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Abstract. This is a review article on some applications of generalised parabolic structures to
the study of torsion free sheaves and L-twisted Hitchin pairs on nodal curves. In particular,
we survey on the relation between representations of the fundamental group of a nodal
curve and the moduli spaces of generalised parabolic bundles and generalised parabolic L-
twisted Hitchin pairs on its normalisation as well as on an analogue of the Hitchin map for
generalised parabolic L-twisted Hitchin pairs.
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1 Introduction

The moduli spaces of Higgs bundles on a Riemann surface are rich geometric objects which
have been studied extensively in the last decades. They were introduced in [14] as a special
class of solutions to the self-dual Yang–Mills equations. These are equations for a connection
and a principal bundle on the Euclidean 4-space but, after a dimensional reduction process and
by considering their conformal invariance property, can be defined on a Riemann surface. The
corresponding solutions are called Higgs bundles.

A Higgs bundle on a compact Riemann surface X, consist of a holomorphic vector bundle
on X together with a section of the endomorphism of the bundle twisted with the canonical
bundle of X which is called the Higgs field.

One of the most celebrated results regarding this moduli space is the so called non-abelian
Hodge correspondence which extends a result by Narasimhan and Seshadri in [17] regarding
an isomorphism between the moduli space of stable vector bundles of rank r and degree 0
on a Riemann surface X and the moduli space of unitary representations of the fundamental
group of X. The non-abelian Hodge correspondence was proved by the combined results of
Corlette [12], Donaldson [13], Hitchin [14] and Simpson [22]. Under this correspondence, the
moduli space of stable Higgs bundles of rank r and degree 0 is analytically isomorphic to the
moduli space of irreducible representations of the fundamental group of X into GL(r,C).

Many generalisations of this correspondence and the objects involved have been considered
along the last decades. For instance, we may want to study representations of the fundamental
group of X with a finite set of points {xi}si=1 removed, that is ρ : π1

(
X \ {xi}si=1

)
→ GL(r,C).

The corresponding objects in this case are the so called parabolic Higgs bundles, which consist
of Higgs bundles on X together with an extra structure called parabolic structure defined over
the points {xi}si=1. In [21] Simpson showed an equivalence of categories between parabolic
Higgs bundles and filtered local systems and proved that the non-abelian Hodge correspondence
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extends to the non-compact situation. In particular, the moduli space of representations of
π1
(
X \ {xi}si=1

)
into GL(r,C) with prescribed monodromy around the points {xi}si=1 is real

analytically isomorphic to the moduli space of stable parabolic Higgs bundles of rank r, parabolic
degree 0 (as defined in (2.3)) and prescribed parabolic structure around the punctures. Our aim
in the present paper is to review the situation where instead of a punctured Riemann surface
we have an irreducible algebraic curve with only nodal singularities. In order to do so we shall
need to further explore the notion of parabolic structure on a bundle.

Parabolic structures on bundles were introduced by Seshadri in [19]. In [16] Mehta and
Seshadri constructed the moduli space of parabolic bundles and proved that the set of equivalent
classes of irreducible representations of the fundamental group of a punctured Riemann surface,
can be identified with equivalence classes of stable parabolic bundles of parabolic degree 0 on
the Riemann surface. These parabolic structures were generalised to the so called generalised
parabolic structures by Bhosle in [2]. Generalised parabolic line bundles appeared already in the
work of Oda and Seshadri [18] when studying a desingularisation of the compactified Jacobian
of an integral curve. In [2] Bhosle constructed the moduli space of generalised parabolic bundles
for any rank and gave conditions for it being non-singular. Moreover, she applied her results
to the study of the moduli space of torsion free sheaves on a nodal curve. She also proved
that given an integral projective curve Y with only nodes as singularities, and its normalisation,
p : X → Y , the moduli space of generalised parabolic bundles of rank one on X is a non-singular
projective variety and it is in fact a desingularisation of the compactified Jacobian of Y .

The study of torsion free sheaves on Y by means of bundles with extra structure on X was
already addressed by Seshadri in [20]. Bhosle in [2] proves a very successful correspondence
between generalised parabolic bundles on X and torsion free sheaves on Y . This correspondence
preserves the degree and rank, thus the moduli space of generalised parabolic bundles turns out
to be an excellent tool for the study of the moduli spaces of torsion free sheaves on Y .

As we already mentioned, in [16] Mehta and Seshadri proved that the well-known theorem
of Narasimhan and Seshadri [17] extends to a correspondence between bundles with parabolic
structures and unitary representations of punctured Riemann surfaces. Hence, a natural question
arises: what would be the relation between the representations of the fundamental group of Y
and the moduli space of generalised parabolic bundles. Bhosle addresses this question in [3] and
shows that there is no analogue of the Narasimhan–Seshadri theorem in the nodal case.

Bhosle studied non-unitary representations by introducing the moduli space of generalised
parabolic L-twisted Hitchin pairs on X in [6]. These are Higgs bundles twisted by a line bundle L
instead of the canonical bundle of X together with a generalised parabolic structure. She also
finds a correspondence with the moduli space of L-twisted Hitchin bundles on Y . But the
correspondence between generalised parabolic L-twisted Hitchin pairs on X and representations
of the fundamental group of Y is not as straightforward as the non-abelian Hodge correspondence
for Higgs bundles (and parabolic Higgs bundles) on X.

