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Abstract. We study the problem of orbifold deconstruction, i.e., the process of recognizing,
using only readily available information, whether a given conformal model can be realized
as an orbifold, and the identification of the twist group and the original conformal model.
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1 Introduction

Orbifolding [14, 15, 16], i.e., the gauging of (discrete) symmetries of a conformal model, is
one of the most important procedures for obtaining new models from known ones, especially
since it respects such important properties as the central charge, unitarity and rationality1.
Unfortunately, the precise determination of the properties of the orbifold could be quite involved
in general, and effective techniques are only known for special types, like holomorphic [1, 2, 12, 13]
or permutation orbifolds [3, 5, 8, 9, 20, 25].

The present note addresses the inverse problem: instead of trying to determine the structure of
an orbifold from the knowledge of the original model and the action of the twist group, we ask for
effective procedures to recognize whether a conformal model could be obtained as an orbifold, and
if so, to identify the original model together with the relevant twist group. That such procedures
could exist is actually not that surprising, as simple current extensions [4, 21] are nothing but
an example of this for Abelian twist groups. But the question is how the corresponding results
could be extended to more general orbifolds, and what kind of new structures emerge in the
process. We should stress that our approach in the present note is computational: we aim
to identify in a down-to-earth manner the relevant conformal models with the help of some
simple, mostly numerical data (like conformal weights, quantum dimensions and fusion rules
of the primary fields) [10], providing explicit expressions for the characteristic quantities of the
deconstructed model. We have no doubt that the whole process could be described elegantly in
more abstract terms [19, 24], but the relevant techniques seem (at least to us) less amenable to
practical computations.

In the next section we’ll summarize those general features of orbifold constructions that
will form the basis of the deconstruction procedure. Then we’ll turn to the description of the
procedure itself, while the last section provides an outlook on questions not addressed in this
note. We stress that our exposition is informal, presenting only the most important ideas and
their mutual interrelations, but omitting formal arguments. Most of these arguments can be
supplied readily, while some of them seem to require more effort, but with hindsight one could

This paper is a contribution to the Special Issue on Moonshine and String Theory. The full collection is
available at https://www.emis.de/journals/SIGMA/moonshine.html

1It has even been argued that all rational conformal models may be obtained either as GKO cosets or as
orbifolds thereof.
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argue that a strong supporting evidence of the ideas to be presented is that they lead to a coherent
algorithmic procedure giving meaningful answers that agree with the correct ones in all known
cases which could be checked by alternative means. Should some of our assertions prove to be
wrong, one would expect that the whole procedure would lead to completely meaningless results
in most cases. And it goes without saying that in case of Abelian orbifolds we just get back
a suitable simple current extension [21].

2 Generalities on orbifolds

Consider a (unitary) conformal model whose chiral algebra V is a well behaved (rational, C2-
cofinite, etc.) vertex operator algebra [18, 23, 26, 29]. Given a subgroup G < Aut(V) of
automorphisms of V, the G-orbifold [13, 14] is obtained by identifying the states that can be
transformed into each other by an element of G. The Hilbert space of the orbifold is a direct
sum of twisted modules of the chiral algebra V (these consist of those operators which are local
with respect to V only up to an element of the twist group G), while its chiral algebra is the
fixed-point subalgebra VG = {v ∈ V | gv = v for all g ∈ G}.

There is a natural action of G on the set of all twisted modules under which an element
h ∈ G sends a g-twisted module M to a hgh -1-twisted module h(M). This shows that the set
of all g-twisted modules, as g runs over a given conjugacy class of the twist group, is G-stable
under this action, leading to a partition of the orbifold’s Hilbert space into sectors labeled by
the conjugacy classes of G, each of which usually splits into several G-orbits. Since the twisted
modules inside a given G-orbit are all related by the action of an automorphism of V, it follows
that they have pretty similar properties (while still not being isomorphic), e.g., their conformal
weights hM , quantum dimensions dM and trace functions [17, 29]

ZM (τ) = TrM
{
e2πiτ(L0−c/24)}

all coincide. This means that it is enough to know these data for just one representative mod-
ule M from the orbit.

