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Abstract. @-systems and T-systems are systems of integrable difference equations that
have recently attracted much attention, and have wide applications in representation theory
and statistical mechanics. We show that certain 7-functions, given as matrix elements of
the action of the loop group of GLy on two-component fermionic Fock space, give solutions
of a Q-system. An obvious generalization using the loop group of GLj3 acting on three-
component fermionic Fock space leads to a new system of 4 difference equations.
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1 Introduction

Many integrable differential equations can be transformed to simpler, bilinear form by intro-
ducing new dependent variables called 7-functions. In practice, these 7-functions are given as
matrix elements of infinite-dimensional groups or Lie algebras, etc.

For instance, the famous Korteweg—de Vries (KdV) equation

U + Ugge + Ouu, =0 (1.1)
is transformed by the substitution

u=2In(7)z
into Hirota bilinear form

(DyDy + Dy)7 -7 =0,

where D,, is the Hirota operator so that Dyo -7 = 0,7 —07,. See [16] for details and many more
examples. In the case of the KdV equation, the 7-function is a matrix element for the action of
the loop group of GLg on one-component fermionic Fock space, see for instance [10, 20, 26].

To produce the integrable equations from 7-functions, one introduces an intermediate object,
the Baker function. It satisfies linear equations, and the compatibility of these equations gives
the integrable hierarchy.

For instance, for the KAV case, the 7-function is a scalar function 7(t¢1, t3, t5, ... ) of odd times
(t1 = x,t3 = t), and the Baker function is also a scalar function ¥ of the times ¢9;11 and of an
extra variable z, the spectral parameter. It is defined by

U(zity,ts,...) = (D(2,t) o (1) /7(t),
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where I'(z,t) = e Zktke_zﬁatk; this is essentially the vertex operator for the free fermion
vertex algebra, see, e.g., [18]. The Baker function satisfies linear equations

Oy V(z;t) = By(02) ¥ (2 1), (1.2)

where By(0,) is a degree k differential operator in d,. The compatibility of (1.2) for £ =1 and
k = 3 turns out to give precisely the Korteweg—de Vries equation (1.1).

In this paper we are interested in integrable difference (as opposed to differential) equations.
Still, we follow very much the setup sketched above for the KdV hierarchy.

In the first part of this paper, we introduce a collection of 7-functions as matrix elements
of the action of loop group elements for GLs, depending on discrete variables! ¢;, which play
a similar role as the higher KdV times ¢9;41, k£ > 1. These 7-functions are of the form T,Sa)(ci),
where k, o are discrete variables. In fact, these 7-functions turn out to be (see Theorem 2.1)
Hankel determinants, well known since the 19th century in the theory of orthogonal polynomials,
see, e.g., [17].

We then define Baker functions. In this case, they are 2 x 2 matrices depending on a spectral
parameter z, on the discrete variables k, o (and on the ¢;):

k () (a)
W@ () = (=1) {zk Qk] [S*(z) _O ] (N NS ,
Téa) 0 =z 0 S (z) Tlgi)l/z T]ga)

where S*(2) = (1—5/2)*! are the shift fields, constructed from the elementary shift S: C[cy] —
Cleg], defined as the multiplicative map such that S(1) = 0, S(cx) = cx11. The shift fields ST (2)
play a similar role here that the vertex operator I'(z) does in the theory of the KdV hierarchy.

Next, we introduce linear equations for the 2 x 2 Baker functions:

plkl(at1) \p[k](a)vk(a)’ plE—1(atl) _ \I;[k}(a)wlia).

Here, the connection matrices Vk(a), W,Ea) are 2x 2 matrices depending on the spectral parameter.
These connection matrices can be explicitly expressed in terms of the T-functions.

We then show that compatibility of these equations leads to the discrete zero-curvature
equations

V)T = i) e,

Since we can give explicit expressions for the connection matrices Vk,(a), ’ga) in terms of the
7T-functions, we obtain the following basic system:
(T]Ea))z = T,ga_l)T,EaH) — T,Eizl)ﬂgf{l), a€Z, k=0,1,....

After applying a change of variables, one can see that this is precisely the A/, Q-system, see,
e.g., [12]. We refer to this system as the 2Q)-system, as it is obtained from the representation
theory of the central extension of the loop group of GLs.

In the second part of the paper we generalize our derivation of the 2Q)-system by using the
loop group of GLj3, obtaining 7-functions T]E?zﬂ) (ci,d;, e;), where k, ¢, «, 8 € Z and the ¢;, d;, €;
are coordinates on the lower triangular subgroup of the loop group of GL3. We can explicitly
calculate these 7-functions, see Theorem 3.2, but their formula is much more complicated than
the simple Hankel determinants in the 2 x 2 case. Next we introduce Baker functions, now 3 x 3

matrices depending on a spectral parameter, and the linear equations for the Baker functions.

!These variables can be thought of as coordinates on the lower triangular subgroup of the loop group of GLs.
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Again, we can explicitly calculate the connection matrices in terms of 7-functions, see Lemma 3.7.
Compatibility of the equations satisfied by the connection matrices in this case gives us a system
of four equations (Theorem 3.8), which we will refer to as the 3Q-system. For all a, 8 € Z and
k, >0

leB) (at1,B) | (a+1,f) (a,b’) L(@B) (a+1,6)

ot 1,6 Th—1,0-1 1T Tho—1 =Thi1The
(a B) (o, B+1)_|_ (a, B+1) (a,ﬂ) (a,54+1) (a B)
Th+1,0+17k,0 Te+1,6 Tke+1l = Tht1,0417ke o
(@2 _ (a+1,8) (a=1,0) (a=1,8) _(a+1,8) (a—1,8) _(a+1,8)
(Tk,z ) = Tk Y Tt T 01 Th—10-1 — Tht1d The1,0
(@f)2 _ (a,f+1) (a,f-1) (,8-1) _(e,3+1) (,-1) _(a,5+1)
(Tk,z ) = Tk Tk,e T T+l ko1 T Tk—10 Tk+1e - (1.3)

The first two of these new equations are generalizations of T-system equations. More precisely,
for fixed (8, after a change of variables, the first equation is a T-system equation. Similarly,
in the second equation, after applying a change of variables, we obtain a T-system equation
for fixed a. It is known that )- and T-systems are related to many areas in mathematics and
physics. See for instance [11, 12] for relations to cluster algebras, and [24] for applications in
integrable systems.

In particular it is known, see [15], that some particular solutions of T-systems are g-characters
of Kirillov—Reshetikhin modules [22, 23]. It is therefore natural to ask if a similar representation
theoretic meaning of particular solutions of the new 3Q-system, (1.3), exists.

In another direction, the 7-functions for the @)-system are, as we mentioned above, determi-
nants of Hankel matrices, which appear in the theory of orthogonal polynomials [17], and in the
Toda lattice [21]. Again one can wonder what the meaning of the 3Q-system is from the point of
view of orthogonal polynomials and Toda lattices. We will see in Section 3 that the 7-functions
of the 3Q-system depend on the choice of a lower triangular matrix

1 0 O

Ciz 1 0

D(z) E(z) 1
Here C(z), D(z), E(z) are series in z. When we look at the special case where E(z) = 0,
we obtain 7-functions that are determinants of block Hankel matrices, related to bi-orthogonal
polynomials, and 4-band Toda lattices (see, e.g., [5]). See [1] for a preliminary report on this.

We hope that it is clear from this paper that the theory of Q-systems and T-systems, with
their many applications, is just the tip of an iceberg. For any n > 2, there are nQ-systems and
n1'-systems, which are generalizations of the 2Q)- and 27-systems. In this paper, we discuss the
construction of the nQ-systems for n = 2,3. See [2] for more general hierarchies.

2 The 2 X 2 case

2.1 2 X 2 t-functions and Q-system

We have an action of the central extension, GLg, of the loop group GLg = GL2(C((#))) on two-
component fermionic Fock space, F(?), the semi-infinite wedge spaced based in C2 @ (C[z, zil],
see, e.g., [31] for n-component fermions, and [19] for the construction of central extensions of
Lie algebras and corresponding groups. Some of this material is reviewed in Appendix A. Let
e éig — GLg be the projection onto the non-centrally extended loop group. We will consider
the action of a group element, go € GLo, where

m(9c) = {Céz) (1)] ; (2.1)
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on the vacuum vector vy of F®),

—1/\0/\2/\0/\'22/\0/\.-~

i (1] I 1 R 1] I 1 VR B P ’
see (A.3). Here

C(z) = Z ciz L

1E€EL
where ¢; € C. In order for m(gc) to belong to GL2(C((2))) we would need to impose the condition
that ¢; = 0 for i < 0. However, sometimes it is useful to think of the ¢;s as formal variables. In
that case, m(gc) belongs to the invertible elements in gly(C((2)))[[¢;]], and will be a 2 x 2 matrix
with coefficients given by series that are infinite in both directions in z.
In order to define our 7-functions, we need to define fermionic translation operators which we

denote Q;, i = 0,1. In (A.9), we will carefully define these operators and their action on F(?),
in terms of wedging and contracting operators,

6(65)04:6/2/\04, i(e’,j)azﬁ, if a=enpg,

1
for o, 8 € F. Here, ek = e,2¥, where e, denotes the standard basis vectors of C2, eg = [0],
e = [(1)] The projections of the ();s onto the loop group éig are given by

SCO R R P A R e

z

We also need the translation element

T=Q1Qy" & [Z 0 ]

0 —z1

We define shifts on the series C'(z) by

C@(z) = (=1)%2°C(2) = > _(~1)%¢iraz " (2.2)

1E€EL

We similarly define the shifted group element g(g ) = QF9cQy” so that

"6 = [y 1) = |aeec 1) (25)
We then have

Qoles ™) = g Qg (2.4)
and the same relation with 7 applied,

7(Qo) ' (95 HY) = 7 (95))m(Qo) . (2.5)

The fundamental objects in the theory of the Toda lattice (see, e.g., [21]) and @Q-systems are
the 7-functions defined by

Tlga) = <’I'k'l)07 g(c?é)'l)o>. (26)

Here (,) is the bilinear form on semi-infinite wedges. (For more details, see Appendix A.2,
where we will define a basis for F(®). () is the bilinear product with respect to which these
basis vectors are orthonormal.)

The 7-functions in the 2 x 2 case are determinants of Hankel matrices.
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Theorem 2.1. For k < 0 and all o € Z we have T,Ea) =0, and Téa) = 1. For k > 0 and all
a €

k

(@ _ 1 o 9

T, = EResw HC( ) (w;) H (w; — w;)

’ i=1 1<i<j<k

Ca Cat+1 Ca+k—1

Ca+1 Cat2 Ca+k

= (—1)'”‘ det . . . .
Cat+k—1 Ca+k *°° Cat+2k—2]

Here Resyw = Resy, Resy, - - Resy, , and the residue Res, (a(z)) is the coefficient a_1 of 2! in
a series a(z) = Y. a;z".
1EZ

For the proof of this, see Appendix B.1.

The simple form of the 7-functions allows us to apply the Desnanot—Jacobi identity (cf. [9])
to obtain [12] the following difference equations, referred to as the 2Q-system, satisfied by our
7-functions: For all £k > 0 and for all a € Z,

(@) (a+2) (a+2) () (a+1)\2
T Theg =Thoq Ther — (Tieg )
The disadvantage of obtaining the difference equations in this way is that it is not at all apparent
how to generalize this to the 3 x 3 situation, in which the formulas for the 7-functions are much
more complicated. We thus present another way of obtaining our 2 x 2 difference equations.

2.2 Birkhoff factorization

Define an element of the central extension of the loop group of GLs:
g[k](a) _ T*kg(co‘),
and assume that it has a Birkhoff factorization [27, 28] (see also Appendix C.1):

()

i) — gl glHe)

where ﬂ(g[_k](a)) =1+0(z"!) and W(gé]:]_(a)) = A,(Ca) +0(z), for A,(f) an invertible z independent
matrix. This assumption is justified precisely when the matrix element T,Ea) (9) = <U0, g[k}(o‘)vo>
is not zero, see for instance, [29]. In their paper, Segal-Wilson treat essentially the case of n =1
of the theory of n-component fermionic Fock space used in our current paper, although they
emphasize the connection to the geometry of infinite Grassmannians, whereas we put the theory
of fermion operators in the forefront. Segal-Wilson explain that the vanishing of the 7-function
detects that the corresponding element W = gH of the infinite Grassmannian is not in the big
cell. Being in the big cell for W = gH is equivalent to g having a Birkhoff factorization. We
leave it to the reader to check that this picture still holds for arbitrary n.

Now we want to display the negative component of ﬂ(g[k](o‘)). To calculate this we make
some extra structure explicit.