In [9] Bhosle and Parameswaran introduced the notion of strong semistabilty for bundles
on singular curves and constructed a group scheme, GY , associated to Y such that strongly
semistable bundles on Y come from representations Rep(GY ), of GY into the general linear
group. In [10] Bhosle, Parameswaran and Singh generalised this result to Hitchin bundles on Y .
They considered the category SHY of strongly semistable Hitchin bundles on Y and defined
a category CHY as the one given by all maps f : Q → SHY . They proved that CHY is a neutral
Tannakian category and therefore it defines a group scheme GHY , which they called the Hitchin
holonomy group scheme of Y , such that there is an equivalence of categories between CHY and
Rep

(
GHY
)
. Unfortunately, this equivalence of categories does not induce a non-abelian Hodge

correspondence for nodal curves as proved in [10, Theorem 7.2] (see Section 7). Nevertheless,
in [7, Section 5] Bhosle, Biswas and Hurtubise provide evidence of a non-abelian Hodge corre-
spondence for generalised Hitchin bundles, although the correspondence is not yet proven.
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As we mentioned above, the moduli spaces of Higgs and parabolic Higgs bundles on X are
rich in geometric structure. One of their features being that they carry a symplectic structure
and a fibration, known as the Hitchin fibration, that makes them algebraic completely inte-
grable systems. Bhosle studied an analogue of the Hitchin fibration for generalised parabolic
L-twisted Hitchin pairs, showed that it is a proper morphism and studied its fibers. Moreover,
she found a relation between the moduli of generalised parabolic L-twisted Hitchin bundles and
the compactified Jacobian of Y .

This review article is based on lectures for a mini-course held at the University of Illinois
at Chicago in 2016. We do not intend to be exhaustive. We shall review briefly the results on
generalised parabolic bundles and generalised parabolic Hitchin pairs explained above, with the
aim to provide the reader with an intuitive view on the subject as well as point to some open
problems. For that purpose, we shall not reproduce the proofs for most of the results addressed
but refer to the corresponding literature.

2 Generalised parabolic bundles

Let X be an irreducible non-singular projective curve over an algebraically closed field k. Let D
be an effective Cartier divisor on X and E a vector bundle on X of rank r and degree d.

A quasi-parabolic structure on E over the divisor D consists of a flag of vector subspaces of
the vector space E|D = E ⊗OD, i.e.,

F(E) : E|D = F0(E) ⊃ F1(E) ⊃ F2(E) ⊃ · · · ⊃ Fm(E) = 0. (2.1)

Let {Dj}nj=1 be a set of finitely many disjoint effective Cartier divisors on X. A quasi-
parabolic bundle E (QPB in short), is a vector bundle E together with quasi-parabolic structures
on each Dj . We denote it as (E,F(E)) where F(E) =

(
F(E)1, . . . ,F(E)n

)
where each F(E)j

is a flag as in (2.1).

An homomorphism of QPBs f : (E,F(E))→ (E′,F(E′)) on X, is a homomorphism of bun-
dles f : E → E′ which maps the flag F(E)j to the flag F(E′)j for all j.

A parabolic structure on E over an effective divisor D consists of a quasi-parabolic structure
on E over D and a vector of real numbers α = (α1, . . . , αm) such that

0 ≤ α1 < · · · < αm < 1. (2.2)

These α are called weights associated to the flag.

A generalised parabolic bundle (from now on shortened as GPB) is a vector bundle E together
with parabolic structures over finitely many disjoint divisors {Dj}nj=1. We denote it by a triple

(E,F(E), α(E)) where α(E) =
(
α(E)1, . . . , α(E)n

)
is the collection of vectors of weights corre-

sponding to each divisor, i.e., α(E)j =
(
αj1, . . . , α

j
mj

)
for each j. Note that we dropped E from

the notation for convenience.

Remark 2.1. We can recover the usual notion of parabolic bundle, as defined in [16], by
considering generalised parabolic bundles where Dj consist of a single point in X for all j. In
this sense, generalised parabolic bundles do generalise the usual notion of parabolic bundles.

Let `ji = dimF ji−1(E)/F ji (E) for i = 1, . . . ,mj . We define

wDj (E) =

mj∑
i=1

`jiα
j
i , and w(E) =

n∑
j=1

wDj (E).
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A homomorphism of GPBs f : (E,F(E), α(E)) → (E′,F(E′), α(E′)) on X with disjoint set
of divisors {Dj}nj=1 is a homomorphism of the underlying bundles f : E → E′ such that

f |Dj (F
j
i (E)) ⊂ F jk (E′), whenever αjk−1(E

′) < αji (E) ≤ αjk(E
′).

Note that, this definition particularises to the so called non-strongly parabolic homomor-
phisms in the case of parabolic bundles as in [20].

Let N ⊂ E be a subbundle and (E,F(E), α(E)) a GPB on X over {Dj}nj=1 then N inherits
the parabolic structure from E in the following way.

(N,F(N), α(N)) is a GPB where

F(N) : F j0 (N) := N |Dj ⊃ F
j
1 (N) := F j1 (E) ∩N |Dj ⊃ · · · ⊃ F jr (N) = 0

and if βk is the weight associated to Fk(N) then βk := αi, where F ji (E) is the smallest subspace

such that F ji (E) ⊃ F jk (N).
By a subbdundle of a GPB we mean a subbundle with the inherited parabolic structure.
Finally, we define the parabolic degree and the parabolic slope of E as

pardeg(E) = deg(E) + w(E), parµ(E) =
pardeg(E)

rk(E)
. (2.3)

A GPB (E,F(E), α(E)) is semistable (respectively stable) if for every proper subbundle N

parµ(N) ≤ (resp. < ) parµ(E).

Once we have defined (semi)stability for generalised parabolic bundles we can study its moduli
space.

Theorem 2.2 ([4, Theorem 1]). Let X be an irreducible non-singular projective curve of genus g
(g ≥ 0) defined over an algebraically closed field. Let {Dj}nj=1 be finitely many disjoint effective
divisors on X. The moduli space M(r, d,F , α) of semistable GPBs on X of fixed rank r, degree d,
flags of length k where k is independent of j (i.e., F(E)j : F j0 (E) = E|Dj ⊃ F j1 (E) ⊃ · · · ⊃
F jk (E) = 0 for all j = 1, . . . , n), and weights fixed and independent of j is a normal projective
variety of dimension

r2(g − 1) + 1 +
∑
j

dimFj ,

where Fj is the flag variety of flags of type F(E)j. Moreover, the subset corresponding to stable
GPBs is a non-singular open subvariety.

There are special cases in which the stability conditions of QPBs and GPBs relate. We shall
fix some conditions in order to find out this relation.