The stabilizer GM = {h ∈ G |h(M) ∼= M} of a g-twisted module M is the subgroup of those
elements h ∈ G for which h(M) is isomorphic to M ; clearly, it is a subgroup of the centralizer
CG (g) = {h ∈ G | gh = hg}, and the stabilizers of different modules belonging to the same G-
orbit are all conjugate to each other. Note that the length of the orbit of M , i.e., the number
of different modules contained in it, is just the index [G : GM ] in G of its stabilizer. By
the previous reasoning, we have on each twisted module M an action of its stabilizer GM ,
which is usually not a linear representation, but only a projective one, with associated 2-cocycle
ϑM ∈ Z2(GM ,C). This projective representation decomposes into homogeneous components
corresponding to the irreducible projective representations ξp ∈ Irr (GM |ϑM ) of the stabilizer,
and each such homogeneous component corresponds to a primary field of the orbifold.

To recapitulate, twisted modules are organized into sectors labeled by conjugacy classes of
the twist group G, and each such sector splits into orbits of G, with each orbit characterized
by the stabilizer GM of one representative module M from the orbit and by the associated 2-
cocycle ϑM . In turn, each irreducible projective representation ξp ∈ Irr (GM |ϑM ) corresponds
to a primary field of the orbifold. We’ll call the set of primaries originating from a particular
G-orbit the block corresponding to that orbit. By the above, the primaries of the orbifold are
partitioned into blocks, each corresponding to a G-orbit of twisted modules, and the primaries
inside a given block correspond to the (projective) irreducible representations of the stabilizer of
the orbit. We shall use the notation bo to denote the G-orbit of twisted modules corresponding
to a block b. Note that |bo| = [G : GM ] and |b| = |Irr (GM |ϑM ) | by the above, for any
M ∈ bo.
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If M ∈ bo is a g-twisted module of V with g ∈ G of order n, then the eigenvalues of the
operator nL0 are integrally spaced on M , i.e., the difference of two L0 eigenvalues is an integer
multiple of 1/n. We define the order of a block b as the smallest positive integer n such that the
eigenvalues of the operator nL0 are integrally spaced on any M ∈ bo. In particular, untwisted
modules, are characterized by the property that their L0 eigenvalues are integrally spaced,
providing a simple criterion singling out untwisted modules from twisted ones. This also means
that a block corresponding to a G-orbit of untwisted modules is characterized by the fact that
the conformal weights of its members differ by integers, i.e., its order is 1.

In particular, the vacuum module belongs to the untwisted sector and is left fixed by all
elements of G, hence it forms in itself a G-orbit of length 1 whose stabilizer is the whole of G,
with trivial associated cocycle (because the twist group acts linearly on V). It follows that the
block corresponding to this vacuum module (the vacuum block b0) consists of primaries in one-
to-one correspondence with the irreducible representations of G, whose quantum dimensions are
integers (since they equal the dimension of the corresponding irreducible representations), and
whose conformal weights are integers too, because the conformal weight of the vacuum module
is zero (recall that we consider unitary models).

Since the vacuum acts as the identity of the fusion product, the fusion of an element of
any given block b with an element of the vacuum block b0 will contain only primaries from
block b. This means that two primaries p and q belong to the same block precisely when
N q
αp > 0 for at least one element α ∈ b0 of the vacuum block. In particular, the vacuum

block generates a closed subring of the fusion ring of the orbifold, which is identical to the
representation ring (Grothendieck ring) of the twist group, since the fusion product of any two
of its members is the same as the tensor product of the corresponding irreducible representa-
tions.

3 Orbifold deconstruction

Armed with the above, we can now attack the problem of orbifold deconstruction, i.e., the
identification of the original model and the twist group from the sole knowledge of data related
to the orbifold. We start from a (unitary) conformal model for which we know the fusion
coefficients N r

pq, conformal weights hp, quantum dimensions dp and chiral characters χp(τ) of
the primary fields, and we wish to identify it as a non-trivial orbifold of some other conformal
model. Notice that one and the same model might have several deconstructions, reflecting the
fact that the same model can be realized as an orbifold in many distinct ways; for example,
if the twist group G has a (non-trivial) normal subgroup N / G, then a G-orbifold can be
obtained as a G/N -orbifold of an N -orbifold. This indicates that there exists a whole hierarchy
of deconstructions, whose most interesting members are the maximal ones leading to primitive
models, i.e., models that cannot be obtained as a non-trivial orbifold of some other model, hence
cannot be deconstructed any further.