Let A be the subgroup of elements of GLj of the form (2.1). We can think of the coefficients ¢
as coordinates on N, so

B = Clc]rez

is the coordinate ring of N.
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First define shifts acting on B. These are multiplicative maps given on generators by
S¢: B — B, S4(1) =0, S (k) = Chtan a € Z.

We will often write ST for S*1.
We also define shift fields. These are multiplicative maps

S*(z): B— BHZ_IH, (2.7)
given by
1\ %1
S*(z) = (1 — SZ> :

Theorem 2.2. For k>0 and all o € Z

(gH@)y = St ST /2 /7@,
- S~ ()r /xS (n [T

We sketch the proof in Appendix C.2.

Now that we have expressed the negative component of the Birkhoff factorization in terms of
matrix elements of the centrally extended loop group, we no longer need the central extension
and we will simplify notation: for the remainder of Section 2, we will write g[k] @ for ﬂ(g[f] (a)),

T for n(T) and Q, for 7(Q,), a = 0,1. In particular, in the rest of this section we write

— -1 —
e ] B e P e |

z

Remark 2.3. Theorem 2.2 implies that for k& > 0 we have a Birkhoff factorization for g/
as long as T]ga) is not zero. Here we are dropping the 7 as discussed above. It is easy to see that
for £ < 0 such a factorization is not possible. Indeed, assume for simplicity that o = 0, and

consider

2k 0

Trgo = (1) [sz(z) zk} - [(z—ké’k(z)) 29’“] <(_1)k [(Z_kc(lz))wzk ﬂ)

Here the subscripts —, 0+ on a two sided infinite series in z denote the terms containing negative,
respectively non-negative powers of z.

The existence a Birkhoff factorization for T*go for k < 0 reduces then to the existence of
a Birkhoff factorization of the left factor

r— P 0] P 0
T lETRC(R). 2R T et e 2R
since the right hand side factor of T*g¢ already belongs to the non-negative loop group.
10

-1 _ -1

=0 1] —I-O(z ) In
particular, looking at the second column of this matrix equality, we see that this would mean
(since the entries of I'g+ and its inverse would contain only non-negative powers of z) that there
are power series f(z),g(z) € C[[z]] so that

£(2) & ] +g(z) [ 0 ] = m +O(=71).

70,2_1 + 71,2_2 + - 2k

If we could write this factor as I'_T'oy, then we would have I'(T'o4)

It is clear that for k£ < 0 such series f(z), g(z) do not exist (we would need f(z) to be zero, but
there is no g(z) in C[[z]] such that g(z)z7* =14+ O(z71)).
The argument for o # 0 is similar.
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2.3 Matrix Baker functions and connection matrices
Next, we define the Baker functions. These are elements of the loop group defined by
« —a  [Kk](a
Pl = phgro gkl (2.8)
Since the Baker functions are all invertible, they are related by connection matrices belonging
to the loop group. Define F{Q}((fi)) € GLg by
[4(8) — glkl(@)pld)
v =V I‘[k}(a).

We are interested in connection matrices that implement nearest neighbor steps on the lattice
of Baker functions. So define elementary connection matrices

(@) _ nlk+1](a)
U =T

so that we have

y@ — plesy

(@) _ nlk—1](at1)
K > Ve =T

[k](e) ’

Pl = g @ gker) Z gH@p@  gleler) 2 gl (o)

Pictorially:
a— (a—1)
glkl(a—1) Y PRI Ukt glk+2)(a—1)
W(a 1) W(ocfl)
k+1 Gl ( >k+2
VV ) / \Vkil
v Wi
plk—1](a+1) g lkl(at+1) ple+1](at1)
(oct1) e+

Walking around the triangles in this diagram, we see that we get factorizations of all elementary
connection matrices. In particular,

e «a a)y\—1 a—1)\—1; (a—
U = VO mI) ™ = ) T (210)

Such factorizations are well known in the theory of integrable systems, see for instance Adler [3],
Sklyanin [30]. They go back to the work of Darboux in the 19th century, see for example [25].
We study the elementary connection matrices more explicitly.

Lemma 2.4.

o k(o) —1 k+1 k k+1](a
U,i ) _ (gU( )) Tg[, J(e) _ g([H]_( )(9([)+ JI¢ )) :

Vk(a) _ (g[_k](a))*lQalg[_k](aH) _ Q[J]r( )Qo ( [k](a+1))*1’

W}ga) _ (g[_k](a))—lQl—lg[_kfl}(aH) 90+ Qo

( [k— 1](oz+1))

Proof. The first expression for the elementary connection matrices (in terms of negative compo-

nents g[ (o )) follows from the definition (2.9) of the connection matrices and the definition (2.8)
of the Baker functions. It also uses Q¢T = Q1.
To derive the second expression for the elementary connection matrices in terms of positive

components, g[ 1@ we use (see also (2.4), or rather (2.5))

Tg[_’ﬁl](a)g([)liﬂ}( @) _ g[k]( )g([H}(OL)7

Q—l [’f](a+1) [k}(aﬂ) :g[_} g([)’ﬂ(a)QEI’
Qr 1 [k 1](a+1)g([]k+*1}(a+1) Zg[k](a)gﬁ(a)le-

Rearranging factors then proves the second form for the connection matrices. |
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Remark 2.5. Note that the second equality in the above lemma tells us that the elementary
connection matrices contain only 2k for k > 0. This allows us to easily calculate these connection
matrices in terms of 7-functions, as we can ignore any (often complicated) terms that would
contribute only negative powers of z.

First note that Theorem 2.2 allows us to expand g[_k](a) and its inverse up to order z~! as
ST i) L
o 1 k /T (@) _
g[l"]( ): 12><2_|_; “ hk(_1) ) +O(Z 2)’
hy, S™[A]ry " /7
SSTRYAY
() 1y L g O o), 2.1)
—hy, —ST[Ur, /7
Here
L@ _ Te
ke ()
-
k
and we expand the shift fields in partial shifts
SE@)f =) S¥mlfa
n=0
Lemma 2.6.
(@ 1 1
z+v, - 1 .
Vi = | e O
S D vl
Here
(@) (a+1)
U’ga) = hk+1 l({:a) = 7]1]6 ’U(al) = L =0
(1)’ (@) 7 - (o) '
h,, hy, h>{

Note that det (Vk(a)) = —z =det (Wk(:a)).

Proof. As an example, we calculate Vk(a) = (g[f](a))le(;lg[f}(aH), using (2.11):

- x _ _
1+-+0(2)  0(=7) 1+Y 1062 L 1o
(@) 2 z 0 2 (a+1)
Vi = (a) zhy_y
hy, -2 -1 0 -1
oG 1406 o) 1+ 0(:)
Lz
Z4+xT+y W
= k—1 ’
|
dropping all terms containing 2! or lower, see Remark 2.5 for why this is justified. Here x, y
are some expressions in the 7-functions which we will determine by noting that det (Vk(a)) = —z.
(a)
We see that x +y = # = v,goi)l. This proves the lemma for Vk(a), k=1,2,.... The proof

for Wk(:a) and Vo(a) is similar. [ |
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We now return to the two factorizations (2.10) of the connection matrix. Using the expressions

(@),

for Vk(a), W,ga) from Lemma 2.6, we find two expressions for U

R e

@ _ @@yt _ |77 et T @ (@
v = v i) = msyom?
h{®) 0
a—1 o
B IR TR L
a—1)\—1y,(a—1 a a a
=W ) Vit = h,(c) hfg 2 h,(g) ;
h{®) 0
giving equations for the h;a) variables
o a+1 (a—1) o
W
@ T @ T @ e (2.12)
hy.—1 P hi hy,

Theorem 2.7. The equations (2.12) are equivalent to the 2Q-system

( (a))z _ Tlia—l)Tlgoc-i-l) Igill)ﬂgﬁl)7 k=01, ...

Proof. Write (2.12) out in terms of 7-functions

o) (etl)  (a) (a+1) Lol (o) () (a=1)
k+1 Te—1 k k+1 _ k+2 Tk k—l—l Tk

« a+1 a a+1 a—1 a a—1
AT Y Tl D, A

Bringing all terms under the same denominator and then rearranging terms, we see that this is
equivalent to

(A ) = A = G G ). @ay

Notice that if

a)y 2 a—1 a+1 a—1 a+1
R ]

then (2.13) implies

a a—1 a+1 a—1 a+1
(7'1£+)1) _Tlg+1 ) l£+1 ) - 1§+2 )Tlg )

We thus need only prove that the equality holds for kK = 0. But this is just

(Téa))Q _ T(ga—l)T(ga-l-l) . Tl(a_l)TEO{_H),

()

which is true since 7'( @) — =0and 7; ' =1 for all a. So the theorem follows. [ |

So we have rederived the 2Q-system, see the equations (2.1), using the Birkhoff factorization.
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3 3 X 3 case

3.1 7-functions

We now discuss the generalization to the 3 x 3 case, proceeding very similarly to the 2 x 2 case.
We have an action of the central extension GL3 of the loop group GL3 = GL3 ((C(( _1))) on
three-component fermionic Fock space F(3). See, e.g., [31] for n-component fermions, and [19]
for the construction of central extensions of Lie algebras and corresponding groups. Some of this
material is reviewed in Appendix A. Let 7: GL3 — GL3 be the projection onto the non-centrally
extended loop group and consider the action of the group element, gc p r € GLg, where

1 0 0
mlgcpr)= |C(z) 1 0,
D(z) E(z) 1

3)

on the vacuum vector of F3). Here

:inzf"*l, X=CD,E, r=c,d,e,
€L

where the x; are formal variables and the vacuum vector, vy is, analogous to the 2 x 2 case,

1 0 0 z 0 0 22 0 0
vo= 0| AT AJO[AJO| A2zl AJO[ALO]ALZ2]AlO] A,
0 0 1 0 0 z 0 0 22

see (A.3).

As in the 2 x 2 case, we have fermionic translation operators @;, 0 < ¢ < 2. The action of
these @Q;s on F(®) is defined carefully in the appendix (see (A.9)). Their projections onto the
loop group GL3 are given by the following (commuting) matrices

10 0 -1 0 0 -1 0 0

mQ)=|0 -1 0|, =x@)=|0 ' 0|, w@)=|0 -1 0
0 0 -1

o
o
|
_
o
[an}
t\II
—

We also have the translation elements

—z 0 0 1 0 0
Ti=QiQ," % |0 —z71 0], =" 5 [0 —2 0
0o 0 1 0 0 —z1!

We define shifts on the series X (z) by
X@(2) = (-1)*2°X (2) = Z<_1)axi+az_i_l, X=C,D,E, r=cde. (3.1
IEL
Remark 3.1. It is convenient to allow our series to be infinite in both directions. This causes

no issues of convergence, if we think of the coefficients of these series to be formal variables. For
example, if

= Z aiz 1, b(z) = Z biz 1
iE€Z i€Z
then

a(z)b(z) = Z (Z aibk_i_1> P

kEZ \i€ZL
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has as coefficient of z~*~! the well defined element
Zaz’bkﬂel € Cllai, bi]]iez-
1€EZ
Analogous to the shifted group elements of the 2 x 2 case, see (2.1), are the shifted group
elements ¢g(*%) = Q3Q; gC,D,EQfﬁQaa,

1 0 0
T(geh) = [ce M) 1 o). (3.2)
DW(z) E®(z) 1

We then have (using QoQ1 = —Q1Q0)
Qalg(aJrl,ﬂ) — g(aﬂ)Qo—l’ Ql—lg(aﬂJrl) _ g(aﬁ)Ql—l,

and the same relations with 7 applied,

m(Qo) (g ) = w (o) (o)
m(Qu)~' (g ) = (g ) m(Qu) 7" (3.3)

Similarly to the 2 x 2 case, the fundamental objects in the 3 x 3 theory are the 7-functions
defined by

T,i?é’ﬂ) = <T1]“T2€v0,g(°‘”8)v0>. (3.4)

Here vg is the vacuum vector in the three-component fermionic Fock space F(®), and (,)1is
the bilinear form, see Appendix A.2. (As in the 2 X 2 case, in the appendix we define a basis
for F®) and (, ) is the bilinear form with respect to which these basis vectors are orthonormal.)
Note that if we introduce another translation group element 73 = Q2Qy ! then we can write
nonuniquely

TETY = (£1)T]Ty T3,
where k = n. 4+ ng, £ = ng + ne, and we take n., ng,ne > 0.
Theorem 3.2. For all o, € Z and k,£ >0

W= X el

netng=k,ng+ne=~
ncﬂld»nEZO

where
ng(ng+1) ng Ne
(-
A e = g Resxy 2 }_[1 C@=F)(x;) 11;[1 D) (y;) };[1 E® (2)pnemname |
and

Prenene = H (xi - xj)Z H (yl - yj)2 H (Zi - Zj)2
1<i<j<n, 1<i<j<ng 1<i<j<ne

Ne Mg ng MNe

[T I (zi =) IT 11 (vi = 2)

i=1j=1 i=1j=1

Here and from now on, we use the convention that we expand ﬁ in positive powers of the

. 1 2
second variable, so —— = Z -

=0
We discuss the proof of the above theorem in Appendix B.2.
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3.2 Examples of 3 X 3 7-functions

1 7% —0ifk<0orf<0.