A QPB (E,F(E)) it is said to have flags of length 1 if

F(E)j : E|Dj = F j0 (E) ⊃ F j1 (E) ⊃ 0 for all j.

Let α be a real number 0 ≤ α ≤ 1. A QPB (E,F(E)) with flags of length 1 is called
α-semistable (respectively α-stable) if for any proper subbundle N of E with the induced gene-
ralised quasi parabolic structure, one has

deg(N) + α
n∑
j=1

dimF j1 (N)

rk(N)
≤ (resp. <)

deg(E) + α
n∑
i=1

dimF j1 (E)

rk(E)
.
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Remark 2.3. Note that for 0 ≤ α < 1 α-semistability (or α-stability) for a QPB (E,F(E))
with flags of length 1, is the same as semistability (or stability) for the GPB (E,F(E), α(E))
with αj(E) = (0, α) for all j.

The following proposition sheds light on the necessary conditions for a moduli space of α-
(semi)stable QPBs (or, by Remark 2.3 for (semi)stable GPBs) to be smooth.

Proposition 2.4 ([4, Proposition 3.3]). Let (E,F(E)) be a QPB of rank r with flags of length 1
and let a =

∑
dimF j1 (E). Then

1. Suppose that 1 − 1/(a(r − 1)) < α < 1. Then if (E,F(E)) is α-semistable, it is also
1-semistable. If it is 1-stable then it is also α-stable.

2. Suppose that (r, d) = 1 and a is an integral multiple of r. Then (E,F(E)) is 1-stable if
and only if it is 1-semistable.

3. If all conditions above are satisfied then α-stability is equivalent to α-semistability and the
moduli space M(r, d,F , α) of GPBs is non-singular.

Therefore, we get to the following theorem.

Theorem 2.5 ([4, Theorem 2]). Let M(r, d,F , α) denote the moduli space of stable GPBs of
rank r and degree d with flags of length 1 on an irreducible non-singular curve X with genus g.

Denote aj = dimF j1 (E) for all j, and a =
n∑
j=1

aj.

If α(E) =
(
α1(E), . . . , αn(E)

)
is such that αj(E) = (0, α), for all j, α satisfies 1− 1/(a(r −

1)) < α < 1, (r, d) = 1, and a is an integral multiple of r, then M(r, d,F , α) is a fine moduli
space.

In particular, in the case of line bundles on X and considering D a reduced effective divisor
of degree 2, it is possible to get an explicit description of the moduli space.

Proposition 2.6 ([2, Proposition 2.2]). Let D = x+z. The moduli space M(1, d,F , α) of GPBs
of rank 1 and degree d with flags of length 1 on X is a P1-bundle over Jd(X), the Jacobian of
line bundles of degree d on X.

2.1 Fixed determinant GPBs

Let Λr be the r-exterior product of vector spaces, then for any two vector spaces, E1 and E2,
of the same dimension r, the direct sum of top exterior products, Λr(E1) ⊕ Λr(E2), is a direct
summand of the r-exterior product of their direct sum, Λr(E1 ⊕ E2).

There is a canonical projection map

q : Λr(E1 ⊕ E2)→ Λr(E1)⊕ Λr(E2),

such that for a subspace V ⊂ E1⊕E2 one gets that q(V ) ⊂ ΛrE1⊕ΛrE2. The operator Λr and
the map q easily extend to vector bundles.

Assume that Dj = xj + zj for all j. We define the top exterior product Λr(E,F(E))
of a QPB (E,F(E)) with flags of length 1, to be a rank 1 QPB (Λr(E),F(Λr(E)) where
F(Λr(E))j : F j0 (Λr(E)) ⊃ q

(
F j1 (E)

)
⊃ 0.

For a GPB (E,F(E), α(E)) we define

Λr(E,F(E), α(E)) :=
(
Λr(E),F(Λr(E)), α(E)

)
.

Let pj1 : F j1 (E) → Exj and pj2 : F j1 (E) → Ezj be the natural projections. It is possible to

globalize the previous construction to the level of moduli spaces, if an only if at least one pji for
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each j is an isomorphism. We call M ′ the subspace of the moduli space M(r, d,F , α) satisfying
this condition. The determinant map, provided by the extension of the top exterior product to
bundles, is well defined on M ′ (see [4, Proposition 3.7]). Therefore, we denote by ML(r, d,F , α)
the closure in M(r, d,F , α) of the space of GPBs with rank r degree d and flags of length 1 such
that Λr(E,F(E), α(E)) = (L,F(L), α(L)) which we refer to as the moduli space of stable GPBs
of rank r degree d flags of length 1 and fixed determinant L. These considerations lead Bhosle
to the following result.

Theorem 2.7 ([4, Theorem 3]). Let (L,F(L), α(L)) be a GPB of rank 1 and degree d on X
with a set of disjoint divisors {Dj}nj=1. Assume that the projections pj1 : F j1 (L) → Lxj and

pj2 : F j2 (L) → Lzj are both different from zero for all j. Then the moduli space ML(r, d,F , α)
of GPBs of rank r degree d flags of length 1 and fixed determinant, i.e., Λr(E,F(E), α(E)) =
(L,F(L), α(L)), is a normal variety.

Moreover if (r, d) = 1 and 1− 1/(rn(r − 1)) < α < 1, then ML(r, d,F , α) is non-singular.

3 GPBs and torsion free sheaves on nodal curves

The notion of a generalised parabolic bundle has been broadly applied to the theory of torsion
free sheaves on singular curves. Bhosle applied these structures in [2, 4] to the study of torsion
free sheaves on a curve with nodes and cusps as singularities. Just for convenience, along this
article, we shall focus only in the case of nodes.

Let Y be an integral (i.e., irreducible and reduced) projective curve over an algebraically
closed field with only nodal singularities. From now on we call it nodal curve. Let yj ∈ Y ,
j = 1, . . . , n, be the nodal points on Y and

p : X −→ Y

the normalisation map.