The starting point of the deconstruction procedure is the observation, made at the end of the
previous section, that the vacuum block of an orbifold has very special properties: it is a set of
primaries closed under the fusion product, and all its members have integer conformal weight
and quantum dimension. For an arbitrary conformal model, we’ll call a set of primaries with
these properties a twister. By the above, the vacuum block of an orbifold is a twister, and we
assume in the sequel that all twisters arise as the vacuum block of a suitable orbifold realization
of the model under study.2 For each twister there is a different deconstruction of the model, and
maximal deconstructions correspond to maximal twisters not contained in any other twister.

2While we have no formal argument supporting this assumption, all available computational results corroborate
it.
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The trivial twister (that contains the vacuum primary only) gives rise to a trivial deconstruction
resulting in the original model.

Let’s now consider the deconstruction with respect to a particular twister g, assumed to be
non-trivial. The sole knowledge of the twister allows the determination of a host of important
information about the twist group. For example, because the quantum dimensions of the ele-
ments of g equal the dimensions of the corresponding irreducible representations of the twist
group, and since the order of a group equals, by Burnside’s famous theorem [22, 28], the sum of
the squared dimensions of its irreducible representations, it follows that the order of the twist
group should equal the spread

‖g‖ =
∑
α∈g

d2α

of the twister. Along the same lines, the number of conjugacy classes of the twist group equals
the size |g| of the twister, i.e., the number of its elements. Since the twister generates a subring
of the fusion ring isomorphic to the representation ring of the twist group, and the knowledge
of the representation ring determines the character table of the underlying group [27], even the
character table of the twist group and the size of its conjugacy classes may be computed from
this information, and this is usually sufficient to identify the twist group up to isomorphism.3

Once the twist group has been identified, the next problem is the determination of the
primary fields of the original model and their most important attributes, like conformal weights,
quantum dimensions and chiral characters. We know that these primaries originate in the
untwisted sector of the orbifold, corresponding to untwisted modules organized into G-orbits,
and to each such orbit corresponds a block of the orbifold, whose elements are in one-to-one
correspondence with the projective irreducible representations of the stabilizer subgroup of the
orbit (more precisely, of one module from it). These blocks, viewed as set of primaries of the
orbifold, have the characteristic property that the primaries p and q belong to the same block
precisely when N q

αp > 0 for at least one element α of the vacuum block. But the twister g
chosen for deconstruction is precisely the vacuum block of the orbifold realization of our model,
hence the blocks my be recovered from the knowledge of g alone: these are the maximal sets b
of primaries such that p, q ∈ b implies N q

αp > 0 for at least one element α ∈ g.

Actually, there is no need to compute all the blocks for deconstruction, since only those
corresponding to untwisted modules are needed for identifying the deconstructed model. But
we know that blocks corresponding to a G-orbit of untwisted modules have order 1, i.e., the
conformal weights of their members can differ only by integers, providing a simple criterion to
single them out.

Having identified the blocks in the untwisted sector, i.e., the G-orbits of (untwisted) modules
of the deconstructed model, what remains is to determine the properties of the primary fields
corresponding to these modules. Since they lie on the same G-orbit and are thus related by an
automorphism of the relevant chiral algebra, they have the same conformal weights, quantum
dimensions and chiral characters, so it is enough to determine these data for just one of them,
but one should keep in mind that they correspond to different primaries of the deconstructed
theory, hence their multiplicity (the length |bo| of the corresponding G-orbit) should be taken
into account.

Since they are related by an element of Aut(V), the modules M belonging to the G-orbit bo

corresponding to a block b all have the same conformal weight hM = min {hp | p ∈ b}, quantum

3We note that, while the representation ring does not determine the group uniquely up to isomorphism (a fa-
mous example being that of the dihedral group D4 of order 8 and the group Q of unit quaternions, with identical
representation rings), the braided structure of the module category of V allows one to determine the λ-ring struc-
ture of the representation ring, and in particular the powers of the conjugacy classes, leading to the possibility of
identifying the twist group unambiguously.
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dimension dM and chiral character (trace function)