2. Té’%’ﬂ) = 1.
Cafﬁ COL*ﬁ+1 PR CafﬁJrkfl
3. T]gogﬂ) _ (_1)]€(Oc+ﬂ) det Cog—.ﬁ"rl COC—./BJFQ Ce COé—'ﬁ-i-k‘
Ca—pB+k—1 Ca—p+k ' Ca—p+2k—2-
€s €B+1 "t €pte-1
B €8+1 €g+2 ¢ €3+¢
4. Té; ) _ (_1)66 det : . .
€6+6-1 €L 1 €5420-2
o0
D. Tl(,ofﬁ) = (-1)* <—da + Z 65+ica_5_i_1> .
i=0

=1

o
6. 71(,055) = (—1)*+7 <€ﬁ > eptit1Caspio1 — g1

[e.9]
X Z €B+i+1Ca—pf—i—2 T €ar1da — €5da+1> .
i=0

o oo
7. Tz(,ofﬁ) = (—1)'3 (Caﬁﬂ Z €g+iCa—p—i—1 — Ca—p3 Z €g+iCa—f—i + Ca—pdat1 — Caﬁ+1da> .
i=0 i=0

Remark 3.3. Note that the summands cﬁfj;ﬁi,ne of the 7-functions are of degree n, in the
coefficients zy, of the series X (z) = Y. 232 %! for z = ¢, d,e, X = C, D, E.

3.3 Birkhoff factorization for the 3 X 3 case

Define centrally extended loop group elements

g[kﬂg](avﬁ) — T{ZTfkg(avﬂ)7

and assume that they have a Birkhoff factorization [28] (see Appendix C.1):

glEA(@p) — g[_’f,f](047/3)g([)k_fi;@(047,5’)7
where w(g[_k’z](a’ﬁ)) =1+0(z7') and W(g[[ﬁe](a’ﬁ)) = A,(féﬁ) + O(z), for A,(Caéﬁ) an invertible z

independent matrix. As in the 2 x 2 case, this assumption is justified precisely when TIEOZB ) (9) =
<vo, g[k’z](a’ﬁ)v@ is not zero, see the discussion at the beginning of Section 2.2.

Now we want to display the negative component of W(g[kve](o"ﬁ)). As we did in the 2 x 2 case,
to calculate this we make some extra structure explicit, see Section 2.2 for the simpler situation.

Let N be the subgroup of elements of GL3 of the form (3.2). We can think of the coeffi-
cients z, * = ¢, d, e as coordinates on N, so

B = C[[ck, d, ex]|rez

is the coordinate ring of \.
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We first define shifts acting on B: these are multiplicative maps given on generators by
(z,y € {c,d,e})

S?: B — B, Sxa(l) = 0, S?(Q?k) = Tk+a>
Sz (Yk) = Yk, y # , a € L.

We will often write S for S!.
We also define shift fields. These are multiplicative maps

S’;E(z): B — BHz_l]],

given by

SE(z) = (1 - kgij)il :

z

Theorem 3.4. For k,£ >0 and all o, 5 € Z

7T(g[f,f}(aﬂ)) _ (27;(;,6))/7_5276)’

where
S;"(Z)S:{(z) 0 0
r= 0 Sz (2)S5(2) 0 :
0 0 Sy (2)5¢ (2)
i () (e,8) ]
(a,8) e k=10 ey Th=16-1
Tk,e (—1) > (—1) >
(e,) (e,)
() _ T, Thof—
7;76 — (—1) k—iz-l,é Té?é,ﬁ) ki 1
(e,8) (ev,8)
(—1)t+ Th+1,0+1 Tk 041 (o, 8)
L z z Tkt i

We sketch the proof in Appendix C.3.
As in the 2 x 2 case, we have now expressed the negative component of the Birkhoff factoriza-
tion in terms of matrix elements of the centrally extended loop group, so we no longer need the

i = 1,2 and similarly @, for 7(Q,), a = 0, 1,2. In particular, in the rest of this section we write

central extension and we will simplify notation by writing g[k’a(a’ﬁ ) for 7r(g[_k’é] (o )), T; for n(T;),

-z 0 0 1 0 0
Ti=|0 —=2!' 0l =Q1Q;", D=0 —z 0 |=0Q0Q;",
0 0 1 0 0 —z!
and
210 0 -1 0 0 -1 0 0
Q=0 -1 0], Q=10 =zt o, Q=10 -1 0
0 0 -1 0 0 -1 0o 0 2!

3.4 Matrix Baker functions and connection matrices, 3 X 3 case

Next, we define the Baker functions. These are now elements of the loop group of GL3, defined
by

\Ij[kve](ang) — leTanOéQl_ﬂg[_kv‘q (avﬁ) .



14 D. Addabbo and M. Bergvelt

Since the Baker functions are all invertible, they are related by (right) multiplication by con-
nection matrices belonging to GLj3. In particular, define

)08 _ k(B (@)
v =V Plkbi@s) -

so that
F[k/ f’](a’ﬁ’) — ( (k) (a ) QSOQ 502 (K. (c 75)

ro=k—kK+a-d, r1=k —k+0-0+5-4, x9 =1 — /.

The simplest connection matrices are those where (g, 21, z2) has two zero components and the
other absolute value 1. We therefore define the elementary connection matrices

Ve Z Tk _ (ks -l oo glkaletts)

Vi) o ikt _ (sl oot iessn),

W) = ik LAeL0) _ (b)) =l oot gkt et 1),

WD = Tl Ut _ (o)1 gt t-tiessn) (3.5)

Also define translation matrices

U = TN _ (kB Ly, (k1)

LI CHE) - ’
75 k e+1 76 kyz 0575 -1 k,2+1 Ot,ﬂ
U?) = TS _ (b)) -1y (o) (3.6)

Pictorially, fixing k£ and «, we have

U(" B—1) pleef=1)

k(] 1) wlk.£+1)(e, 81 ko1t k042 (0,81
gl (e AT |(e,8-1) AT gl ](c,8—1)
k k41
\ %ﬁ 1) \ / 14)
Wi i1 Wi o2
k0 k+1
wieh+) \Ij[ 1(8) G \Ij[ JeB) y(@h+)
"4 N k041
/ (m AM \
Wlk0~1)(a,6+1) wlkO(a,6+1) Whert Gl L1 (B+1)
U( ,B+1) U( /1+1)
kl— 1+ kit

Walking around the triangles in this and the similar diagram where ¢, 5 are fixed we see that
we get factorizations of the elementary translation matrices Uk(ﬁe), U ,goz’f). For instance,

O‘B 75 7ﬁ 76 1 a,ﬁ 1
UG = Ve W) = ) T,

ozﬁ a4, at,B a—14,0)\—1:,(a—14,8
Uy =i W) T = i) TS, (37)

We will argue that all identities for the connection matrices are the result of those in (3.7).

Lemma 3.5. Any connection matrix F{Zléﬁ]o(éogiﬁl) is a product of the four types of elementary

connection matrices (3.5).

Proof. We need to show that we can move from ¥k-4(@5) to GK 105 just using the elemen-
tary connection matrices. First of all, the translation matrices (3.6) are products of elementary
connection matrices, see (3.7). We can move from WFA(@8) to Wk £1(@F) using just Uk, 4,
and/or Uy, ¢, , keeping (a, () fixed. Then we use the V(@+8) and/or V(@P+) to adjust the (a, 3)
to (o, ") to reach WK1 5) |
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The expression in Lemma 3.5, " = F{Z,’Zﬁgaﬂliﬁ )asa product of elementary connection matrices

is of course not unique. Each path from WkA(@0) ¢4 WK €15 ip the lattice of Baker functions
with diagonal or anti-diagonal steps gives a product expression for I': the diagonal steps give V'
factors and the anti-diagonal steps give W factors. Now it should be clear that any two paths
from WkA(@B) 1o WK .£1(".5) can be deformed into each other by moves

(3.9)

.\./..

The moves (3.9) correspond to identities (3.7) and moves (3.8) correspond to similar equations
of the form VW = WV (without inverses on W). These last equations will be equivalent to
those in (3.7). So the upshot is that all equations obtained by writing an arbitrary connection
matrix I' as a product of elementary connection matrices follow from (3.7).

We will therefore concentrate on (3.7). In particular, we will see that these equations will
imply the equations for our 7-functions (1.3).

We first check that our elementary connection matrices and translation matrices do not
contain any negative powers of z, which is not obvious from the definitions (3.5) and (3.6).

The following lemma tells us that the elementary connection matrices and translation matrices
contain only z* for k > 0.

Lemma 3.6. For the elementary connection matrices, we have the positive exrpressions

)

at,B k4] (a,B) ~— k0 (a+1,8)\—1
V5 = e gz gltlon
V(O‘vﬁ+) [kva(arﬁ)Ql—l(g[k7e}(a76+l))_17

k. = 90+ 0+
a4, k) (a,B) ~— k—1,0](a+1,8)\—1
W;ﬁf )= 9([J+]( )Qo 1(9([)+ i )) )
a, k) (c, — kl—1](a,B+1)\—1
W) = glhflled) ot (glht=tep+Dy =1 (3.10)

Similarly, for the translation matrices

lad) _ g[k+1,€](a,6) (g([)lif](aﬂ))—l

, k,+1)(a.B) ¢ [k (a,B)\—1
kol = 904 U(aﬁ):g[ J(a )(9([)+](aﬂ)) ‘

) k04 0+
Proof. From (3.3) it follows that

k) (c, k0 (c, kJ4)(a, —
g([)+]( B+1) Ig[, 1( B)Q([H_]( ﬂ)Q11’

Qalg[_kl] (a+1,5)g([)’151(a+1,ﬁ) g[_kl](aﬁ)g([ﬁﬂ(aﬁ)Qal’

Ql—lg[lcaf](ayﬁﬂ)

from which the result for the V' matrices follows by rearranging factors.
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Similarly, using Q7 'T1 = Qy ', Q5 ' Ty = Q7! and again (3.3) we find

Ql—lg[_k—lﬂ(a+1,ﬁ)géi—17f}(a+1,5) _ g[_k’g](a”g)géﬁg](a’ﬁ)Qo_l,
leg[_k,é—l}(a,ﬁ+1)g([)’15—1}(a,ﬁ+1) _ g[_W](Cv,ﬁ)g([]/lff](0@5)@;17

giving the result for the W matrices.
Finally the positive expression for U matrices follows from

g[,k—H’g] (aﬁ)g([)lijlaf](aﬁ) _ Tflg%’e](a’ﬂ)g([)]:’_a(a’ﬁ),
U%f](aﬂ)g[kﬂ(aﬁ)

k+1](e,B) [k,£+1](a, _
gl 1I@8) gl 11(e8) _ et I

and rearranging factors.

As in the simpler, 2 x 2 case, this lemma allows us to calculate the connection matrices easily

in terms of the T-functions.

First note that, similarly to the 2 x 2 case, Theorem 3.4 allows us to expand g

1

its inverse up to order z7* as (we suppress the shift («, 3))

[ _ -1) _ (—1)* _
1 1 ( 2 2
+ O(z ) 7zhk,1,g + O(z ) 7th71’£71 + O(z )
(k.4 _ (—1)%&! 2 1 1 -2
g- erO(z ) 1+0(z1) e +0(z7?)
—1)H1p h
_7( )Z o) o) 1+0(=7Y)

k@B 4d

: (3.11)

where O(z") are terms with power of z equal to i or lower, and we define quotients of 7-functions

as

Tk+1,0
hye = ,
Tkt

_ Th+1,4+1
Tk

Tk 041
hgg=—"— P

L ? i}

Th 0

This formula then gives the following formula for (g[_k’@)_1

- . (_1)é+1 ) (_l)é—i-l ) .
1+0(z~ +O0(z~ +O0(z~
) Gloroey S o)
A\ — —1)*1h —1
(g[f Z]) 1 — ( ) k¢ + 0(272) 1+ 0(2’71) + O(Z*Z) (312)
Zh -1
—1)¢n —h
( )Z k¢ +O(2_2) Zk,£+0(z—2) 1+O(z‘1)
3.5 Explicit formulae for connection matrices
Lemma 3.7.
[ (—1)* (-1 ]
2 platlh)  platlf) (@,8) (,8)
(a+.8) k-1, L hi hy¢
Vie 7 = 0417, () ) = — -,
; o Q, . (a+1,8) (a+1,8)
(—1) hM 1 0 h@,e hﬂj;l
LT -1
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—1

Ve = | (Cqyentesn

k.t

0

—1

Wi = | (Cqyeneo

k=14

(.By) _
Wk,e = 0

a,f+1
(SRR

(_1)6—1-1

h(avﬁ)

k—1.0

z+ B

a?ﬁ
iy

(-1

a,B
h’(f;l,)f

z+C

(a,8)
hy.o

0
-1

(o, 41)
Pyt

(@r1,5)
11

) a,B+1)
Y hie
= @bt T @h)
Pig—1” hicie
«, (a+176)
Cm? M
= (at1p) (@f)
hk*lvﬂ hﬂve
(@f+1) (@6+1)
et g
= (@h) (a5)
hier g

Proof. For the off-diagonal entries, use the expressions (3.11) and (3.12) for g_ and (g_)~*
in the definitions (3.10) of the elementary connection matrices, and then use the positivity,
Lemma 3.6, to discard all terms with 2~! or lower.
determinant of all elementary connection matrices is z. We comment that the inverses of W,gj“[”ﬁ )

and W,golf’ﬁ ) can now easily be calculated.