The appropriate QPBs to consider in this situation are (E,F(E)) of rank r degree d and
generalised parabolic structures on the disjoint divisors given by the inverse images p−1(yj) =
xj + zj , with flags of length 1, i.e., for each j we have

• a divisor Dj = xj + zj ,

• and a flag F(E)j : Exj ⊕ Ezj = F j0 (E) ⊃ F j1 (E) ⊃ 0.

To each (E,F(E)) we associate a torsion free sheaf V on Y of rank r and degree d defined
by

0 −→ V −→ p∗(E) −→
n⊕
j=1

p∗(E)⊗ k(yj)/F
j
1 (E) −→ 0, (3.1)

where k(yj) is the residue field of the local ring Oyj at each node (the reader may want to
see [8, 11, 20] for further details on torsion free sheaves on nodal curves, QPBs and GPBs).
Moreover, the following proposition give us conditions on (E,F(E)) to produce a vector bundle V
on Y .

Proposition 3.1 ([2, Proposition 4.3]). Let pxj : F j1 (E) → Exj and pzj : F j1 (E) → Ezj be the
canonical projections. Then

1) if pxj and pzj are isomorphisms, then V is locally free,
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2) if only one projection is an isomorphism and the other one has rank k, then

Vyj
∼= kOyj ⊕ (r − k)myj ,

where mj is the maximal ideal of the local ring Oyj , and

3) if F j1 (E) = Mxj ⊕Mzj such that Mxj ⊂ k(xj) and Mzj ⊂ k(zj) then Vyj
∼= rmyj .

Moreover, stability and semistability of (E,F(E)) and V relate in the following way.

Proposition 3.2 ([2, Proposition 4.2]). Let V be a torsion free sheaf associated to a QPB
(E,F(E)) with flags of length 1 for all j, then V is (semi)stable if and only if (E,F(E)) is
1-(semi)stable.

Fix a vector k = (k1, . . . , kn), where 0 ≤ kj ≤ r for all j = 1, . . . , n, and define the spaces

Mk = {(E,F(E)) | aj + bj = r − kj},

where aj and bj are the dimensions of the kernels of the projections pxj and pzj defined in
Proposition 3.1. Also, let

Uk = {V |Vyj ∼= kjOyj ⊕ (r − kj)mj , j = 1, . . . , r},

where Oyj is the local ring at the node yj and mj its maximal ideal.
Let M be the set of isomorphism classes of QPBs (E,F(E)) with rank r degree d, and U

be the set of isomorphism classes of torsion-free sheaves of rank r and degree d on Y . We get
stratifications

M = tkMk and U = tkUk. (3.2)

By [4, Proposition 4.7], the map

f : Mk −→ Uk

defined as f(E,F(E)) = V , as in (3.1), is such that when restricted to M(r,...,r) is a bijection
onto U(r,...,r). Moreover, f sends (semi) stable objects to (semi) stable objects.

The following theorem was first proved for one node in [2, Theorem 3] and in more generality
later in [4].

Theorem 3.3 ([4, Theorem 4]). Let Y be a nodal curve and let p : X → Y be its normalisation.
Let U(r, d) be the moduli space of semistable torsion free sheaves on Y of rank r and degree d and
let M(r, d,F , α) be the moduli space of semistable GPBs on X, with divisors Dj = p−1(yj) =

xj + zj for all j and flags of length 1 such that dimF j1 (E) = r. Fix αj = (0, α) such that
1− 1/(rn(r − 1)) < α < 1. Then,

1) f induces a surjective morphism on the moduli spaces

f : M(r, d,F , α) −→ U(r, d),

2) when restricted to the stable locus f : M s
(r,...,r) −→ U s(r,...,r) is birational,

3) if (r, d) = 1, then M(r, d,F , α) is a desingularisation of U(r, d).

Remark 3.4. In fact, Theorem 3.3 implies that, when the rank is one, the moduli space
M(1, d,F , α) in Proposition 2.6 is isomorphic to the canonical desingularisation of J(Y ), the
compactified Jacobian of line bundles of degree d on Y (see [2, Theorem 2]).
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The following theorem gives us an application of the moduli space of GPBs to the desingu-
larisation of the moduli space of torsion free sheaves with fixed determinant.

Theorem 3.5 ([4, Theorem 5]). Let Y be a nodal curve and L a fixed line bundle on Y .
Let U(r,...,r) be as in (3.2) and UL(r,...,r) ⊂ U(r,...,r) be the closed subset corresponding to bundles

with fixed determinant L. Let U(r, L) be the closure of UL(r,...,r) in U(r, d), the moduli space of

semistable torsion free sheaves on Y or rank r degree d = deg(L). Let ML(r, d,F , α) be the
moduli space of semistable GPBs of rank r degree d flags of length 1 and fixed determinant
L = f−1(L) provided with the appropriate flags and weights as in Theorem 2.7. Then f induces
a birational surjective morphism ML(r, d,F , α)→ U(r, L) and when (r, d) = 1 ML(r, d,F , α) is
a desingularisation of U(r, L).

4 GPBs and representations of the fundamental group

Let X be a compact Riemann surface. Given ρ : π1(X) → GL(r,C), a representation of the
fundamental group of X into the general linear group, one may construct a vector bundle on X
associated to ρ, Eρ, as

Eρ =
(
X̃ × Cr

)
/π1(X) −→ X,

where X̃ denotes the universal cover of X and π1(X) acts on Cr via the representation ρ. Note
that the bundle Eρ is a flat bundle by construction, thus deg(Eρ) = 0.

Weil proved in [26] that a vector bundle E on X comes from a representation ρ if and only
if E is a direct sum of indecomposable bundles of degree 0. Moreover, Narasimhan and Seshadri,
in their celebrated work [17], proved that a holomorphic vector bundle over an irreducible non-
singular curve of genus g ≥ 2, is polystable of degree 0 if and only if it comes from a unitary
representation.

A curve Y with n nodes may be seen, homotopically, as obtained from its normalisation X
by attaching a handle to each pair of points, xj , zj in Dj ⊂ X, given by the inverse image of
each node yj in Y under the normalisation map. Hence, the fundamental group of Y satisfies

π1(Y ) ∼= π1(X) ∗ Z ∗ · · · ∗ Z,

where ∗ denotes the n-fold free product Z (see [3, Result 1.7]).
Bhosle proved the following relation between GPBs and representations.