TrM
{
e2πiτ(L0−c/24)} =

∑
p∈b

(dim ξp)χp(τ) =
1

|bo|
∑
p∈b

dp

dM
χp(τ),

where |bo| denotes the length of the G-orbit bo. Note that this last result would provide an
explicit form of the chiral characters should we know the quantum dimensions dM and the orbit
lengths |bo|. Unfortunately, their determination could be tricky in general because the 2-cocycle
ϑM ∈ Z2(GM ,C) is usually non-trivial, and the irreducible representations ξp ∈ Irr (GM |ϑM )
corresponding to the primaries p ∈ b are not ordinary representations, but only projective
ones. Nevertheless, exploiting general properties of projective representations it is possible to
set up a set of rules that allow their unambiguous computation in most instances. In particular,
dM is an algebraic integer ≥ 1 such that the quantum dimensions dp are all integer multiples of
|bo|eMdM for p ∈ b, where eM denotes the multiplicative order of the cohomology class of ϑM
(which is obviously the same for all modules M ∈ bo). These observations are usually sufficient
to pin down the precise values of dM and |bo|.

Finally, to finish the identification of the deconstructed model, one needs to find out its
fusion rules. This can be accomplished by assigning to each block b of the untwisted sector
a block-fusion matrix N(b) with matrix elements

N(b)rq =
1

‖g‖
∑
p∈b

dp

dM
N r
pq.

Such matrices form a ring, i.e., the product of any two of them may be expressed as a sum

N(a)N(b) =
∑
c

Nc
abN(c)

over the untwisted blocks, where the block-fusion coefficients Nc
ab ∈ Z+ are given by the sums

Nc
ab =

∑
A∈ao, B∈bo

NC
AB (3.1)

for any representative module C ∈ co. Note that these block-fusion coefficients come near to
provide the fusion rules of the deconstructed model, but for one thing: they do not describe
the fusion of the individual modules, but only that of the direct sum of the modules contained
in the orbits corresponding to the individual blocks. This shouldn’t come as a surprise since,
after all, orbifolding amounts to identifying the modules related by a symmetry, so that their
individual properties are lost in the process, except for those (like conformal weights and quan-
tum dimensions) which are the same for all modules on the same orbit. Nevertheless, this
aggregated version of the fusion rules, supplemented by the knowledge of the conformal weights,
quantum dimensions and chiral characters is enough in many examples to identify uniquely the
deconstructed model, at least in those amenable to direct computations.4

4 Example: the 3-fold symmetric product
of the moonshine module

Consider the self-dual c = 72 conformal model made up of three identical copies of the moonshine
module V\. Clearly, any permutation of these identical copies is a symmetry, hence one may

4We should also point out that, since the block-fusion matrices depend explicitly on the quantum dimensions dM
but not on the orbit lengths |bo|, the integrality of the block-fusion coefficients Nc

ab provides an extra condition
for determining the precise value of the dimensions in case they are not fixed by the previous considerations.
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orbifold this model with respect to the symmetric group S3 of degree 3, resulting in the 3-fold
symmetric product V\ o S3 of the moonshine module [6, 11]. The properties of this symmetric
product are well understood, since it is by construction a permutation orbifold [5], and at the
same time a holomorphic orbifold [13], because the moonshine module is self-dual.

V\ o S3 is known to have 8 different primaries [5], whose most important properties are sum-

marized in the following table (with ζ = e
2πi
3 denoting a primitive third root of unity).

label conformal weight dimension character

1+ 0 1
1

6

{
J(τ)3 + 3J(τ)J (2τ) + 2J (3τ)

}
1− 4 1

1

6

{
J(τ)3 − 3J(τ)J (2τ) + 2J (3τ)

}
2 2 2

1

3

{
J(τ)3 − J (3τ)

}
ρ0

8

3
2

1

3

{
J
(
τ
3

)
+ ζJ

(
τ+1
3

)
+ ζJ

(
τ+2
3

)}
ρ1 4 2

1

3

{
J
(
τ
3

)
+ J

(
τ+1
3

)
+ J

(
τ+2
3

)}
ρ2

10

3
2

1

3

{
J
(
τ
3

)
+ ζJ

(
τ+1
3

)
+ ζJ

(
τ+2
3

)}
σ+

3

2
3

1

2
J(τ)

{
J
(
τ
2

)
+ J

(
τ+1
2

)}
σ− 3 3

1

2
J(τ)

{
J
(
τ
2

)
− J

(
τ+1
2

)}
Table 1. Primaries of V\ o S3.