For the translation matrices, we obtain the following expressions

U(aﬂ) _ V(a+,5)(W(a+,5))—1

For the diagonal terms, use that the

P k.t k41,6
r (a+1,8) (@.B) (@.B) 7
Y P e hig (D (=t (1)1
afB) g (atlp at1,8 o8 a,B); (a+1,8 (@+1,8)
DY v S VG il i SV
(—1)ny” 0 0
i (_1)“1}1&2@ 0 1 |
Equivalently,
a,f a—14,0)\—1 a—14,8
U15+,e): (WIE-&-LEJF )) Vk(+1,z+ :
B a—1,8 o, a—1,8 7
- M B VR i ) R SR
(avﬁ) (thl,ﬂ) (avﬁ) (Gf,ﬂ) (a,ﬂ)
hy. g Ry Py g1 o hy-1
(~1)'h” 0 o |
«, a—1, a—1,
_(_1)Z+1hé,€6)hl(c+l,gﬁ) 4 (_1)Z+1hl(ci1,g/8) 0 1 ]
(avﬁ) _ (arﬁ ) (avﬁ ) -1
Ui, = Vis i (Wk,£+1+)
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_ 1 (_1)4 , _
(e.B)
hy 1
(@,8+1) (a,8) (a,8+1) (a,8+1)
— (—1)e+1h§:26+1) + (_1)€hﬁ’£ L hk& _ h&j B hk& _ 1
- (avﬁ) (a76+1) (avﬁ) (avﬁ) (avﬁ)
hy. ¢ hk,é;1 h@,z hy..s hy..s
_ 0 ned 0]
Equivalently,
a,f a,f—1 -1 ,(a,f—1
Ulg,u) = (Wli,ul +)) Vlc(,£+1 +)
_ .6) -
-1 /+1 h(
! ,i(a,/g—m + (DT !
k1041 k1.4
o (Oé,ﬂ—l) (arﬁ) (avﬁ)
“lenmen ket Mein Mg 1
k41 o, (a,f—1 a,f—1 (a,8)
hég : h@:;¢+i hég : hy, ¢
(a75
0 ey 0

3.6 Difference equations from factorizations

Theorem 3.8. The T-functions defined by (3.4) satisfy the following system of four equations,
referred to as the 3Q-system. For all o, 8 € Z and k,£ >0

(™) =G+ A - s, (T01)
AR + g = GOl (21
(57 = 75 Ons ) = P s (t2,1)
IR VR R ViE R S Vi (t11)

Proof. We substitute into the two factorizations (3.7), the results of Lemma 3.7. We find
rather complicated rational expressions in the 7-functions. From the two different expressions
for Uéi’g), we obtain

SR VI v R v ey
(_1)€+1 N (_1)£+1 _ (_1)£+1’ (3'14)
and
C—l)@+1hgzﬂ):= 0—1>‘*1hgﬁﬂ)h¥1125)*-(—4J€+1hgliiﬁ)- (3.15)

Expressing equations (3.13), (3.14), (3.15) in terms of 7-functions, we get nontrivial equations
in 3 components:

(ailng) (&,ﬁ) (Q7B) (a+17ﬁ) (azﬁ) (a+17ﬁ)
Tet2,041Tk0—1  Tht1,041Tk—1,0-1  Tkt1,7k—1,0

"~ _(a—1,8) (o) (a+1,8) (a,B) (a+1,8) (a,B)
Ter1,e  Thr1,e Tt Tk Tkt Tkt
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(auB) (Oé*lvﬂ) T(Cl{*l,ﬁ) (046) (a+176)7_(a»5)

Tk+1,6Tk 0 k+2,6 Tk Te+1,6 Tk
y > y y _ ) y — 0 ([O O])
(a_lnﬁ) (Ol,ﬁ) (Ol_]wﬁ) (avﬁ) (azﬁ) (a—"_le) ’ ’
Tet1,6 Tk Tk+1,6 Tkl Te+167k0
(a.B) (a+1,8) (a+1,8) _(a,B)
C Tke—1 | Te—10-1 n Teo—1 Tk —0 ([0,21)
(o,3) (a+1,8) (a,8) (a+1,8) — 7 ’
Tk+1,e Tk k+1,07k,¢
(O‘_]WB) (a7B) (a_]-vﬁ) (0675)
Tht2,041  Thtlerr | Tkt Thenl ([2,01)
(O‘_175) (avﬁ) (Oé—l,ﬁ) (Oé,ﬁ) B ’
Th+1,0 Tt Tk+1,6 Tk

Following the same procedure, but instead using the two different factorizations of Ulgoé’f), we
get the following relations satisfied by the 7-functions:

(a,f+1) _(a,f) (CHo) (a,6+1)

Th+1,64+17k,0 Te+1,641  Tk+1,0
5 y _ y _ > — O ( [1 O] )
(.f8) _(«,p+1) (o,8) (o, B+1) ’ ’
Teo4+1 7Tk 0 Tk,e+1 Tt
(a7571) (azﬁ) (aaﬁil) (azﬁ)
k=16 Tkl =141 Tk-16 0 ([0,11)
(O‘7ﬁ_1) (aaﬁ) ((X?B_l) (Oé,ﬁ) B ’ ’
Tko+1 Tk Tk0+1 Tk,e

(aaﬁ) (Oé,ﬁ—l) (Oé,ﬁ—‘rl) (a)ﬂ) (a)ﬂ) (Oé,ﬁ—‘rl)
Thtr1,041Tk—1,641 k41,6 Tk—1,  Tker1Tke—1

(aaﬁfl) (CV,B) B T(azﬁJrl)T(a»B) T(a»ﬁ+1)7_(avﬁ)

Teo+1  Tketl k¢ k.0 k.0 k¢
(avﬁ) (0675—1) ((X,B—l) (0476) (Oé,ﬁ-}—l) (avﬁ)
Tk 17k 0 met2 The  Thert The o ([1,2])
(a,8-1) _(c,8) (a,8-1) _(a,8) (a,8) _(a,8+1) — ’
T+l Tk T+l kel Ther1Tke

The two equations [0,2] and [2,0] can be brought under common denominator, and then the
numerator is equal to 0. (Here, we think of the coefficients ¢;, d;, e; as formal variables, so the
denominators are not 0.) The resulting equations are the same, up to a shift in the indices. This
gives the equation [2] in the theorem. In the same way, [1] follows from [0,1], [1,0].

Next we bring [0,0] under common denominator. The vanishing of the numerator gives

(O‘7ﬁ) (Oé—l,ﬁ) (a7ﬁ) (Oé-‘rl,ﬁ) (Oé—lv/B) (avﬁ) (Oé+17ﬁ) (avﬁ)
Tt 1,0417k4+1,6  Tk4+1,6Tk—1,0-1 — Tk+2,641Tk,0—1Tk ¢ Tk,e
(a_lyﬂ) (a+175) (Ol—‘rl,ﬁ) (a_176) (avﬁ) 2
+ (Thhad” Th Tt Thad ) ()
(ailng) (Oé*‘r].,ﬁ) (O{Jr].,ﬁ) (ailzﬁ) (azﬁ) 2 _
— (s e e U ) (i) = 0. (3.16)

In the first term we substitute

(OL,B) (Oé—l,ﬁ) — (Oé,ﬁ) (Oé—l,ﬁ) (Ot—l,ﬁ) (0‘15)
Tt 1,041 k41,6 = Tht Tkt 1,041 T Tkt 2,041 Tkt 0

which follows from [2] by the change of variables, k — k+ 1, £+ £+ 1, a — o — 2. The first
term then becomes

T(avﬁ),r(a'i‘laﬁ) (T(aaﬁ) (Oé-l,ﬁ) +

T (a_lvﬁ),r(a7ﬁ)
k41,6 Th—1,0-1\Tk+1,0Tk+1,6+1

Tk+2,64+17k,0 )
In the second term of (3.16), we use [2] in the form

Thet—1Th 4 = Tret—1 Tkt T Tht1,6Th—1,0—1

so that the second term becomes

(a_lvﬁ) (a7ﬁ) (a—"_l?ﬁ) (Oé7ﬁ) (a7ﬁ) (a+1718)
Tt ot (Teed ot + TopraThotdo1)-
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After the cancellation of two terms and collecting like terms, we have (3.16)
(T(ayﬁ))Q( (@=1,8) (a+1,8) _ (a+lp) (a=1,8)  (a—1p) (a+l, ﬁ))

k¢ Tkr20 Tk k41,6 Tk+1,0 Tkt2.041Tk 0—1
_ (- () (a=1,8) _(a+1,8) (a+1,8) (a=1,6) (a=1,8) _(a+1,8)
= (Tk+1,e) (Tk+1,e Te—1,6  — Tk Tk, - Tk+1,z+17k—1,£—1)- (3.17)

Now observe that the square factor on the right in (3.17) is obtained from the square factor
on the left by a shift k¥ — k 4+ 1, and similarly, mutatis mutandis, for the terms in the big
parentheses. Therefore, if we know that

(Ths ) =Tkt Tk T L 1 T 1,01 — Tkl The1.6 (3.18)

then (3.17) also tells us that

(@,f)\2 _ _(a+1,8) (a—1,8) (a=1,8) _(a+1,8) (Oc 1,8) (04+1 5)
(Tk+1,z) =Tht1,0 Tkl T Thg2,001 Tk p—1 Tha2, Ty

So it suffices to check (3.18) for £ = 0, which reads

a,f a+1,8) (a—1,8
)

(@.f)

But this last equation is true by Item 4 of the examples in Section 3.2: the 7-function o0

independent of «a, see also (3.2). This proves part [0] of the theorem.
Finally, we use the [1,2] component of the two expressions of Ulgoé’f). Bringing all terms
under a common denominator, the vanishing of the numerator gives

(a7/3+1) (a,8) (aﬁ D _(a,8)  _(a,B) (a,p—-1) (a5+1) ( B)
Tht 1,6 Th—1,0Thtt1  Thtt1 — Tht 1,41 Th—1,641 Tkt Tkt

a,8+1) (a,8—1 a,f—1) _(a,8+1 a,B
+(TI§€+1 )Tig,zﬂ ) Tlg£+2 )Igﬁ ))(Tigz ))

(a,8-1) _(e,3+1) (a,8+1) _(a,3-1) (a,8)\2 _
+ (et The  — Tt The ) (Then)” =0 (3.19)

In the first term, substitute

(.f-1)_(a,8) _ _(a,B) (a,8-1) _(a,B)_(a,f-1)
Tk02+1 k1,0 = Thotl kau ;fZ Tk(il,ZJrl’

which is obtained from [1] by the shift 5 — 5 — 1. The first term becomes

(a,8+1) _(a,8) ¢ _(c,8) _(a,3—1) (a,8) _(ea,8—1)
Tht1,0 Tké+1(Tk£+1Tk 1,6~ Tke Tp— 1£+1)

In the second term we also use [1], in the form

AeB) (af+l) _(af+1) (aB) (@,8+1) _(a,6)
Th+1,0+17k,e = Tet1,641Tk0  — Tht1,6 Tke+1o

transforming the second term to

(.=1) _(,B) [ _(c,B+1) _(a.B) (,8+1) _(a,8)
TTk—1,64+1Tk,¢ (Tk+1,e+17k,£ Tkt Tk,e+1)-

After cancellation of two terms and collecting like terms, (3.19) becomes
(T(a7ﬁ+1) (a,ﬂfl) _ (Gf,ﬁ*l)T(a,ﬁ+1) (a»ﬁ ) ( 7ﬁ+1))( ( ))2

ke+1 Tke+1 ke+2 Tk T 1,041 Tht 1,641) (The ¢
Y — Tl Ther |~ Thore Thave ) (Therd) (3.20)
As before, (3.20) implies that if
( Tk,e ) = Tkz Tke T Teetl ko1 T Tk—10 Tk+1e (3.21)

the same equation holds after a shift £ +— ¢ + 1. So we reduce to the case of £ =0 of (3.21):

( Tk,0 ) = Tk:O Tk,0 Tk—1,0 Tk+1,0 )
using Item 1 of the examples in Section 3.2. By Item 3 of these examples T,E aB) _ ,gaiﬁ ). So
the case ¢ = 0 is just the @-system of Theorem 2.7. This proves the final part [1, 1] of the
theorem. |
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A Multi-component fermions and semi-infinite wedge space

A.1 Introduction

In the main text we work with n x n matrices (depending on a spectral parameter z) for n = 2
or 3. In this appendix we will not specify n, as the theory of n-component fermions and the
associated semi-infinite wedge space does not significantly depend on n. A convenient reference
for background and more details is ten Kroode and van der Leur [31].