Theorem 4.1 ([3, Theorem 1]). Let (E,F(E)) be a QPB of rank r degree 0 and length 1
flag such that dimF1(E) = r. We also assume that all projections pxj : F j1 (E) → Exj and

pzj : F j1 (E)→ Ezj are isomorphisms for all j. Then (E,F(E)) is associated to a representation
ρ : π1(Y )→ GL(r,C) if and only if E is a direct sum of indecomposable bundles of degree zero.
Moreover, if the restriction of ρ to π1(X) is unitary, then E is polystable.

Proof. We sketch here the proof in [3] for one node, in order to give some intuition to the
reader on the technical aspects. The proof goes analogously for many nodes.

Let

ρ : π1(Y ) ∼= π1(X) ∗ Z→ GL(r,C).

It factors through a representation ρX : π1(X) → GL(r,C). By Weil’s theorem [26, Section 7],
ρX gives us an indecomposable vector bundle of degree 0 on X which we denote by EρX . Take
g := ρ(1) ∈ GL(r,C) the image of the generator of Z, it gives an isomorphism of vector spaces
σ : (EρX )x −→ (EρX )z; v 7→ g · v.
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We then define F1(EρX ) to be the graph of σ in (EρX )x ⊕ (EρX )z.
Conversely, given a QPB (E,F(E)) indecomposable of degree 0 we use Weil’s theorem to

produce a representation ρX : π1(X)→ GL(r,C) which we extend to a representation of π1(Y )
by assigning to the generator 1 ∈ Z the following composition

ρ(1) = pz ◦ p−1x ,

where px : F1(E) → Ex, pz : F1(E) → Ez and, since we assumed all projections to be isomor-
phisms, ρ(1) is an element in GL(r,C).

The second part of the statement is a consequence of Narasimhan–Seshadri’s theorem [17,
Theorem 2(A)]. �

Unfortunately, and unlike the parabolic case, it does not lead to an analogue of Narasimhan–
Seshadri theorem for generalised parabolic bundles. In fact, Bhosle proved the existence of
counterexamples.

Proposition 4.2 ([3, Proposition 3.2]). Let Y be a nodal curve, with nodes {yj}nj=1 and geo-
metric genus g > 0. For k > 1 or k = 1 and at least two nodal points, there exist stable vector
bundles of rank 2k+1 and degree 0 on Y which are not associated to any representation of π1(Y )
in GL(2k + 1,C).

Nevertheless, in [7, Section 5.2] the authors introduced a Hitchin–Kobayashi correspondence
between the moduli space of GPBs and a moduli space of flat connections on X framed on the
points {xj , zj}nj=1. Moreover, they also indicated how the Narasimhan–Seshadri correspondence
should be for nodal curves.

5 Generalised parabolic Hitchin pairs

Let X be an irreducible projective non-singular curve together with a finite set of disjoint divi-
sors {Dj}nj=1 as above. Let L0 be a line bundle on X.

An L0-twisted generalised parabolic Hitchin pair on X (L0-twisted GPH, for short) of rank r,
degree d and parabolic structure over {Dj}nj=1 is a triple (E,F(E), φ) consisting of a QPB
(E,F(E)) together with a bundle homomorphism

φ : E −→ E ⊗ L0.

Notice that no compatibility condition is assumed for φ with respect to the generalised
parabolic structure.

From now on we only consider flags of length 1, and we say that (E,F(E), φ) is a good
L0-twisted GPH if

φDj
(
F j1 (E)

)
⊂ F j1 (E). (5.1)

We call φ the generalised parabolic Higgs field.
A homomorphism of GPHs

f : (E1,F(E1), φ1) −→ (E2,F(E2), φ2)

is a homomorphism of vector bundles f : E1 → E2 which is compatible with their respective
generalised parabolic Higgs fields, φ1 and φ2, and preserves the generalised parabolic structures
for all j, i.e., fDj

(
F j1 (E1)

)
⊂ F j1 (E2).

For each subbundle (N,F(N)) of (E,F(E)) we say that it is φ-invariant if φ(N) ⊂ N ⊗ L0.
In such a case, (N,F(N), φ|N ) becomes an L0-twisted GPH.
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Let α be a real number, such that 0 < α ≤ 1. An L0-twisted GPH (E,F(E), φ) is α-
semistable (respectively α-stable) if for every proper, φ-invariant, quasi-parabolic subbundle
(N,F(N)), one has

deg(N) + α
n∑
j=1

dimF j1 (N)

rk(N)
≤ (resp. <)

deg(E) + α
n∑
j=1

dimF j1 (E)

rk(E)
.

Recall that for flags of lenght 1 an α-(semi)stable QPB (E,F(E)) is equivalent to a (semi)-
stable GPB (E,F(E), α(E)) with weights α(E)j = (0, α) for all j.

Bhosle constructed in [6] the moduli space of L0-twisted GPHs.

Theorem 5.1 ([6, Theorem 4.8]). Let X be a non-singular projective curve of genus g. Fix a
line bundle L0 on X and fix α, 0 < α ≤ 1. Let {Dj}nj=1 be a finite set of disjoint divisors of X.
Then there exists a moduli scheme M(r, d, L0,F , α) of α semistable L0-twisted GPHs of rank r,
degree d, flags of length 1 and weights α(E)j = (0, α).

Moreover, those which are good GPHs form a closed subscheme,

Mgood(r, d, L0,F , α) ⊂M(r, d, L0,F , α).

6 Hitchin pairs on a nodal curve and GPHs

Let Y be a nodal curve and L a line bundle on Y . A (L-twisted) Hitchin pair on Y is a pair
(V, ϕ) consisting of a coherent torsion free sheaf V on Y together with a morphism of sheaves

ϕ : V −→ V ⊗ L

on Y .
There are several choices we may want to do at this point regarding whether we may want V

to be a bundle or L to be the canonical line bundle on Y , each of these choices lead us to different
names for these pairs.