It follows that the only primaries that can belong to a twister are among 1+, 1−, 2, ρ1

and σ−, since only these have simultaneously integer quantum dimension and conformal weight.
With the notations Ξ = 1+ ⊕ 1− and Σ = 2 ⊕ ρ0 ⊕ ρ1 ⊕ ρ2, the fusion rules read

1+ 1− 2 ρ0 ρ1 ρ2 σ+ σ−

1+ 1+ 1− 2 ρ0 ρ1 ρ2 σ+ σ−

1− 1− 1+ 2 ρ0 ρ1 ρ2 σ− σ+

2 2 2 2 ⊕Ξ ρ1 ⊕ ρ2 ρ0 ⊕ ρ2 ρ0 ⊕ ρ1 σ+ ⊕ σ− σ+ ⊕ σ−

ρ0 ρ0 ρ0 ρ1 ⊕ ρ2 ρ0 ⊕Ξ 2 ⊕ ρ2 2 ⊕ ρ1 σ+ ⊕ σ− σ+ ⊕ σ−

ρ1 ρ1 ρ1 ρ0 ⊕ ρ2 2 ⊕ ρ2 ρ1 ⊕Ξ 2 ⊕ ρ0 σ+ ⊕ σ− σ+ ⊕ σ−

ρ2 ρ2 ρ2 ρ0 ⊕ ρ1 2 ⊕ ρ1 2 ⊕ ρ0 ρ2 ⊕Ξ σ+ ⊕ σ− σ+ ⊕ σ−

σ+ σ+ σ− σ+ ⊕ σ− σ+ ⊕ σ− σ+ ⊕ σ− σ+ ⊕ σ− 1+ ⊕Σ 1− ⊕Σ

σ− σ− σ+ σ+ ⊕ σ− σ+ ⊕ σ− σ+ ⊕ σ− σ+ ⊕ σ− 1− ⊕Σ 1+ ⊕Σ

Table 2. Fusion rules of V\ o S3.

It follows that there are precisely three non-trivial twisters: the maximal twisters {1+,1−,2}
and {1+,1−,ρ1}, both of spread 6 and size 3, and their intersection {1+,1−}. We note that
the existence of two maximal twisters is related to the automorphism of the fusion rules that
exchanges the primaries 2 and ρ1 while leaving all other primaries invariant. Let’s take a closer
look at the different deconstructions corresponding to these cases.5

5An important feature of this example that simplifies tremendously the analysis is that, because the relevant
groups are pretty small, all the cocycles are trivial, so one does only encounter ordinary representations during
the procedure.
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The twister {1+,1−} consists of two simple currents corresponding to the one-dimensional
representations of S3, hence the deconstructed model will be a simple current extension of V\ oS3
that could be determined alternatively using the techniques of [21]. Obviously, the twist group
is isomorphic to Z2. There are 6 different blocks, whose properties can be read off the following
table (the multiplicity of a block b is the length |bo| of the associated orbit, cf. Section 3).

block order multiplicity dimension trace function

{1+,1−} 1 1 1 1
3

{
J(τ)3 + 2J (3τ)

}
{2} 1 2 1 1

3

{
J(τ)3 − J (3τ)

}
{ρ0} 1 2 1 1

3

{
J
(
τ
3

)
+ ζJ

(
τ+1
3

)
+ ζJ

(
τ+2
3

)}
{ρ1} 1 2 1 1

3

{
J
(
τ
3

)
+ J

(
τ+1
3

)
+ J

(
τ+2
3

)}
{ρ2} 1 2 1 1

3

{
J
(
τ
3

)
+ ζJ

(
τ+1
3

)
+ ζJ

(
τ+2
3

)}
{σ+,σ−} 2 1 3 J(τ)J

(
τ
2

)
The untwisted sector consists of 9 modules arranged into 4 orbits of length 2 and one fixed-

point (the vacuum block). Inspecting their conformal weights and trace functions, one recognizes
that the deconstructed model is nothing but the permutation orbifold V\ oA3 of the moonshine
module by the alternating group A3 of degree 3 (the commutator subgroup of S3); this is further
corroborated by the fusion rules computed using equation (3.1). We note that there is a unique
Z2-twisted module in this case, corresponding to the block of order 2.