A.2 Semi-infinite Wedge space

Let
1 0 0
0 1
€0 = ,€1 = : yereEn—1 =
0 0 1

denote the standard basis of C™. Denote the corresponding elementary matrices by Eg, (such
that Egpe. = 0pc€q); they are also indexed by integers 0,1,...,n — 1. We also need the loop
space of C", denoted by

H™ =C"g (C[z, zil],

with basis efj =e.2¥, fora=0,....,n—1and k € Z. Let F™ be the n-component fermionic

Fock space, the semi-infinite wedge space based on H™. It is spanned by semi-infinite wedges
w=wg Awi ANwg A---, wieH("),

where the w; satisfy some restrictions that we will presently discuss. Semi-infinite wedges obey
the usual rules of exterior algebra, like multilinearity in each factor and antisymmetry under
exchange of two factors.

To formulate the restrictions on the w; that can appear in the wedge w above we introduce the
Clifford algebra 1 acting on F(™: it is generated by exterior and interior products, denoted
by e(efj) and i(e’;), defined as wedging and contracting operators, respectively:

k

e(ea)a:efi/\a, i(e’;)a:ﬁ, if a=enp.

It is useful to collect the generators of the Clifford algebra in generating series. Therefore, define
fermion fields

¢f(w)22awa)w_k_l, a=0,1,...,n—1,

keZ
where
a?,[)z;) = e(el;) = eazk/\, al/J(_k) = i(eaz_k_l). (A.1)

The fermionic fields satisfy anti-commutation relations?

[wc:zt('z)v wl:;t(w)]_;,_ =0, [w;—(wl)ﬂ wb_ <w2)]+ = 5a55(w17w2)7 (A2>

%[a,b]+ = ab + ba.
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where the formal delta distribution is defined by

d(z,w) = Z 2R L

kEZ

Let vy be the vacuum vector

1 0 0 2 0 0 22 0
0 1 0 0 z 0 0 22
Vo = 0 VAN 0 VANCRIIVA : A 0 AN 0 VAN A VAN 0 AN 0 A\ (A3)
1 z

Then we define F(™ to be the span of the wedges obtained by acting on the vacuum vy by
monomials in the wedging and contracting operators. To get a basis for F(™ we specify an
ordering on the wedging/contracting operators acting on F),

Definition A.1. An elementary wedge in F(™ is an element w = Muyg, where
M = M, _1--- MMy, M, = MM, a=n—-1,n-2,...,2,1,
where
My = W50l oV R <k <o <k < -1

is a monomial in azﬂi) for k < —1, ordered in increasing order from left to right.

The statement that the elementary wedges form a basis for F(™ follows from the Poincaré—
Birkhoff-Witt theorem for the Lie superalgebra underlying the Clifford algebra.

We define a bilinear form, denoted (, ), on F' () by declaring the elementary wedges to be
orthonormal. We then have

<a¢?}€)v>w> = <’Uaaw(_,k,1)w>> (A4)

and
(Wi (o, w) = (0,5 (=) ).

The n-component fermionic Fock space F(™ has a grading by the Abelian group Z", i.e.,
we have a decomposition F(™ = @QGZanL). The vacuum has degree a = 0. To describe the
grading, introduce a basis in Z" by

5a:[0 0 ... 1 ... O], where the 1 is in position a = 0,1,...,n — 1.

The grading on F(™ induces a grading on linear maps on F: if L: F(® — F®) hag the
property that there exists a § € Z™ so that, for all w € Z™, L restricts to a map Fog") — FLET_?E,
then we say that L has degree 6. Then the grading is uniquely determined by declaring wedging
operators e,z"A to have degree d,, and the contracting operators i(eazk) to have degree —d,.
The fields 1 (z) have degree +d,.

The total degree of an element w of degree « is just the sum of the entries in the degree row

vector «.
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A.3 Fermionic translation operators and translation group

Besides the action of fermion operators, a?/)(ik), on F( we also have the action of fermionic

translation operators Qq: F" — F(™ ¢ =0,1,...,n—1, given by

Qavo = U (2)v0,_y = 010, (A.5)
and

VE(2)Qa = 2 Qur (2), (A.6)

VE(2)Qy = —QuE(2),  a#b, (A7)

QaQb = _Qme a 7& b.

The Q, are invertible. QF! has degree +6,.
The Q, are unitary for the standard bilinear form of F():

(Qav,w) :<U,Q;1w>, a=0,1,....n—1, forallwe F™, (A.8)

The fermionic translation operators belong to the central extension of the loop group (f}an (acting
on F(")). They are lifts of commuting elements of the non-centrally extended loop group, see
for instance [7, Proposition 5.3.4]. We have

m(Qa) ==Y _ Epp+ 2 ' Eqa. (A.9)
b#a
The group generated by Q,, a = 0,1,...,n — 1, contains a subgroup of elements of total

degree zero, generated by the translation operators Ts = (s ;11, s=1,2,...,n—1, of degree

ds — ds—1. Another set of generators for this subgroup is also useful: define

T(zb = QaQb_17
of degree d, — .
Lemma A.2.

. Tach = QcTab ifC 7é a, b.
. Fora # b and for allm € Z

D ~

m(m—1)

(Qu@y )" =(-1)" =z QrQ,™.

3. For all k,l € Z we have

k(k2—1) + £(£—1)

LT = (1) T Q5Q Q"

B

. Forall a,B,v € Z

a(a=1) | BB-1) , 331
2 + 2 +’Y’Y2

) _ C—
Ti Ty To, = (—1) Q8P QTR

[

. Forall a, B,y € Z

B(B—1)
TfE)TQﬁOTQ’yl — (_1) 5 L +aﬁ+a7+57TZB+7Tf+’B.
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Proof. Part (1) is clear. Part (2) is a simple induction. For part (3) we get

k(k—1) £(e—1)

T = (Q07) (@) = (-1)" 7 (-1)" 7 QsQr*QiQy".

Similarly for part (4) we have

a(@=1) , BB-1) , 1(-1)
2 + 2 +NNQ

T T T3 = (—1) QT Qy Q50,7 Q1Q,”
(~1) Q5 Q5Q30,7Qr Q"

L (1) S R 205 g o e g

a(@=1) , BB-1) , 1(G-1)
2 + 2 +’Y’YZ

Finally, for part (5) we substitute
-~y N—a— a(a=1) ; v(v=1)
QITQITIRY T = (- T e,

(from part (3)), in the right hand side of part (4). The result then follows from

(_1)a(a;l)JrB(B;l)er(v;l)Jroéwawz—l)Jrv(v;)Jmﬁﬂ%Y _ (_1)B<ﬂ271)+aﬁ+a7+67' n

Define the ordered product of £ > 0 fermions by

k
+ + +
vt = atiiny ety
=1

The empty product is as usual the identity.

Lemma A.3.
1. Fork e Z,
(UOJ k= 07
k
kao = H (alﬁll))vo, k>0,
11 (¥ p)vo, k<O
=1

2. Foralla,3>0

«

B B Y
Q1 Q5w = (=1 [Tov "y IT v myvo = TT 19{ 0y [T 0¥ 00
=1 m=1 m=1 =1

=e1z P nerzV T PA - ANerz T Aegz T Aegz YA - AegzE A .

Just as the fermionic translation operators are unitary, so are the translation operators T
and T,p: from (A.8) it follows that

(Tv,w) = (v, T w) for all we FM. (A.10)
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A.4 The Lie algebra §[n and fermions

The loop algebra gln is defined as the Lie subalgebra of gl(H (")) generated by F.p2*, a,b =
0,1,...,n—1, k € Z, where

(Eabzk) . (eczm) = Gpea 2T,

The loop algebra g~[n does not quite act on F(™. One would like to define the action on F(™ by

Eabz >—>Z €az k+l/\ ebz Z ¢(k+l)b

lEZ leZ

However, considering the action of E,,2° on the vacuum vy we would get

Eqqvo = § Vo,

>0

(since (eqz' A) (i(eqz"))vo = vg for I > 0), so that these diagonal elements would have a divergent
action. Therefore we introduce a normal ordering on fermion fields [18] by

: wi(z)"(/’b_ (’LU) = wicr(z)wb_(w) - wb_ (w)wzann(z)ﬂ

where the creation and annihilation parts of a fermion field are given by

Yer (2 Z¢ —k— 1)2 Yann (2 Zw(k

k>0 k>0

Of course, when a # b

Fg (2)1y (W) = (2)4, (w).

We define the normal ordering on the components of the fermion fields by

U ) = 3 iy e e

klEZ

Then we have

— a¢ W k< 07
Ll =10
(k)oY (1) { =¥ aqﬂ , k>0

Note that
— ot
“w&)bw(l)‘ = a¥p¥ ) (A.11)
unlessa=band k= -1 — 1.

Next we can define an action on F( by

B et 3 (et A ) (i(er2)): = 3 iy

leZ l€Z

This gives a central extension (cf. [31])

O—>C—>g/g—>5[n—>0.
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Introduce a generating series of loop algebra elements by

Eagp(z1) = Y Egpalzy' ™" (A.12)
leZ

The action of this generating series on F(™ can be represented by a normal ordered product of
fermion fields

Egp(21) =: ¥q (21)9 (21): - (A.13)

Indeed,

Ea(z1) = D>t Ly 2

k€7
= klZZ: (awéﬁ_l)’zlﬁkilil)(b@b(_l_l)zll): = 1/);r(21)¢1; (zl): :
;e

The series Eq(21), acting on F™) has degree 6, — 0.

Equation (A.13) is the reason we chose to encode the wedging and contracting operators as
coefficients of fermion fields according to (A.1).

We also need the commutator of the generating series of Lie algebra elements with fermionic
translation operators.

Lemma A.4. For all o, B € Z we have
Q1" En(2)Q1Qy" = (~1)* 72 By (2).

A.5 Root lattice

Recall, see Appendix A.1, the group Z" that gives a grading for fermionic Fock space F(™. The
root lattice A,_1 is a subgroup of Z". It is generated by

Oéi:(;i—(sz;l, i:1,2,...,n—1,

o)
n—1
A1 = © Zo; CZ".
i=1
n—1
We will call elements in A, of the form o = »_ n;q; positive roots if n; > 0.
i=1

The translation group is also graded by A,_1: the generator Ts = QSQ;ll has degree as.
Similarly the Lie algebra generating fields Eg,(z) have

deg(Faq—1(2)) = aq.

B Expressions for the 7-functions

In this appendix we prove Theorems 2.1 and 3.2. This gives expressions for the 7-functions in
terms of coordinates on the lower triangular subgroup N of GL,, for n = 2, 3.
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B.1 The case of n = 2, Theorem 2.1

Recall that ' C GLy was defined as the subgroup of elements of the form (2.1). The inverse
image of A under the projection : GLQ — GL2 can be shown to be isomorphic to the group
N x C* of pairs (n,z), with multiplication (n1,z1) - (ng2,z2) = (n1n2,z1z2). In other words, the
central extension defining éig is trivial when restricted to 7 ~!(A). Denote by N the subgroup
of 71N corresponding to pairs (n,1) in A" x C*. Then N and N are isomorphic.

The 7-functions for GL2 are given as matrix elements on F(?):

T]ga) - <Tkv07.g(c(’l)v0>v (Bl)

where the element g(c?‘ ) of the lower triangular subgroup N of (/}ig has projection given by (2.3).

We write the group element g(c) as

o Wy _ N~ 1
g(c)—exp F( ZE
=0 "

where
£ = Res., (a0 Bue0),

and C(¥(z) is given by (2.2), and the generating series of loop algebra elements E1q(z1)
by (A.12).

