many right H-orbits if and only if
ς−1
(
{x}
)o

has finitely many left H-orbits. Therefore, conditions (c) and (b) are equivalent, since
we know that there is an isomorphism of left H-sets:

ϑ−1
(
{x}
)
−→ ς−1

(
{x}
)o
,

(
(u, c) 7−→

(
c−1, u

)o)
. (5.4)

The implication (a) ⇒ (b) is derived as follows from the first condition of Theorem 5.3(iii).
For any x ∈ G0, we know that

AB1x =
⊕
u∈H0

kG(x, φ0(u)) = kϑ−1
(
{x}
)
.

Therefore, as left A-module, AB1x can be decomposed as direct sum of cyclic unital A-submo-
dules of the form

AB1x =
⊕

(u,q)∈repH(ϑ−1({x}))

Aq,

where repH
(
ϑ−1

(
{x}
))

is a set of representative classes modulo the left H-action on the fibre
ϑ−1

(
{x}
)
, and Aq is the k-vector space spanned by the orbit set OrblH(u, q). Since AB1x

is finitely generated and projective, this direct sum should be then finite, which means that
repH

(
ϑ−1

(
{x}
))

is a finite set and this is precisely condition (b).
As for the implication (b)⇒ (a), we assume that ϑ−1

(
{x}
)

has finitely many orbits, for any
x ∈ G0. Choose a finite set of representatives classes {(ui,x, qi,x)}i=1,...,nx such that ϑ−1

(
{x}
)

decomposes as

ϑ−1
(
{x}
)

=

n⊎
i=1

OrblH(ui,x, qi,x),

a disjoint union of left H-subsets, see [10]. Using the left H-equivariant isomorphism of (5.4),
we also have

ς−1
(
{x}
)

=

n⊎
I=1

OrblH
(
q−1
i,x , ui,x

)
.

In this way, we obtain as above a decomposition of unital A-modules

AB1x = kϑ−1
(
{x}
)

=

n⊕
i=1

Aqi,x and 1xBA = kς−1
(
{x}
)

=

n⊕
i=1

q−1
i,xA. (5.5)
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Let us denote by pi,x : AB1x → Aqi,x and p′i,x : 1xBA→ q−1
i,x A the canonical projections attached

to the direct sums of (5.5). Take x to be of the form φ0(u), for some u ∈ H0. Then the element
(u, ιφ0(u)

) ∈ ϑ−1({φ0(u)}) and (ιφ0(u)
, u) ∈ ς−1({φ0(u)}). Thus, if OrblH

(
u, ιφ0(u)

)
is equal to some

orbit of the form OrblH
(
ui0,φ0(u), qi0,φ0(u)

)
, for some i0. Thus, we can assume that at least one

of the qi,φ0(u)’s is ιφ0(u)
. Henceforth, we set q1,φ0(u) := ιφ0(u)

. Therefore, we obtain the following
A-linear maps

p1,φ0(u)
: AB1φ0(u)

→ A1u and p′1,φ0(u) : 1φ0(u)
BA→ 1φ0(u)

A.

Specifically, for a given arrow p ∈ G(φ0(u), φ0(v)) with u, v ∈ H0, we have that (v, p) ∈
ϑ−1({φ0(u)}), and the image of the element (1φ0(v)

p)1φ0(u)
∈ AB1φ0(u)

by the projection p1,φ0(u)
is

given by the rule

p1,φ0(u)
=

{
h1φ0(u)

, (v, p) = h.(u, ιφ0(u)
),

0, if (v, p) /∈ OrblH
(
u, ιφ0(u)

)
.

Since φ is a faithful functor, this h is uniquely determined from the pair (v, p). Furthermore, for
any arrow α ∈ H(u′, u), we have that p1,φ0(u

′)(pφ1(α)) = p1,φ0(u)
(p)α, as we know that φU (G) :=

H0φ0
×tG1 is an (H,G)-biset. As a consequence, we obtain a natural transformation

E(u,v) : G(φ0(u), φ0(v)) −→ kH(u, v),
(
p 7−→ p1,φ0(u)

(p)
)
.

On the other hand, if we take an element b′ ∈ G(φ0(u), x), for some x ∈ G0 and u ∈ H0, then
we can write b′ = λ1q

−1
1,xa1 + · · ·+λnq

−1
n,xan, where all the scalars λi’s vanish except the one which

correspond exactly to the orbit that contains b and its value is 1k. Now, each of the element qj,xb
′

has the image E(qj,xb
′) = λjaj. Therefore, we have that b′ =

∑
j q
−1
j,x E(qj,xb

′) as en element in the
homogeneous component kG(φ(u), x) of B. If we take now an element b ∈ G(x, φ(u)), for some
x ∈ G1 and u ∈ H0, then the same arguments will show that b =

∑
j E(bq−1

j,x )qj,x as an element
in the component kG(x, φ(u)). In summary, we have shown condition (ii) of Theorem 5.3, and
thus φ is a Frobenius extension. The particular statement is now immediate, and this finishes
the proof. �

The subsequent corollary is a direct consequence of Corollary 5.6 and Theorem 5.3, some of
the implications stated there, can be deduced form [17, Example 1.7] and [20, pp. 36, 39]. For
the definition of Frobenius extension of algebras, we refer to [17, Definition 1.1].

Corollary 5.7. Let φ : H → G be a monomorphism of groups, and consider the associated group
algebra extension φ : A = kH → B = kG. Then the following are equivalent:

1) φ is a Frobenius extension;

2) the image of H in G is a finite-index subgroup;

3) B/A is a Frobenius extension of algebras.

In particular, all conditions hold true for any inclusion of finite groups.
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