Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 025, 42 pages      arXiv:1806.01407      https://doi.org/10.3842/SIGMA.2019.025

A Solvable Deformation of Quantum Mechanics

Alba Grassi a and Marcos Mariño b
a) Simons Center for Geometry and Physics, SUNY, Stony Brook, NY, 1194-3636, USA
b) Département de Physique Théorique et Section de Mathématiques, Université de Genève, Genève, CH-1211 Switzerland

Received October 15, 2018, in final form March 23, 2019; Published online March 31, 2019

Abstract
The conventional Hamiltonian $H= p^2+ V_N(x)$, where the potential $V_N(x)$ is a polynomial of degree $N$, has been studied intensively since the birth of quantum mechanics. In some cases, its spectrum can be determined by combining the WKB method with resummation techniques. In this paper we point out that the deformed Hamiltonian $H=2 \cosh(p)+ V_N(x)$ is exactly solvable for any potential: a conjectural exact quantization condition, involving well-defined functions, can be written down in closed form, and determines the spectrum of bound states and resonances. In particular, no resummation techniques are needed. This Hamiltonian is obtained by quantizing the Seiberg-Witten curve of $\mathcal{N}=2$ Yang-Mills theory, and the exact quantization condition follows from the correspondence between spectral theory and topological strings, after taking a suitable four-dimensional limit. In this formulation, conventional quantum mechanics emerges in a scaling limit near the Argyres-Douglas superconformal point in moduli space. Although our deformed version of quantum mechanics is in many respects similar to the conventional version, it also displays new phenomena, like spontaneous parity symmetry breaking.

Key words: topological string theory; supersymmetric gauge theory; quantum mechanics; spectral theory.

pdf (1444 kb)   tex (1464 kb)