An L-twisted Hitchin pair for which V is locally free and ϕ is a bundle homomorphism is
called an L-twisted Hitchin bundle. If L is the canonical bundle on Y then a L-twisted Hitchin
pair (V, ϕ) is called Higgs pair. Finally, a Higgs pair for which V is locally free and ϕ a bundle
homomorphism is called a Higgs bundle on Y .

Fix L0 = p∗L. We want to explore the relation between good L0-twisted GPHs on X and
L-twisted Hitchin pairs on Y . This is done in [6] for general singularities, but since we are
focusing only on the case of nodal singularities we shall assume that Dj = p−1(yj) = xj + zj for
all j, and flags have length 1 as in Section 3.

Proposition 6.1 ([6, Proposition 2.8]).

1. A good p∗L-twisted GPH, (E,F(E), φ), of rank r degree d on X defines an L-twisted
Hitchin pair (V, ϕ) of rank r and degree d on Y .

2. If (V, ϕ) is an L-twisted Hitchin bundle then (V, ϕ) determines a good p∗L-twisted GPH
(E,F(E), φ) where E = p∗(V ) and

φ = p∗ϕ : E −→ E ⊗ p∗L.

Proof. 1. The pair (E,F(E)) on X determines a torsion free sheaf on Y defined as in (3.1),
that is, V is the kernel in the following exact sequence

0 −→ V −→ p∗(E) −→ p∗

⊕
j

E ⊗ODj
F j1 (E)

 −→ 0. (6.1)
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Recall that, because of the choices made on the generalised parabolic structure, deg(E) = deg(V )
and rk(E) = rk(V ). Tensoring (6.1) by L and recalling (5.1) the induced map on the kernels
give us ϕ, i.e.,

0 // V //

ϕ

��

p∗(E) //

p∗φ

��

⊕
j

p∗(E⊗ODj )
p∗(F

j
1 (E))

//

⊕
j(p∗φ)yj

��

0

0 // V // p∗(E) //
⊕

j

p∗(E⊗ODj )
p∗(F

j
1 (E))

// 0.

2. An L-twisted Hitchin bundle (V, ϕ) determines a good p∗L-twisted GPH in the following
way. By Theorem 3.3, V determines a QPB (E,F(E)) with flags of length 1 where E = p∗V .
We define φ = p∗ϕ. Notice that, p∗(F

j
1 (E)) should be such that Vyj ⊂ (p∗(E))yj . Since

ϕyj (Vyj ) ⊂ Vyj , φ satisfies condition (5.1). �

There is an equivalence of categories given by the following theorem.

Theorem 6.2 ([6, Theorem 2.9]). There exists a functor

F : GPHgood(r, d, p∗L) −→ Hitchin(r, d, L)

between the category of good p∗L-twisted GPHs of rank r and degree d on X and the category of
L-twisted Hitchin pairs of rank r degree d on Y .

Moreover, the restriction of F to the full subcategory GPHgood,b(r, d, p∗L) of good p∗L-twisted
GPH on X that correspond to L-twisted Hitchin bundles on Y gives an equivalence of categories.

6.1 The moduli spaces

The functor F in Theorem 6.2 preserves semistability for α = 1, i.e., (E,F (E), φ) is 1-semistable
if and only if the associated Hitchin pair (V, ϕ) is semistable. But the stability is only induced in
one direction, that is, if the Hitchin pair (V, ϕ) is stable then its corresponding GPH (E,F (E), φ)
is 1-stable (see Bhosle [6, Theorem 2.9]).

We denote by H(r, d, L) the moduli space of semistable L-twisted Hitchin pairs on Y of rank r
and degree d, and by Hb(r, d, L) the moduli space of semistable L-twisted Hitchin bundles. The
construction of this moduli space is sketched in [10] following Simpson’s construction in [23, 24].

Theorem 6.3 ([6, Theorem 4.9]). Let Y be a nodal curve with nodes yj ∈ Y j = 1, . . . , n, and
let p : X → L be its normalisation. Fix Dj = p−1(yj) = xj + zj for all j. Then, if α = 1 or
α < 1 and close to 1, there exist a birational morphism

f : Mgood(r, d, L0,F , α) −→ H(r, d, L)

from the moduli space of semistable good L0 = p∗L-twisted GPH of rank r and degree d with
flags of length 1 and α(E)j = (0, α) for all j, to the moduli of semistable L-twisted Hitchin pairs
of rank r and degree d.

When α = 1, the image f
(
Mgood(r, d, L0,F , α)

)
contains Hb(r, d, L), i.e., all semistable

Hitchin bundles, and when α < 1, but close to 11, f
(
Mgood(r, d, L0,F , α)

)
contains all stable

Hitchin bundles.

We denote by Hb,s(r, d, L) the moduli space of stable L-twisted Hitchin bundles of rank r
and degree d.

1The condition close to 1 for α is explicitly determined in [6].
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6.2 The Hitchin map

Let GPH(r, d, L0) be the set of L0-twisted GPH of rank r and degree d on X, and GPHgood,b(r,
d, L0) be the set of good L0-twisted GPH which determine Hitchin bundles. Let Hitchin(r, d, L)
be the set of L-twisted Hitchin pairs on Y , and Hitchinb(r, d, L) the set of Hitchin bundles.

There are maps

hX : GPH(r, d, L0) −→
r⊕
i=1

H0
(
X,Li0

)
, (E,F (E), φ) 7→

r⊕
i=1

Trφi

and

hY : Hitchinb(r, d, L) −→
r⊕
i=1

H0
(
Y, Li

)
, (V, ϕ) 7→

r⊕
i=1

Trϕi,

where φi = φ ◦ · · · ◦ φ, and ϕi = ϕ ◦ · · · ◦ ϕ, i-times, and Tr is the trace operator.
Notice that H0

(
Y,Li

)
⊂ H0

(
Li ⊗ p∗(OX)

)
and hX

(
GPHgood(r, d, L0)

)
⊂
⊕r

i=1H
0
(
Y,Li

)
.