The reader might object that Fé? ) is an infinite sum of fermion operators each acting on F'?),
and it is not so clear what this sum means. By imposing conditions on the coordinates ¢, € C

()

we can ensure that I',” is indeed a map F@ — F@_ For our purposes it is easier to think
of the ¢; as formal variables, and interpret F(g) and ggl ) as maps F?) — FOJ[¢;]]. (See also
the comments about the interpretation of the loop group element following (2.1).) This has as
a consequence that the 7-function (B.1) is not a complex number, but a formal series in the ¢;.

T*vy has degree k(6; — dg) in F*), and F(c?) has degree §; — dg, since E1g(z1) does. In F(2)
homogeneous elements of different degree are orthogonal for (,). Hence only the ¢ = k term
contributes to (B.1) and

T]ga) k'<Tk 0,(1“( )) >

Recall that C(¥(2) = (=1)® 3 ¢nraz "' Associated to the series C(®)(z) is a C-linear map
neZ

() Cl[z,27']] = B = C[[cil)iez, f(2) — Res, (C(O‘)(z)f(z)).

We need multiple copies of the map ¢(®) acting on series in variables z1,2s,.... We define
c(a)(f(zi)) = c@(f(2)), for i = 1,2,..., and impose linearity in the variables z;, j # i, i.e., the

condition that (for instance) cga) (f(zi)z;.”) = z?cga)(f(zi)).
Then we can write

1
(F(a) ch(a HE10 Z]
=1

and so

k k
o 1 o
) = HHC’( ) <TkU0,HE10(Zj)U0>
. 7j=1
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k k
= % H CEOZ) <TkU(), H (¢T(Zj)w0_ (ZJ)) U0>
=1

j=1

k k
S 1CE <<Q1Qo vo,Hw1 (25) H Yo (z0)v >>
Ti=1

s=1 t=1

Here we use the fact that, in the expression (A.13) for Eyp(21) in fermions, the normal ordering
is just the ordinary product of fermion fields. We also use Lemma A.2, Part 2 and the anti-
commutation relations (A.2).

Next we use the factorization Lemmas D.1 and E.1 to calculate the factors involving 1y (2)
and 11 (z) separately; we find

(@ _ 117 (k) 2
= g T o (),
1=

Here V{( )} is the Vandermonde matrix (E.1).

This proves the first part of Theorem 2.1, since det (V{(Z)}) [T (zi—2%).

¢ E>j>i>1

For the second part we need a formula for the square of a Vandermonde determinant. Let

the permutation group & act on Clzq, 29, ..., 2] by permuting the subscripts.

Lemma B.1.

2 k
det ( = Y det (2,1 7%); Ly (B.2)
oeS

Proof. The right hand side of (B.2) can be written as

- 2 k—11
1 =z 2 ... oz
o  Za oz ... zé‘:
2 3 4 k31
E odet | 23 %3 23 ... Z3
cEG, : : : : :
k-1 _k _k+1 2k—2
L2} “k Pk e

From this, we see that the o = e term on the r.h.s. of (B.2) is
(3 2 S— i—1 S—
A = det (2 +i- ) = ||zs 1det(zf ):”zs 1det(V{zz_}).

s=1 s=1

Now for every permutation o in G5 we have

\U|H s— 1det { })

Summing over all permutations, we obtain

Yooy =Y (- ‘U‘st Jdet (V) = det (V)" |

o ceSy,
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z
. . 2 .
We then introduce a monomial column vector v(z) = | #° |. Define the Hankel matrix
_Zk_l_
(with coefficients in B)
1 oz 22 L 2
z 22 2. P
(@) (a ™ (a 2 3 4 E+1
T =l )(U(Z)U(z) )_C( )| 2 z z . Z
|2kl 2k gk 22h-1]
Ca Ca+1 Ca+2 o Cat+k—1
Ca+1 Ca+2 Ca+3 s Ca+k
= (=D** | Cat2  Cat3 Cata oo Catkil |
[Cat+k—1 Ca+k Catk+1 -+ Cat2k—2]

where we apply ¢(® componentwise. Then the value of det (Tlga)) € B can be calculated in
terms of Vandermonde determinants.

Lemma B.2. If } is the Vandermonde matriz (E.1) then

k
« 1 « k
det (T(*) = k'Ul o (det (V)%
Proof. By the trivial observation that

A (f(2)) - D (g(2)) = 7 (F(21)) - 7 (g(22))

we have
(1 oz 2 21
k 22 Z% Z% o e Zéc k
E+1
TSRS ICR B B B IS | ER e
i=1 : : : : : i=1
_lezfl z,’j Z]I§+1 szfQ
Now for any polynomial f(z1,z22,...,2;) and any permutation o € &, we have
k k
H 0§“)<af(z1, 22,y 2K)) = H Cga)(f(zh 2255 2k))-
i=1 i=1
Hence
(a . a) i+j—2
det T =1 H <Zadet (zi )> ,
(o2
and the lemma follows from the previous Lemma B.1. |

This finishes the proof of the second part of Theorem 2.1.
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B.2 Proof of n = 3, Theorem 3.2

Proof. In this proof, for typographical simplicity, we will suppress the shift superscripts (@5,
We write g = exp(I'c) exp(I'q) exp(Te), where

Fc = ReSZ(C(Zl)Ew(Zl)), Fd = Reszl (D(Zl)Ezo(Zl)), Fe = Reszl (E(Zl)Egl (Zl)).

(Recall (3.1).) This implies that 75 ¢ is the sum of

Ne nq Ne
Cnemane = Resxy z <H C(zi) H D(yi) H E<2i)Pnc,nd,ne> )
i=1 i=1 i=1

where
Ne ng Ne
Prenane = <T1]“Tzfvov [T o @ @) [T s wavo (w) Hw;<zi>w1_(zi)vﬂ> :
i=1 i=1 i=1
where
ng + ne = £, ne +ng = k.
We can factorize this using Appendix D as

(k(kfl);rl(éfl)+k£+“rc(nc—1)+nd("2d—1)+ne(ne—1)+ncn8)

X <Qg1)07 IT35 ) H¢;<zi)vo>
i=1 =1
x <Q‘f‘%o, [T @) Hw;(zavo> <ngvo, [Tvo (@) Hwa(yi>> :
=1 =1 =1 =1

Since, using (B.2),

pnmndane -

k(k—1)+£(£—1) ne(ne—1)+ng(ng—1)+ne(ne—1) ng(ng+1)
> +ke+ C C d 2d e e d 2d

)

+ncne — (_1)

(=1)

the theorem follows from the calculation of correlation functions in Appendix E. |

C Birkhoff factorization and matrix elements
of semi-infinite wedge space

In this appendix we sketch proofs of Theorems 2.2 and 3.4. First we will discuss a more general
statement about the Birkhoff factorization in GL,,.

C.1 Birkhoff factorization and n-component fermions
Recall that most elements v € GL,, have a Gauss factorization:
Y= Y=-Y0+;

with v_ = 1,,x,+ strictly lower triangular, vy upper triangular (and invertible). Only the ~
for which the principal minors vanish don’t have a Gauss factorization.
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A similar story works for the loop group (f}\in of GL,. Let éfJn_ be the subgroup of éan of
elements g_ = 1+ O(z_l), and let GLj04 be the subgroup of elements go; = A+ O(z), where A

is invertible (and independent of z). Then most elements in GL, have a Birkhoff factorization

9=9-g0+, g€GLn. (C.1)

The existence of such a factorization is controlled by the non-vanishing of a fermion matrix
element in the semi-infinite wedge space F(™. We will express g_ in terms of such fermion
matrix elements.. -

Recall that, just as in the case of the loop algebra g[n, the loop group GL,, does not actually
act on F(™, We instead have a central extension (cf. [28])

15 C* = GL, 5 GL, — 1,

and an action of éi on F( . The inverse images m— (GL ) and 7~ (éinoJr) can be shown

to be isomorphic to product groups GLn_ x C* and GLn0+ x C*, respectively, i.e., the central
extensmgv defining GLn Is trivial over the two inverse images. Denote by GLn, the subgroup
of m~ (GL ) correspondlng to palrs (g,1), and let GLn0+ denote the full preimage of GLn0+

Then the intersection of GLn, and GLn0+ will be the element 1 € GLn, the image of C* belongs
to Gan(pr Most elements g € GL,, will have a (unique) Birkhoff factorization,

A~

9= 9-9o+
If vg is the vacuum (A.3) of F(™), the 7-function is defined as the matrix element
7(9) = (vo, gvo)- (C.2)

The element ¢ (and also g = 7(§)) has a Birkhoff factorization as long as 7(g) is not zero.

To calculate the negative component of ¢ in the factorization (C.1), we choose a lift § of g,
ie., 7(§) = g, and study the action of § on F(.

We have

go+vo = 7(§)vo.

This is explained in the case n = 2 in [6] (cf. [27, 32]). Hence (assuming § has a Birkhoff
factorization, or 7(g) # 0)

g-vo = g-Go+v0/7(9) = gvo/7(9)-
Now write g_ in terms of matrix elements
n—1
= Z gab(z)Eab7
a,b=0

where

- 1 l .
Jan (2 E :gab 2+, 9[(11, )= Oab g((lb) =0, if I<-1
kEZ

On F(™ (see Section A.4)

Egpz k1 =: Z (ea I=k— 1/\)( (ebzl)): =: Zawafkfl)bw(_flfl): .

l leZ
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For the E,,2z~ %! appearing in g_ (i.e., those with k& > 0) the normal ordering can be omitted,
see (A.11).

Now to find g((llz) we calculate

k _
g-vo = vy + Zg,gb) Z awa_k_l)b¢(_l_1)vo +oe
k>0 €7,

where the omitted terms are quadratic and higher in the F,,. We see that g((llz) appears as the

coefficient of many elementary wedges awa—k—l) bwilil)vg. To calculate ggz) we just pick one

of these elementary wedges, say the [ = 0 term, and use orthogonality of elementary wedges to
find (k > 0)
k — — ~ ~
ggb) = <aw?__k_1)bw(_1)v()ag—vo> = <a¢zr_k_1)b¢(_1)v07gv0>/T<g)
= <Qb_1v0,a¢(_k)§vo>/7(§), (C.3)

using (A.4) and (A.5).
Now observe that

: a%ﬁzf))bw(_,l)i Vo = 0abv0,

and
LWyt =0,  1>0.

This allows us to calculate ggz) for k < 0 in the same way as for k > 0, see (C.3).

These remarks prove the following theorem.

Theorem C.1. Let g € GNLn admit a Birkhoff factorization g = g_go4. Then

n—1
g- = Z gab(Z)Eab,

a,b=0

where
gav(2) = (Qy Mo, ¥y (2)Gvo)/7(4),

and § € GL,, is any lift of g, so that w(§) = g. The T-function is given by (C.2).

C.2 The 2 X 2-case; proof of Theorem 2.2

We now specialize n and g in Theorem C.1: in this subsection we set n = 2 and

g=m(gM) = (T M)x (9,

where W(g(ca )) is given by (2.3). We have two interpretations of g!*(

@) if we choose the coefficients

in C suitably, g(c?‘ ) gives a well defined operator on F()_ and the corresponding 7-function will be
a complex number. If the 7-function is not zero, g will have a Birkhoff factorization. However,
we prefer to think of g*(®) as a map F*) — F®)[[¢]], so that the 7-function is also a formal
series in C[[¢;]], which is not zero, and so the “formal group element” ¢ in this case will always
have a Birkhoff factorization.
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In this case our calculation of the Birkhoff factorization in Theorem C.1 gives us

1
g = 3 gl O @Ew, g (2) = (@ vo vr (AT g o) /7,
a,b=0

where the 7-function is defined in (2.6). We will proceed to rewrite g[ (e )(z)

First of all, we will expand ggl ) in fermion operators. Note that

g&) = exp (TW),
where
1% = Res., (C(21)E(21)), (C.4)

and C(®)(z) is given by (2.2), and the generating series F1o(z1) by (A.12). (See the beginning

(@)

of Appendix B.1 for an interpretation of g(ca ) and '+’ as operators on F(z).)

This means that g(a) > (I‘(Ca))e/ﬁl, both acting on H? and on F?). Hence
>0

[k] a) Z€‘<Qb vo, P, ( ( ) v0>/7'k . (C.5)

>0

Next, we use the standard grading on F(®). Note that I‘(Ca) has degree §; — g (since Ejp(z1)
does). So @, ! has degree —d, and 1, (2)T* (F(C?‘))Z has degree k(69 —01)+€(d1 —dg) — 4. Hence,
by orthogonality of terms of different degree in F'?), we find that the only non-zero contribution
to the sum (C.5) arises when £ =k + a — b and

a 1 — — — a)\ 4 «a
gl @ (=) = 5(@Q5 Mo v (T () o) /()

From now on, we will often use the abbreviation £ = k + a — b in formulas for gg?(a)(z).
Next, we need to commute 7% through v (2).