References

  1. Aganagic M., Cheng M.C.N., Dijkgraaf R., Krefl D., Vafa C., Quantum geometry of refined topological strings, J. High Energy Phys. 2012 (2012), no. 11, 019, 53 pages, arXiv:1105.0630.
  2. Aganagic M., Klemm A., Mariño M., Vafa C., The topological vertex, Comm. Math. Phys. 254 (2005), 425-478, arXiv:hep-th/0305132.
  3. Álvarez G., Langer-Cherry derivation of the multi-instanton expansion for the symmetric double well, J. Math. Phys. 45 (2004), 3095-3108.
  4. Álvarez G., Casares C., Exponentially small corrections in the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator, J. Phys. A: Math. Gen. 33 (2000), 5171-5182.
  5. Aniceto I., Başar G., Schiappa R., A primer on resurgent transseries and their asymptotics, arXiv:1802.10441.
  6. Argyres P.C., Douglas M.R., New phenomena in ${\rm SU}(3)$ supersymmetric gauge theory, Nuclear Phys. B 448 (1995), 93-126, arXiv:hep-th/9505062.
  7. Argyres P.C., Faraggi A.E., The vacuum structure and spectrum of $N=2$ supersymmetric ${\rm SU}(n)$ gauge theory, Phys. Rev. Lett. 74 (1995), 3931-3934.
  8. Avila A., Convergence of an exact quantization scheme, Comm. Math. Phys. 249 (2004), 305-318, arXiv:math.DS/0306218.
  9. Babelon O., Bernard D., Talon M., Introduction to classical integrable systems, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003.
  10. Balian R., Parisi G., Voros A., Quartic oscillator, in Feynman Path Integrals (Proc. Internat. Colloq., Marseille, 1978), Lecture Notes in Phys., Vol. 106, Springer, Berlin - New York, 1979, 337-360.
  11. Bender C.M., Wu T.T., Anharmonic oscillator, Phys. Rev. 184 (1969), 1231-1260.
  12. Bonelli G., Grassi A., Tanzini A., Seiberg-Witten theory as a Fermi gas, Lett. Math. Phys. 107 (2017), 1-30, arXiv:1603.01174.
  13. Bonelli G., Grassi A., Tanzini A., New results in ${\mathcal N}=2$ theories from non-perturbative string, Ann. Henri Poincaré 19 (2018), 743-774, arXiv:1704.01517.
  14. Bourgine J.-E., Confinement and Mayer cluster expansions, Internat. J. Modern Phys. A 29 (2014), 1450077, 32 pages, arXiv:1402.1626.
  15. Brini A., Tanzini A., Exact results for topological strings on resolved $Y^{p,q}$ singularities, Comm. Math. Phys. 289 (2009), 205-252, arXiv:0804.2598.
  16. Bruzzo U., Fucito F., Morales J.F., Tanzini A., Multiinstanton calculus and equivariant cohomology, J. High Energy Phys. (2003), no. 5, 054, 24 pages, arXiv:hep-th/0211108.
  17. Bullimore M., Kim H.-C., The superconformal index of the $(2,0)$ theory with defects, J. High Energy Phys. 2015 (2015), no. 5, 048, 42 pages, arXiv:1412.3872.
  18. Bullimore M., Kim H.-C., Koroteev P., Defects and quantum Seiberg-Witten geometry, J. High Energy Phys. 2015 (2015), no. 5, 095, 78 pages, arXiv:1412.6081.
  19. Caliceti E., Graffi S., Maioli M., Perturbation theory of odd anharmonic oscillators, Comm. Math. Phys. 75 (1980), 51-66.
  20. Cecotti S., Del Zotto M., $Y$-systems, $Q$-systems, and 4D ${\mathcal N}=2$ supersymmetric QFT, J. Phys. A: Math. Theor. 47 (2014), 474001, 40 pages, arXiv:1403.7613.
  21. Codesido S., Grassi A., Mariño M., Spectral theory and mirror curves of higher genus, Ann. Henri Poincaré 18 (2017), 559-622, arXiv:1507.02096.
  22. Codesido S., Gu J., Mariño M., Operators and higher genus mirror curves, J. High Energy Phys. 2017 (2017), no. 2, 092, 53 pages, arXiv:1609.00708.
  23. Codesido S., Mariño M., Holomorphic anomaly and quantum mechanics, J. Phys. A: Math. Theor. 51 (2018), 055402, 30 pages, arXiv:1612.07687.
  24. Codesido S., Mariño M., Schiappa R., Non-perturbative quantum mechanics from non-perturbative strings, Ann. Henri Poincaré 20 (2019), 543-603, arXiv:1712.02603.
  25. Delabaere E., Dillinger H., Pham F., Exact semiclassical expansions for one-dimensional quantum oscillators, J. Math. Phys. 38 (1997), 6126-6184.
  26. Delabaere E., Pham F., Resurgent methods in semi-classical asymptotics, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), 1-94.
  27. Deligne P., Etingof P., Freed D.S., Jeffrey L.C., Kazhdan D., Morgan J.W., Morrison D.R., Witten E. (Editors), Quantum fields and strings: a course for mathematicians, Vol. 2, Amer. Math. Soc., Providence, RI, 1999.
  28. Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997.
  29. Dillinger H., Delabaere E., Pham F., Résurgence de Voros et périodes des courbes hyperelliptiques, Ann. Inst. Fourier (Grenoble) 43 (1993), 163-199.