Hence, hX and hY fit into the following diagram

hX : GPHgood,b(r, d, L0) //

f
��

⊕r
i=1H

0
(
Y,Li

)

hY : Hitchinb(r, d, L) //

p∗

OO

⊕r
i=1H

0
(
Y,Li

)
.

The maps p∗ and f induce homeomorphisms on the corresponding moduli spaces.
At the level of moduli spaces there is a map

hM : M(r, d, L0,F , α) −→ A :=
r⊕
i=1

H0
(
X,SiL0

)
,

where SiL0 denotes the symmetric product of the line bundle L0 (see [6, Section 5] for details).

Theorem 6.4 ([6, Corollary 5.2]).

1. The restriction of hM to Mgood(r, d, L0,F , α) is a proper morphism.

2. The Hitchin map hMgood defines a proper morphism

hH : f
(
Mgood(r, d, L0,F , α)

)
→ A

3. Let A′ :=
⊕r

i=1H
0
(
Y, Li

)
⊂ A. Then for α = 1, there is a commutative diagram

Mgood(r, d, L0,F , α)
hMgood //

f
��

A′

Hb(r, d, L) ⊂ f
(
Mgood(r, d, L0,F , α)

)
⊂ H(r, d, L)

hHb

33hhhhhhhhhhhhhhhhhhhhhhhh

Hence hMgood = hHb ◦ f on f−1
(
Hb(r, d, L)

)
and hMgood ◦ p∗ = hHb on Hb(r, d, L).

When α < 1 but close to 1, as only Hb,s(r, d, L) ⊂ f
(
Mgood(r, d, L0,F , α)

)
we need to

consider the maps defined on the intersection

Hb(r, d, L) ∩ f
(
Mgood(r, d, L0,F , α)

)
.
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6.3 Example in rank one

In the following we review briefly the description in [6, Section 2.4].
Consider (V, ϕ) ∈ H(1, d, L) then V can be locally free or not. If V is locally free then

H0(Y,End(V )⊗L) ∼= H0(Y,L). Therefore, the space parametrising the space of possible Higgs
fields for the pair (V, ϕ) is H0(Y, L).

If V is torsion free but not locally free we get that the space parametrising Higgs fields for V
is

H0(Y,End(V )⊗ L) ∼= H0(Y, L⊗ p∗OX) ∼= H0(X, p∗L).

Hence, the moduli space H(1, d, L) of L-twisted Hitchin pairs of degree d on Y is isomorphic
to [

J(Y )×H0(Y, L)
]
t
[(
J(Y )− J(Y )

)
×H0(Y,L⊗ p∗(OX))

]
,

where J(Y ) denotes the Jacobian of Y and J(Y ) its compactification.
Notice that H(1, d, L) ⊂ J(Y )×H0(L⊗ p∗OX).
Recall from Remark 3.4 that M(1, d,F , α) is isomorphic to the canonical desingularisation

of J(Y ) then

M(1, d, L0,F , α) ∼= M(1, d,F , α)×H0(Y,L⊗ p∗(OX)). (6.2)

Moreover, the canonical desingularisation (see [18, Proposition 12.1])

ν : J̃(Y )→ J(Y )

induces a morphism

ν × i : J̃(Y )×H0(X,L0) −→ J(Y )×H0(Y, L⊗ p∗(OX)).

Lemma 6.5 ([6, Lemma 2.12]).

Mgood(1, d, L0) ∼=
[
ν−1(J(Y ))×H0(Y, L)

]
t
[
ν−1

(
J(Y )− J(Y )

)
×H0(X,L0)

]
with L such that L0 = p∗L and H0(Y, L) ⊂ H0(X, p∗L) by the inclusion given by the pullback
ϕ 7→ p∗ϕ. Moreover, the morphism of moduli spaces

f : Mgood(1, d, L0) −→ H(1, d, L)

restricts to an isomorphism on ν−1(J(Y ))×H0(Y,L) and it is a surjective two-to-one map on
ν−1

(
J(Y )− J(Y )

)
×H0(X,L0).

The Hitchin map in this case particularises in the following way.
For the moduli space of L0-twisted GPH we get

hM : M(1, d, L0,F , α) −→ H0(X,L0), (E,F(E), φ) 7→ φ,

which has fibres isomorphic to J̃(Y ) ∼= M(1, d,F , α) by (6.2).
The map hM induces a map on the restriction to Mgood(1, d, L0F , α)

hMgood : Mgood(1, d, L0,F , α) −→ H0(X,L0),

which descends, through the birational map f from Theorem 6.3, to the Hitchin map

hH : H(1, d, L) −→ H0(Y,L⊗ p∗(OX)), (V, ϕ) 7→ ϕ.

The following lemma describes the corresponding fibres.
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Lemma 6.6 ([6, Lemma 2.13]). Let s ∈ H0(X, p∗L) ∼= H0(Y, L⊗ p∗(OX)) then

h−1Mgood(s) =

{
J̃(Y ) if s ∈ H0(Y, L),

Picd(X) t Picd(X) if s ∈ H0(Y, L⊗ p∗(OX))−H0(Y, L)

and

h−1H (s) =

{
J(Y ) if s ∈ H0(Y, L),

J(Y )− J(Y ) if s ∈ H0(Y, L⊗ p∗(OX))−H0(Y, L).

7 Representations of the fundamental group
and Higgs bundles on the nodal curve

In Section 4 we pointed out that there is no analogue of the celebrated Narasimhan–Seshadri
theorem in the context of generalised parabolic structures. Nevertheless, Theorem 4.1 proved
a relation between unitary representations of a nodal curve Y and generalised parabolic bundles
on its normalisation X. We recall here the work in [10] describing the situation for representa-
tions of the fundamental group of Y into GL(r,C).

Let Y be a nodal curve with n nodes and p : X → Y its normalisation. Let ρ : π1(Y ) −→
GL(r,C) be a representation. Recall from Section 4 that π1(Y ) ∼= π1(X) ∗ Z ∗ · · · ∗ Z, where ∗
denotes the free product and it is taken n times.