Lemma C.2. If T = Q1Q," then

by (2)T™F = (—1)FFCDT Ry 2 (2),
Proof. By (A.6), (A.7) we have
2 'Quyy (2)Q7  ifa=0,
—QuY; (2)Qyt  ifa=1

= T (2) ifa=0,
| =T (2) ifa=1

by ()T =, (2)QoQ; " = {
—227 = (2). [

By unitarity of the translation operators, (A.10), this implies that
( 1)k k(2a—1)

ol ) = ELEE g b (o (T
_1\k,k(2a—1)
_“)ngb vo, % (2) (TEY) “vo) /. (C.6)

Next we want to apply the factorization Lemma D.1. We need to write Tka_l in standard
form QeQ5.
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Lemma C.3.
_ k(k—1) b —k—
Tka 1 _ (_1) 5 (_1)kaIf bQOk 1+b.
Proof. By Lemma A.2, Part 2

k(k 1)

QFQ 1 if b=0,

(—D)kQY Q% ifb=1. "

TR = (1) Tty = (-1 {

Now we are going to express (F(Ca))é in terms of fermion fields, see (C.4) and (A.13). Recall

that C(®) = (=1)* 3 ¢z~ " L. Associated to the series C(® we have a map
nez

() Cl[z,27"]] = B = C[lci]licz, f(2) — Res, (C’(a)(z)f(z)).

We will need multiple copies of the map ¢(® acting on series in variables z1, 2o, .... We define
c(»a)(f(zi)) = @ (f(2)), for i = 1,2,..., and impose linearity in the variables z;, j # i, i.e., the

condition that (for instance) cga)(f(zi)zj ) = zjmc(a)(f(zi)).
Then we can write

14
( (a) H HElU zj) :Hca H¢1 i)Yo (25)
i=1 7=1 =1 =
y4
— ()" Hc§a> | I ED Hwo—(zt). (C.7)
=1 t=1

Here we have used the fact that in the expression of Eio(z1) in fermions, the normal ordering is
just the ordinary product of fermion fields. We also use Lemma A.2, Part 2.
Using Lemma C.3 and (C.7) in (C.6), we obtain

14

¢ ¢
g([zk](a)( Hca)<Qk bQ k— 1+bv0’¢a H (25) H 0— 2)v >/ (a),

=1 s=1

where

_1\k,k(2a—1) _ o
ey = CED e sy

Here, we still have £ = k + a — b. Now using the factorization Lemma D.1, we get

u k ¢
o) = EU T e i
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Using Lemma E.3 to calculate the factors involving ¢ (z) and 11 (z) separately we find

(_1)(a+1)€€([1k](a)(z) ¢ N . ¢ o
w I [ det (V) Hl(z_zj)l :
J:

Ty i=1

gH@ () =

Comparing this with the expression for the 7-function in Theorem 2.1 and the definition of the
shift fields (2.7) gives Theorem 2.2.

C.3 Birkhoff factorization in the 3 X 3 case, proof of Theorem 3.4

The proof of Theorem 3.4 is similar to that of Theorem 2.2 sketched in the previous subsection.
We leave the details to the reader.

D Factorization and reduction to one-component fermions

Often we want to calculate a matrix element in F(™ of fermion fields of the form

<Qan ... ?1 S‘OU(),P(wai(Za))UO>;

where P is some polynomial in the fermion fields ﬂ)ai(za), a=0,1,...,n — 1. By linearity, we
can reduce to the case where P = M is a monomial, and then we can rearrange the factors in the
monomial as in Definition A.1: M = M, _1--- M1 My, M, = M;‘Ma_, where Mf is a monomial
in a single type of fermions, ordered according to the subscript of the arguments of the fields:

Hwi z) = g (20)va (zi-1) -+ g (22)05 (21).

This defines the ordered product of fermion fields.

We calculate such matrix elements using the following factorization lemma.

Let us first introduce some notation. Let F = F(1) be 1-component fermionic Fock space,
with vacuum v(()l), and with bilinear form (, )p. The fermionic translation operators Q, @~ !,
defined as in Section A.3, act on F. Let N, = N, (@Z)i( “)), a=20,...,n— 1, be monomials in
fermion fields v (28), ¥, (2 (27) of just type a (acting on F(™), and let N, be the corresponding

monomial in 1-component fermlon fields ¥*(2¢) (acting on F). So for example if

No = ¢ (2917 (25)05 (29),
then

No =T (2D)0T (25) (25).
Lemma D.1. Then

<Qan b Qo v, N, "N1N01)0>F(n)
_ <Qan—1v0 7Wn—1'U0 )>F . <Qalv(()1)7vaél)>F<QaOUél)7NOU51)>F'

Proof. A basis for F'is given by elementary wedges (see Definition A.1) wy, labeled by pairs of

sequences k = (k7 k:_) where each sequence kT is of length I+ (in general T # ) and is of the

form k* = (kjE < k2 < klj; < —1). Roughly speaking wy, is obtained from the vacuum ’U(()l)

—k;

by deleting factors =% ~! from the vacuum (using the contraction operators i(z‘ki_ _1)) and
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+ +
then adding factors P (using the wedging operators (zkj A )) Since the order in which we
apply these operations matters, we must be more precise. So define

W = M(E)U(()l) = M+(E+)M_(E_)”(()l)v

where
+o4y o+ + 4+
MEED) = Yasy Vi) Yoy

Here, we still have ki < kf < --- < kF < —1.
Similarly, elementary wedges in F(™ are labelled by n-tuples (k k

n1sEn_9s---,kg), and are
defined by

Wik, 1.k ko) = Mn—1(kp_1)Mn—2(k,_5) - "MO(EO)U(()n)-

n—12n—22220

For the duration of the proof, we will write v(()") for the vacuum in F).

Now define a multilinear map from the n-fold product of F' with itself to n-component
fermionic Fock space F(™):

¢: FXFx---xF— F(”), (WEn,p‘%n,g’ .. ,wﬁo) > Wk, Lk grek)
By the universal property of the tensor product, this induces a unique map

¢ FRF®@--@F 5 FM,  w  Quwp ,® QWi = Wk, k_0ko)-

2 n—1:8n_2,--Eg

This map is an isomorphism of vector spaces, and is in fact an isometry, if we define a bilinear
form on F® F®---® F by declaring the basis {wy , ®wy, _, ® - @wy, } to be orthonormal.
For this bilinear form on F'®" we have (given wg, @, € F)

2

(Wn—1 Qwp—2® -+ Qwy,Wn-1QWp—2® - QWg) pan = H<wa,@a>F- (D.1)
Now one checks that

SR vf) @ Qo @ - @ QoY) = Qi@ e,
and

SN, 10 @ Ny ovd @ Nool)) = Ny 1N, g -+ Nooi.
The lemma then follows from (D.1) and the fact that ¢ is an isometry. [

So the correlation functions we want to calculate reduce to products of correlation functions
on one-component semi-infinite wedge space F'. In Appendix E we review some formulas for one
component fermions.

E One-component fermion correlation functions

In this appendix we collect some results on one-component fermions. In other words, we are
dealing with the fermionic Fock space ' = F(I), based on H = H("). The results in this
Appendix should be known, for instance Lemma E.2 can be found (without proof) in [4], but
we could not find references with complete proofs of the facts we need.

The whole discussion of Appendix A transfers to the present one-component context. For
typographical convenience we will write ¢*(z) for wgt(z) and similarly we write Q*! for Qoil.
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The correlation functions are matrix elements in F = F() of the form (Q*vg, M (2;,w;)vo),
where M is some monomial in ¢(z;) and 1)(w;). For reasons of orthogonality of distinct charges
we need to insert a power of the fermionic translation operator ().

The simplest case of a correlation function is

<Qi1007¢i(z)vo> = <"¢(i1)1)07 szTﬂ(ikl)’UO> = 17
keZ

since only the k = 0 term contributes.

Lemma E.1. For all k > 1 we have

& k
<Qikvo, H wi(zi)vo> = det (V{(Zi)}).

i=1
Here the Vandermonde matrix in {z;} = {z1, 22, ..., 2} is given by
[ 1 1 ... 1
21 Zo ...z
=] e =

Then we have

det (V{kzz}) = H (za — 28)-

k>a>p>1
We need

Lemma E.2.

Il (wi—wj) I (wi—y)
1<i<j<m 1<i<j<n
n

(Qm o, ¢ (wr) - F (W)™ (1) ¥ (yn)vo) =

=

(wi — y;)
1

(2

J

Il
—

Proof. We first consider the case that m < n. So

(Q" "o, ¥ F (w1) -+ ™ (wr)™ (y1) -+ ¥~ (yn)vo)
= (V) Pnrntn) V000, 07 (01) - 0T (W) (1) 47 (yn)v0)

which is equal to the sum of the coefficients corresponding to all ways of pulling out

Vom—m) ¥ m—nt1) " V(o0 0;
from the product of fermionic fields acting on the vacuum,
b (wr) - (W)Y (Y1) %7 (ya)vo-

Given a 0 € G, we reorder the fermionic fields and record the sign obtained from doing so

(=Dl (wr) - b (W)™ (Yo1) ¥ Yo () )0-
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We then pull out terms in such a way that no additional sign changes occur from permu-
ting the operators: Pull out 1/)(_71) from ¥~ (Yo (n)), ¢(_,2) from %~ (Ys(n-1)); ---, and 1/)(_m n)
from ¥~ (Y5 (m—n))- The product of the coefficients corresponding to these choices is

0 1 n—m—1
yo(n)ya(n—l) e ya(m+1) :

The remaining contributions for this choice of ¢ come from pulling out coefficients of products
of wedging and contracting operators from

T (wi) o (wWm)Y T Wo) Y Yom))

whose actions cancel with each other. We again pull out these terms such a way that no addi-
tional sign changes occur: We count only contributions coming from terms in ¢+ (W)™ (Yo(1))
that cancel with each other, terms in ¥ (wy,—1)¥~ (Yo(2)) that cancel with each other, ... and
terms in ¢ (w1)1h~ (Yo(m)) that cancel with each other.

We claim that we can count each pair, w+(wm_i)1/1_(yg(i+1)), 0 <i<m—1, as contributing

00 ¢
S 3 o) - We know we are not omitting any nontrivial terms in doing this, since
Um—iYo(i+1) S wp ’

44
any y"f_,fll) with ¢ < 0 corresponds to 1/1 w o1y and w( 1) kills the vacuum or any vector

m

obtained by acting by contracting operators on the vacuum. We must therefore only prove that
we are not including any extra nontrivial terms. Towards this end, consider some monomial,

01 lo b
(=1)"ly} n-m-1 Y1) Yo  Yolm)
ya(n)ycr(n 1)° yo‘(m+1) wf,%Jrl wfzi% ’w{erl y

corresponding to a product of wedging operators acting on the vacuum vector which give 0.
Since all of the wedging operators, ?l)(g , are such that ¢ < 0, the only way this is possible is if
two of the wedging operators are the same. But this means that two of the y;s in the above
expression are being raised to the same power. Define a new element, v € &,, by composing o
with the transposition that interchanges these two ;s. The sign of this new element is —(—1)I7.
So there is a monomial in the expansion of

0 n—m—1
(—1)h1= Yym)9v(n=1) """ Yny(m+1)

m—1 ’

1:[0 (Win—i — y’y(i+1))

which cancels with the above monomial.
Summing over all 0 € &,,, we have that

—m—1
(@0, 1)+ )4} = 3 (B Yt

7€Gn l:[o (Wm—i = Yo(i+1))

Using Leibniz’s formula to expand this as a determinant and then computing the determinant,
we find that this is exactly equal to

I (wi—wy) TI (v —y;)
1<i<j<m 1<i<j<n
T (wi — 9;)

Jj=1

:13

Il
—

7
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The proof in the case that m > n is similar. Here, we need to argue that

Q" ™o, ¥ (w1) - T (wim)Y™ (Y1) -+~ ¥~ (Yn)v0)

m n 1, m—n—-2__ 0
e m Yo(2) Yo (m—n) -
n—1 :
o€6m [T (Wo(m—s) — Yit1)
i=0

In Lemma E.2 we see that this particular matrix element of fermion fields is the expansion of
a rational function in the variables appearing in the fermion fields. This is not an accident, but
is a basic property of vertex algebras, see [13, 14, 18], referred as rationality of vertex operators.
Indeed, the one-component fermionic Fock space F(1) is an example of a vertex algebra, and the
fermionic fields are vertex operators for this vertex algebra structure. Another basic property of
vertex algebras is called commutativity; roughly speaking it says that if we permute the vertex
operators in a matrix element of a product of vertex operators the answer is again an expansion
of the same rational function, but in a different region, up to a sign. See also [8].