  30. Dingle R.B., Morgan G.J., ${\rm WKB}$ methods for difference equations. I, Appl. Sci. Res. 18 (1968), 221-237.
  31. Dorey P., Dunning C., Tateo R., The ODE/IM correspondence, J. Phys. A: Math. Theor. 40 (2007), R205-R283, arXiv:hep-th/0703066.
  32. Dorey P., Tateo R., Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, J. Phys. A: Math. Gen. 32 (1999), L419-L425, arXiv:hep-th/9812211.
  33. Dunham J.L., The Wentzel-Brillouin-Kramers method of solving the wave equation, Phys. Rev. 41 (1932), 713-720.
  34. Eguchi T., Hori K., Ito K., Yang S.-K., Study of $N=2$ superconformal field theories in $4$ dimensions, Nuclear Phys. B 471 (1996), 430-442, arXiv:hep-th/9603002.
  35. Felder G., Müller-Lennert M., Analyticity of Nekrasov partition functions, Comm. Math. Phys. 364 (2018), 683-718, arXiv:1709.05232.
  36. Fischbach F., Klemm A., Nega C., WKB method and quantum periods beyond genus one, J. Phys. A: Math. Theor. 52 (2019), 075402, 37 pages, arXiv:1803.11222.
  37. Flume R., Fucito F., Morales J.F., Poghossian R., Matone's relation in the presence of gravitational couplings, J. High Energy Phys. 2004 (2004), no. 4, 008, 18 pages, arXiv:hep-th/0403057.
  38. Franco S., Hatsuda Y., Mariño M., Exact quantization conditions for cluster integrable systems, J. Stat. Mech. Theory Exp. 2016 (2016), 063107, 30 pages, arXiv:1512.03061.
  39. Fucito F., Morales J.F., Poghossian R., Wilson loops and chiral correlators on squashed spheres, J. High Energy Phys. 2015 (2015), no. 11, 064, 32 pages, arXiv:1507.05426.
  40. Fucito F., Morales J.F., Poghossian R., Ricci Pacifici D., Gauge theories on $\Omega$-backgrounds from non commutative Seiberg-Witten curves, J. High Energy Phys. 2011 (2011), no. 5, 098, 27 pages, arXiv:1103.4495.
  41. Fucito F., Morales J.F., Ricci Pacifici D., Deformed Seiberg-Witten curves for ADE quivers, J. High Energy Phys. 2013 (2013), no. 1, 091, 20 pages, arXiv:1210.3580.
  42. Gaiotto D., Opers and TBA, arXiv:1403.6137.
  43. Gaiotto D., Moore G.W., Neitzke A., Four-dimensional wall-crossing via three-dimensional field theory, Comm. Math. Phys. 299 (2010), 163-224, arXiv:0807.4723.
  44. Goncharov A.B., Kenyon R., Dimers and cluster integrable systems, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), 747-813, arXiv:1107.5588.
  45. Gopakumar R., Vafa C., M-theory and topological strings. II, arXiv:hep-th/9812127.
  46. Gorsky A., Krichever I.M., Marshakov A., Mironov A., Morozov A., Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995), 466-474, arXiv:hep-th/9505035.
  47. Grassi A., Gu J., BPS relations from spectral problems and blowup equations, arXiv:1609.05914.
  48. Grassi A., Gu J., Argyres-Douglas theories, Painlevé II and quantum mechanics, J. High Energy Phys. 2019 (2019), no. 2, 060, 35 pages, arXiv:1803.02320.
  49. Grassi A., Hatsuda Y., Mariño M., Topological strings from quantum mechanics, Ann. Henri Poincaré 17 (2016), 3177-3235, arXiv:1410.3382.
  50. Grassi A., Mariño M., The complex side of the TS/ST correspondence, J. Phys. A: Math. Theor. 52 (2019), 055402, 22 pages, arXiv:1708.08642.
  51. Gu J., Sulejmanpasic T., High order perturbation theory for difference equations and Borel summability of quantum mirror curves, J. High Energy Phys. 2017 (2017), no. 12, 014, 36 pages, arXiv:1709.00854.
  52. Gutzwiller M.C., The quantum mechanical Toda lattice, Ann. Physics 124 (1980), 347-381.
  53. Gutzwiller M.C., The quantum mechanical Toda lattice. II, Ann. Physics 133 (1981), 304-331.
  54. Hatsuda Y., Mariño M., Exact quantization conditions for the relativistic Toda lattice, J. High Energy Phys. 2016 (2016), no. 5, 133, 35 pages, arXiv:1511.02860.
  55. Hatsuda Y., Mariño M., Moriyama S., Okuyama K., Non-perturbative effects and the refined topological string, J. High Energy Phys. 2014 (2014), no. 9, 168, 42 pages, arXiv:1306.1734.
  56. Huang M.-X., Klemm A., Poretschkin M., Refined stable pair invariants for E-, M- and $[p,q]$-strings, J. High Energy Phys. 2013 (2013), no. 11, 112, 117 pages, arXiv:1308.0619.
  57. Huang M.-X., Sun K., Wang X., Blowup equations for refined topological strings, J. High Energy Phys. 2018 (2018), no. 10, 196, 87 pages, arXiv:1711.09884.