Let ρX be the restriction of ρ to π1(X). By the non-abelian Hodge theorem [22, Proposi-
tion 1.5] ρX defines a Higgs bundle (EρX , φρX ) on X of rank r and degree 0. Moreover, the
element gj = ρ(1) ∈ GL(r,C) gives an isomorphism σj : (EρX )xj → (EρX )zj on the fibres over xj
and zj . This provides us a QPB (E,F(E)) on X and consequently, a bundle Eρ on Y by
identifying the fibres on xj and zj through σj .

The pushforward of the Higgs field φρX satisfies

p∗φρX : p∗EρX −→ p∗(EρX ⊗KX) = p∗(p
∗(Eρ)⊗KX) = Eρ ⊗ p∗KX ,

where KX is the canonical bundle on X. Note that p∗(KX) ⊂ KY and p∗KY = KX

(∑
j(xj +

zj)
)
, so we can define the Higgs field φρ : Eρ → Eρ ⊗KY as the composition

φρ : Eρ ↪→ p∗EρX
p∗φρX−→ Eρ ⊗ p∗KX ↪→ Eρ ⊗KY .

By construction one has that rk(Eρ) = rk(EρX ) = r and deg(Eρ) = deg(EρX ) = 0.

The (semi)stability of (Eρ, φρ) on Y corresponds to the (semi)stability of (EρX , φρX ) [10,
Lemma 7.1]. Furthermore, a Higgs bundle (E, φ) on Y is called strongly semistable if for every
k ≥ 1

(
⊗kE,⊗kφ

)
is semistable, so the following theorem holds.

Theorem 7.1 ([10, Theorem 7.2]). Let Y be a nodal curve, then to a representation π1(Y ) →
GL(r,C) one can associate a strongly semistable Higgs bundle of rank r and degree 0. If the
restriction of ρ to the fundamental group of the normalisation X of Y is irreducible with genus
X ≥ 2 then the associate Higgs bundle is stable.

The converse of Theorem 7.1 is not true in general. In [10, Section 7.3] the authors constructed
a stable Higgs bundle of degree 0 on Y which does not come from a representation of π1(Y ).
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8 Further comments and open problems

The non-abelian Hodge correspondence actually refers to real analytic isomorphisms between
three moduli spaces, which originally were: the moduli space of representations of the fundamen-
tal group of a compact Riemann surface X, the moduli spaces of flat connections of a principal
bundle on X, and the moduli space of Higgs bundles on X. It can be thought of as a combi-
nation of the Riemann–Hilbert correspondence relating moduli spaces of flat connections and
representations of the fundamental group into a Lie group G and the Hitchin–Kobayashi cor-
respondence relating Hermitian–Einstein connections and holomorphic bundle structures. The
latter actually provides a general set up for the Narasimhan–Seshadri theorem, which can be
thought as a Hitchin–Kobayashi correspondence for G = U(r).

In [7] Bhosle, Biswas and Hurtubise, motivated by the question of how Narasimhan–Seshadri
theorem should look like for generalised parabolic bundles, constructed compact moduli spaces
of Grassmanian-framed bundles over a Riemann surface and compact moduli spaces for the
representation theoretic side of the correspondence, that is moduli spaces of unitary connections
with simple poles and arbitrary residues. Their construction shows that GPBs should then
correspond to unitary connections with simple poles on X such that the eigenvalues at the
points xj are minus the eigenvalues at the points zj . All of this is developed to some extent in
[7, Section 5.2] but not yet proven.

The study of Higgs bundles on singular curves has attracted the attention of many authors
in the last years and there are many advances in this direction using different techniques. In [1]
Balaji, Barak and Nagaraj construct a degeneration of the moduli space of Higgs bundles on
smooth curves, as the smooth curve degenerates to an irreducible nodal curve Y with a single
node. In [15, 25] the authors also study degenerations of a curve and the corresponding moduli
spaces but from an analytic point of view. Nevertheless, it is still an open question to understand
the relation of these moduli spaces coming from degenerations in the algebraic or analytic context
with the moduli spaces considered by Bhosle in [6].

Finally, in [5] Bhosle extends the notion of generalised parabolic bundles to principal G-
bundles for G any reductive algebraic group. The extension to generalised parabolic principal
G-Higgs bundles is still an open problem as well as how the Hitchin fibration looks like and the
spectral theory involved for any G.
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[26] Weil A., Généralisation des fonctions abéliennes, J. Math. Pure Appl. 17 (1938), 47–87.

https://doi.org/10.1007/BF02829597
https://doi.org/10.1112/jlms/jdt058
https://doi.org/10.1142/S0129167X13500900
https://arxiv.org/abs/1202.4239
https://doi.org/10.1002/mana.201300117
https://doi.org/10.1016/j.bulsci.2013.09.009
https://doi.org/10.4310/jdg/1214442469
https://doi.org/10.1112/plms/s3-55.1.127
https://doi.org/10.1112/plms/s3-55.1.59
https://doi.org/10.1215/00127094-3476914
https://arxiv.org/abs/1405.5765
https://doi.org/10.1007/BF01420526
https://doi.org/10.2307/1970710
https://doi.org/10.2307/1970710
https://doi.org/10.2307/1998186
https://doi.org/10.2307/1990935
https://doi.org/10.1007/BF02699491
https://doi.org/10.1007/BF02698887
https://doi.org/10.1007/BF02698887
https://doi.org/10.1007/BF02698895
https://doi.org/10.1007/BF02698895
https://doi.org/10.1016/j.aim.2017.10.028
https://arxiv.org/abs/1507.04382

	1 Introduction
	2 Generalised parabolic bundles
	2.1 Fixed determinant GPBs

	3 GPBs and torsion free sheaves on nodal curves
	4 GPBs and representations of the fundamental group
	5 Generalised parabolic Hitchin pairs
	6 Hitchin pairs on a nodal curve and GPHs
	6.1 The moduli spaces
	6.2 The Hitchin map
	6.3 Example in rank one

	7 Representations of the fundamental group and Higgs bundles on the nodal curve
	8 Further comments and open problems
	References