For instance we will also need the following matrix elements.

Lemma E.3.

<Qm-"-1vo, () [Tet ) I w-<yi>vo>

i=1 i=1

MG-y) I -w) I -y

i=1 1<i<j<m 1<i<j<n

{1z o) [T 11 i~ )

i=1

||'::|3

One could derive this lemma from Lemma E.2 by commutativity of vertex operators, using
the general theory of vertex algebras. For the convenience of the reader we give an elementary
proof of this lemma, just using the commutation relations of fermion fields.

Proof. Let z,wi,ws, ..., w, be variables and define
W = H (wj - wk).
1<j<k<m

Consider the following rational function

v
M (w—2)

1<j<m

R=

The partial fraction expansion® of R is

m
W,
ey M
— w; — 2
=1
where
w .
Wi = =0 T (wy—w).
Z [T (w; —w) =1 _ (wj = wy)
1<j<m 15?<k$7n
JjF#i J k#i

3Recall that if f(z) is a rational function with a simple pole at w, then f(z) = (z), with A equal to

the value of (w — 2)f(z) at z = w.
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Instead of R we can also consider the rational function

w — Wi
R = = (—1)™*! .
I (z—wj) ( ;z—wi

1<j<m

Recall the formal series

1 1
Iz, w) = ——+

Z2—w  w—2z

Here (and from now on) we use the convention that we expand in the second variable, so that

o0

for example ﬁ =3 Zﬁ;"% In particular we will think of R as a series in positive powers of z
k=0

and R’ as a series in positive powers of the w;s. Then we have the following identity:

R+ (—1)™HR = Zé (z,w))W,

or, writing out the definitions, multiplying by (—1)"*! and rearranging terms:

ié(z,wi)(—l)mHWi + (=)™ — w = — L (E.2)
i=1 [T(wj—2)  TI(z—w)

Now, after this preparation, we turn to the matrix element, call it A, that we actually want
to compute. By the fermion field commutation relation (A.2) and the previous Lemma E.2 we
have for the matrix element A

A= <Qm-”—1vo, o) [Tvt ) ] w-<ys>vo>
s=1

i=1
=D (=162, wi) <Qm”1vo, TTw" (wy) Hw<y5>vo>
=1 j=1 s=1
i
(-1 <Qm g, T o <z>Hw<ys>vo>
j=1 s=1
m 1 \ym+1yx/.
= Z(S(Z,wi) m( i) "W : H (Ys — yt)
i=1 l:l_[l E[l(wl — ) 1<s<t<n
14
IG-v) T (-w)
w s=1 1<s<t<n
+ (_1)m m ’ m
I (w; — 2) I 1T (wi — vs)
=1 i=1s=1
Now
(2 103) (s wp) [ i — ) ol
Z:I_Il sl;ll( ys) s=1 ll:ll Hl(wl - ys)
1#4 =157
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Hence, using (E.2),

Sljl(z —vs) Il (ys—we)

A= Zé(z7wi)<_1)m+1Wi + (-1)"— w _ n1§8<t§n
i=1 H (w; — 2) H I1 (wi — )
=1 1=1s=1
Z—UYs -
= W Sl;ll( i ) 1§31;[t§n(y yt)

[T (= = wi) [T I1 (wi — ys)

=1 i=1s=1
which is what we wanted to show. .
Acknowledgements

The authors gratefully acknowledge travel support from the Simons Foundation, Collaboration
Grant 245048. Addabbo expresses thanks for support from Dr. Lois M. Lackner Mathematics
Fellowships, the University of Illinois Research Board, and the Associate Alumnae of Douglass
College. The authors also thank Philippe Di Francesco and Rinat Kedem for helpful conversa-
tions, and anonymous referees for many helpful comments.

References

1]

Addabbo D., Bergvelt M., Generalizations of Q-systems and orthogonal polynomials from representation
theory, in Lie algebras, Vertex Operator Algebras, and Related Topics, Contemp. Math., Vol. 695, Amer.
Math. Soc., Providence, RI, 2017, 1-13, arXiv:1604.02190.

Addabbo D., Bergvelt M., Difference hierarchies for nT" 7-functions, Internat. J. Math. 29 (2018), 1850090,
29 pages, arXiv:1611.10340.

Adler M., On the Backlund transformation for the Gel'fand—Dickey equations, Comm. Math. Phys. 80
(1981), 517-527.

Alexandrov A., Zabrodin A., Free fermions and tau-functions, J. Geom. Phys. 67 (2013), 37-80,
arXiv:1212.6049.

Barrios Rolania D., Branquinho A., Foulquié Moreno A., On the relation between the full Kostant—Toda
lattice and multiple orthogonal polynomials, J. Math. Anal. Appl. 377 (2011), 228-238, arXiv:0911.2856.

Bergvelt M.J., ten Kroode A.P.E., 7 functions and zero curvature equations of Toda-AKNS type, J. Math.
Phys. 29 (1988), 1308-1320.

Bergvelt M.J., ten Kroode A.P.E., Partitions, vertex operator constructions and multi-component KP equa-
tions, Pacific J. Math. 171 (1995), 23-88, arXiv:hep-th/9212087.

Borcherds R.E., Vertex algebras, in Topological Field Theory, Primitive Forms and Related Topics (Kyoto,
1996), Progr. Math., Vol. 160, Birkh&user Boston, Boston, MA, 1998, 35-77.

Bressoud D.M., Proofs and confirmations. The story of the alternating sign matrix conjecture, MAA Spec-
trum, Cambridge University Press, Cambridge, 1999.

Date E., Kashiwara M., Jimbo M., Miwa T., Transformation groups for soliton equations, in Nonlinear Inte-
grable Systems — Classical Theory and Quantum Theory (Kyoto, 1981), World Sci. Publishing, Singapore,
1983, 39-119.

Di Francesco P., Kedem R., Positivity of the T-system cluster algebra, Electron. J. Combin. 16 (2009), 140,
39 pages, arXiv:0908.3122.

Di Francesco P., Kedem R., @Q-systems, heaps, paths and cluster positivity, Comm. Math. Phys. 293 (2010),
727-802, arXiv:0811.3027.

Frenkel 1., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathe-
matics, Vol. 134, Academic Press, Inc., Boston, MA, 1988.


https://doi.org/10.1090/conm/695/13991
https://arxiv.org/abs/1604.02190
https://doi.org/10.1142/S0129167X18500908
https://arxiv.org/abs/1611.10340
https://doi.org/10.1007/BF01941660
https://doi.org/10.1016/j.geomphys.2013.01.007
https://arxiv.org/abs/1212.6049
https://doi.org/10.1016/j.jmaa.2010.10.044
https://arxiv.org/abs/0911.2856
https://doi.org/10.1063/1.527923
https://doi.org/10.1063/1.527923
https://doi.org/10.2140/pjm.1995.171.23
https://arxiv.org/abs/hep-th/9212087
https://doi.org/10.1007/978-1-4612-0705-4_2
https://arxiv.org/abs/0908.3122
https://doi.org/10.1007/s00220-009-0947-5
https://arxiv.org/abs/0811.3027

42 D. Addabbo and M. Bergvelt

[14] Frenkel I.B., Huang Y.-Z., Lepowsky J., On axiomatic approaches to vertex operator algebras and modules,
Mem. Amer. Math. Soc. 104 (1993), viii+64 pages.

[15] Hernandez D., The Kirillov—Reshetikhin conjecture and solutions of T-systems, J. Reine Angew. Math. 596
(2006), 63-87, arXiv:math.QA /0501202.

[16] Hirota R., The direct method in soliton theory, Cambridge Tracts in Mathematics, Vol. 155, Cambridge
University Press, Cambridge, 2004.

[17] Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics
and its Applications, Vol. 98, Cambridge University Press, Cambridge, 2005.

[18] Kac V.G., Vertex algebras for beginners, 2nd ed., University Lecture Series, Vol. 10, Amer. Math. Soc.,
Providence, RI, 1998.

[19] Kac V.G., Peterson D.H., Lectures on the infinite wedge-representation and the MKP hierarchy, in Systémes
dynamiques non linéaires: intégrabilité et comportement qualitatif, Sém. Math. Sup., Vol. 102, Presses
University Montréal, Montreal, QC, 1986, 141-184.

[20] Kac V.G., Raina A.K., Bombay lectures on highest weight representations of infinite-dimensional Lie alge-
bras, Advanced Series in Mathematical Physics, Vol. 2, World Sci. Publ. Co., Inc., Teaneck, NJ, 1987.

[21] Kasman A., Orthogonal polynomials and the finite Toda lattice, J. Math. Phys. 38 (1997), 247—-254.

[22] Kirillov A.N., Reshetikhin N.Yu., Representations of Yangians and multiplicities of occurrence of the ir-
reducible components of the tensor product of representations of simple Lie algebras, J. Soviet Math. 52
(1990), 3156-3164.

[23] Kirillov A.N., Reshetikhin N.Yu., Formulas for multiplicities of occurence of irreducible components in the
tensor product of representations of simple Lie algebras, J. Soviet Math. 80 (1996), 1768-1772.

[24] Kuniba A., Nakanishi T., Suzuki J., T-systems and Y-systems in integrable systems, J. Phys. A: Math.
Theor. 44 (2011), 103001, 146 pages, arXiv:1010.1344.

[25] Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics,
Springer-Verlag, Berlin, 1991.

[26] Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras,
Cambridge Tracts in Mathematics, Vol. 135, Cambridge University Press, Cambridge, 2000.

[27] Peterson D.H., Kac V.G., Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. USA 80
(1983), 1778-1782.

[28] Pressley A., Segal G., Loop groups, Ozford Mathematical Monographs, Ozford Science Publications, The
Clarendon Press, Oxford University Press, New York, 1986.

[29] Segal G., Wilson G., Loop groups and equations of KdV type, Inst. Hautes Etudes Sci. Publ. Math. 61
(1985), 5-65.

[30] Sklyanin E.K., Biacklund transformations and Baxter’s Q-operator, in Integrable Systems: from Classical
to Quantum (Montréal, QC, 1999), CRM Proc. Lecture Notes, Vol. 26, Amer. Math. Soc., Providence, RI,
2000, 227-250, arXiv:nlin.SI/00090009.

[31] ten Kroode F., van de Leur J., Bosonic and fermionic realizations of the affine algebra gln, Comm. Math.
Phys. 137 (1991), 67-107.

[32] Wilson G., Habillage et fonctions 7, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 587-590.


https://doi.org/10.1090/memo/0494
https://doi.org/10.1515/CRELLE.2006.052
https://arxiv.org/abs/math.QA/0501202
https://doi.org/10.1017/CBO9780511543043
https://doi.org/10.1017/CBO9780511543043
https://doi.org/10.1017/CBO9781107325982
https://doi.org/10.1090/ulect/010
https://doi.org/10.1142/8882
https://doi.org/10.1063/1.531840
https://doi.org/10.1007/BF02342935
https://doi.org/10.1007/BF02362776
https://doi.org/10.1088/1751-8113/44/10/103001
https://doi.org/10.1088/1751-8113/44/10/103001
https://arxiv.org/abs/1010.1344
https://doi.org/10.1007/978-3-662-00922-2
https://doi.org/10.1073/pnas.80.6.1778
https://doi.org/10.1007/BF02698802
https://arxiv.org/abs/nlin.SI/0009009
https://doi.org/10.1007/BF02099117
https://doi.org/10.1007/BF02099117

	1 Introduction
	2 The 22 case
	2.1 22 -functions and Q-system
	2.2 Birkhoff factorization
	2.3 Matrix Baker functions and connection matrices

	3 33 case
	3.1 -functions
	3.2 Examples of 33 -functions
	3.3 Birkhoff factorization for the 33 case
	3.4 Matrix Baker functions and connection matrices, 33 case
	3.5 Explicit formulae for connection matrices
	3.6 Difference equations from factorizations

	A Multi-component fermions and semi-infinite wedge space
	A.1 Introduction
	A.2 Semi-infinite Wedge space
	A.3 Fermionic translation operators and translation group
	A.4 The Lie algebra gl"0365gln and fermions
	A.5 Root lattice

	B Expressions for the -functions
	B.1 The case of n=2, Theorem 2.1
	B.2 Proof of n=3, Theorem 3.2

	C Birkhoff factorization and matrix elements of semi-infinite wedge space
	C.1 Birkhoff factorization and n-component fermions
	C.2 The 22-case; Proof of Theorem 2.2
	C.3 Birkhoff factorization in the 33 case, proof of Theorem 3.4

	D Factorization and reduction to one-component fermions
	E One-component fermion correlation functions
	References