  58. Humphreys J.E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York - Berlin, 1972.
  59. Iqbal A., Kozçaz C., Vafa C., The refined topological vertex, J. High Energy Phys. 2009 (2009), no. 10, 069, 58 pages, arXiv:hep-th/0701156.
  60. Ito K., Shu H., ODE/IM correspondence and the Argyres-Douglas theory, J. High Energy Phys. 2017 (2017), no. 8, 071, 22 pages.
  61. Jentschura U.D., Surzhykov A., Zinn-Justin J., Multi-instantons and exact results. III. Unification of even and odd anharmonic oscillators, Ann. Physics 325 (2010), 1135-1172, arXiv:1001.3910.
  62. Kozlowski K., Teschner J., TBA for the Toda chain, in New Trends in Quantum Integrable Systems, World Sci. Publ., Hackensack, NJ, 2011, 195-219, arXiv:1006.2906.
  63. Källén J., Mariño M., Instanton effects and quantum spectral curves, Ann. Henri Poincaré 17 (2016), 1037-1074, arXiv:1308.6485.
  64. Kashani-Poor A.-K., Quantization condition from exact WKB for difference equations, J. High Energy Phys. 2016 (2016), no. 6, 180, 34 pages, arXiv:1604.01690.
  65. Katz S., Klemm A., Vafa C., Geometric engineering of quantum field theories, Nuclear Phys. B 497 (1997), 173-195, arXiv:hep-th/9609239.
  66. Kharchev S., Lebedev D., Integral representation for the eigenfunctions of a quantum periodic Toda chain, Lett. Math. Phys. 50 (1999), 53-77, arXiv:hep-th/9910265.
  67. Klemm A., Lerche W., Mayr P., Vafa C., Warner N., Self-dual strings and $N=2$ supersymmetric field theory, Nuclear Phys. B 477 (1996), 746-764, arXiv:hep-th/9604034.
  68. Klemm A., Lerche W., Theisen S., Nonperturbative effective actions of $(N=2)$-supersymmetric gauge theories, Internat. J. Modern Phys. A 11 (1996), 1929-1973, arXiv:hep-th/9505150.
  69. Klemm A., Lerche W., Yankielowicz S., Theisen S., Simple singularities and $N=2$ supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995), 169-175, arXiv:hep-th/9411048.
  70. Konishi K., Paffuti G., Quantum mechanics: a new introduction, Oxford University Press, 2009.
  71. Landau L.D., Lifshitz E.M., Quantum mechanics: non-relativistic theory, Elsevier, 2013.
  72. Laptev A., Schimmer L., Takhtajan L.A., Weyl type asymptotics and bounds for the eigenvalues of functional-difference operators for mirror curves, Geom. Funct. Anal. 26 (2016), 288-305, arXiv:1510.00045.
  73. Losev A.S., Marshakov A.V., Nekrasov N.A., Small instantons, little strings and free fermions, in From Fields to Strings: Circumnavigating Theoretical Physics, Vol. 1, World Sci. Publ., Singapore, 2005, 581-621, arXiv:hep-th/0302191.
  74. Macdonald I.G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979.
  75. Mariño M., Lectures on non-perturbative effects in large $N$ gauge theories, matrix models and strings, Fortschr. Phys. 62 (2014), 455-540, arXiv:1206.6272.
  76. Mariño M., Instantons and large $N$. An introduction to non-perturbative methods in quantum field theory, Cambridge University Press, Cambridge, 2015.
  77. Mariño M., Spectral theory and mirror symmetry, in String-Math 2016, Proc. Sympos. Pure Math., Vol. 98, Amer. Math. Soc., Providence, RI, 2018, 259-294, arXiv:1506.07757.
  78. Mariño M., Zakany S., Exact eigenfunctions and the open topological string, J. Phys. A: Math. Theor. 50 (2017), 325401, 50 pages, arXiv:1606.05297.
  79. Mariño M., Zakany S., Wavefunctions, integrability, and open strings, arXiv:1706.07402.
  80. Martinec E.J., Warner N.P., Integrable systems and supersymmetric gauge theory, Nuclear Phys. B 459 (1996), 97-112, arXiv:hep-th/9509161.
  81. Matone M., Instantons and recursion relations in $N=2$ SUSY gauge theory, Phys. Lett. B 357 (1995), 342-348, arXiv:hep-th/9506102.
  82. Matsuyama A., Periodic Toda lattice in quantum mechanics, Ann. Physics 220 (1992), 300-334.
  83. Meneghelli C., Yang G., Mayer-cluster expansion of instanton partition functions and thermodynamic Bethe ansatz, J. High Energy Phys. 2014 (2014), no. 5, 112, 42 pages, arXiv:1312.4537.
  84. Mironov A., Morosov A., Nekrasov functions and exact Bohr-Sommerfeld integrals, J. High Energy Phys. 2010 (2010), no. 4, 040, 15 pages, arXiv:0910.5670.
  85. Mironov A., Morozov A., Nekrasov functions from exact Bohr-Sommerfeld periods: the case of ${\rm SU}(N)$, J. Phys. A: Math. Theor. 43 (2010), 195401, 11 pages, arXiv:0911.2396.
  86. Nekrasov N., Five-dimensional gauge theories and relativistic integrable systems, Nuclear Phys. B 531 (1998), 323-344, arXiv:hep-th/9609219.
  87. Nekrasov N.A., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003), 831-864, arXiv:hep-th/0206161.
  88. Nekrasov N.A., Okounkov A., Seiberg-Witten theory and random partitions, in The Unity of Mathematics, Progr. Math., Vol. 244, Birkhäuser Boston, Boston, MA, 2006, 525-596, arXiv:hep-th/0306238.
  89. Nekrasov N.A., Shatashvili S.L., Quantization of integrable systems and four dimensional gauge theories, in XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265-289, arXiv:0908.4052.
  90. Pasquier V., Gaudin M., The periodic Toda chain and a matrix generalization of the Bessel function recursion relations, J. Phys. A: Math. Gen. 25 (1992), 5243-5252.
  91. Poghossian R., Deforming SW curve, J. High Energy Phys. 2011 (2011), no. 4, 033, 12 pages, arXiv:1006.4822.
  92. Sciarappa A., Bethe/gauge correspondence in odd dimension: modular double, non-perturbative corrections and open topological strings, J. High Energy Phys. 2016 (2016), no. 10, 014, 57 pages, arXiv:1606.01000.
  93. Sciarappa A., Exact relativistic Toda chain eigenfunctions from separation of variables and gauge theory, J. High Energy Phys. 2017 (2017), no. 10, 116, 87 pages, arXiv:1706.05142.
  94. Seara T.M., Sauzin D., Borel summation and the theory of resurgence, Butl. Soc. Catalana Mat. 18 (2003), 131-153.
  95. Seiberg N., Witten E., Electric-magnetic duality, monopole condensation, and confinement in ${\mathcal N}=2$ supersymmetric Yang-Mills theory, Nuclear Phys. B 426 (1994), 19-52, Erratum, Nuclear Phys. B 430 (1994), 485-486, arXiv:hep-th/9407087.
  96. Silverstone H.J., JWKB connection-formula problem revisited via Borel summation, Phys. Rev. Lett. 55 (1985), 2523-2526.
  97. Sklyanin E.K., The quantum Toda chain, in Nonlinear Equations in Classical and Quantum Field Theory (Meudon/Paris, 1983/1984), Lecture Notes in Phys., Vol. 226, Springer, Berlin, 1985, 196-233.
  98. Sulejmanpasic T., Ünsal M., Aspects of perturbation theory in quantum mechanics: the \tt BenderWu Mathematica$^\circledR$ package, Comput. Phys. Commun. 228 (2018), 273-289, arXiv:1608.08256.
  99. Sun K., Wang X., Huang M.-X., Exact quantization conditions, toric Calabi-Yau and non-perturbative topological string, J. High Energy Phys. 2017 (2017), no. 1, 061, 102 pages, arXiv:1606.07330.
  100. Tachikawa Y., A review on instanton counting and W-algebras, in New Dualities of Supersymmetric Gauge Theories, Springer, Cham, 2016, 79-120, arXiv:1412.7121.
  101. Taki M., Refined topological vertex and instanton counting, J. High Energy Phys. 2008 (2008), no. 3, 048, 22 pages, arXiv:0710.1776.
  102. Voros A., Spectre de l'équation de Schrödinger et méthode BKW, Publications Mathématiques d'Orsay 81, Vol. 9, Université de Paris-Sud, Orsay, 1982.
  103. Voros A., The return of the quartic oscillator: the complex WKB method, Ann. Inst. H. Poincaré Sect. A 39 (1983), 211-338.
  104. Voros A., Exact anharmonic quantization condition (in one dimension), in Quasiclassical Methods (Minneapolis, MN, 1995), IMA Vol. Math. Appl., Vol. 95, Springer, New York, 1997, 189-224.
  105. Voros A., Exact resolution method for general $1$D polynomial Schrödinger equation, J. Phys. A: Math. Gen. 32 (1999), 5993-6007, arXiv:math-ph/9903045.
  106. Wang X., Zhang G., Huang M.-X., New exact quantization condition for toric Calabi-Yau geometries, Phys. Rev. Lett. 115 (2015), 121601, 5 pages, arXiv:1505.05360.
  107. Wilczek F., Quantum time crystals, Phys. Rev. Lett. 109 (2012), 160401, 5 pages, arXiv:1202.2539.
  108. Yaris R., Bendler J., Lovett R.A., Bender C.M., Fedders P.A., Resonance calculations for arbitrary potentials, Phys. Rev. A 18 (1978), 1816-1825.
  109. Zinn-Justin J., Multi-instanton contributions in quantum mechanics. II, Nuclear Phys. B 218 (1983), 333-348.
  110. Zinn-Justin J., Jentschura U.D., Multi-instantons and exact results. I. Conjectures, WKB expansions, and instanton interactions, Ann. Physics 313 (2004), 197-267, arXiv:quant-ph/0501136.
  111. Zinn-Justin J., Jentschura U.D., Multi-instantons and exact results. II. Specific cases, higher-order effects, and numerical calculations, Ann. Physics 313 (2004), 269-325, arXiv:quant-ph/0501137.

Previous article  Next article   Contents of Volume 15 (2019)