For the twister {1+,1−,2}, the fusion rules are

1+ 1− 2

1+ 1+ 1− 2

1− 1− 1+ 2

2 2 2 1+ ⊕ 1− ⊕ 2

leading to the following character table for the twist group

1 2 3

1+ 1 1 1

1− 1 −1 1

2 2 0 −1

from which can one infer that the twist group is isomorphic to S3 in this case. Actually, this
already follows from the fact that it is a group of order ‖g‖ = 6 with |g| = 3 different conjugacy
classes, and all such groups are isomorphic to S3.

There are 2 blocks besides the vacuum block, and the following table summarizes their most
important properties.

block order multiplicity dimension trace function

{1+,1−,2} 1 1 1 J(τ)3

{σ+,σ−} 2 3 1 J(τ)J
(
τ
2

)
{ρ0,ρ1,ρ2} 3 2 1 J

(
τ
3

)
Since there is just one block in the untwisted sector (i.e., of order 1), it follows that the

deconstructed model is self-dual, with trace function equal to J(τ)3. From this we can conclude
that the deconstructed model is made up from 3 identical copies of the moonshine module V\.

For the twister {1+,1−,ρ1}, the situation is pretty similar to the previous one after one
performs the exchange 2 ↔ ρ1. The fusion rules read
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1+ 1− ρ1

1+ 1+ 1− ρ1

1− 1− 1+ ρ1

ρ1 ρ1 ρ1 1+ ⊕ 1− ⊕ ρ1

leading once again to the character table

1 2 3

1+ 1 1 1

1− 1 −1 1

ρ1 2 0 −1

showing that the twist group is isomorphic to S3 in this case too. Once again, there are 3 blocks:
the vacuum block {1+,1−,ρ1}, and the blocks {σ+,σ−} and {ρ0,2,ρ2} of respective orders 2
and 3. These share the properties of their counterparts for the twister {1+,1−,2}, except for
their trace functions, which read in this case

block trace function

{1+,1−,ρ1} J(τ)3 − 2c1J(τ)− 2c2
{σ+,σ−} J(τ)J

(
τ
2

)
{ρ0,2,ρ2} J

(
τ
3

)
+ c1J(τ) + c2

upon taking into account the replication identity6

J
(τ

3

)
+ J

(
τ + 1

3

)
+ J

(
τ + 2

3

)
+ J (3τ) = J(τ)3 − 3c1J(τ)− 3c2

for the modular invariant function J(τ), where c1 = 196884 and c2 = 21493760.

Note that this second deconstruction differs markedly from the previous one, although their
twist groups are isomorphic. In particular, since the polynomial P (x) = x3 − 2c1x − 2c2 has
3 different roots, it follows that the action of the twist group is not a permutation action in
this case. This exemplifies that one and the same conformal model (in our case V\ o S3) may be
obtained as an orbifold of quite different models, with different (possibly non-isomorphic) twist
groups.

5 Summary and outlook

As described above, there is an effective algorithmic procedure for orbifold deconstruction, i.e.,
the realization of a given conformal model as an orbifold of some other model. Different de-
constructions correspond to different twisters of the model under study, where non-maximal
deconstructions lead to models that can be further deconstructed themselves, corresponding to
orbifolding in stages. Deconstructions corresponding to maximal twisters (i.e., not contained
in any other twister) are the ones that may lead to primitive models that cannot be realized
as non-trivial orbifolds.7 The deconstruction algorithm provides us with a more-or-less unique

6This illustrates the fact that the existence of different maximal deconstructions of a permutation orbifold is
related to the existence of non-trivial replication identities [7].

7It may happen that orbifolding by stages breaks down, i.e., the orbifold of an orbifold is not an orbifold of
the original model, in which case the corresponding maximal deconstruction is itself a non-trivial orbifold. This
phenomenon shows up, as put forward by one of the referees, in the 16-fold tensor power of the Ising model,
which has a maximal deconstruction to the SO(16) Wess–Zumino model at level 1, itself a Z2-orbifold of the E8

Wess–Zumino model of the same level.



A Short Guide to Orbifold Deconstruction 9

identification of the twist group and of the original model, up to some ambiguities related to
the projective realization of the twist group and to the individual fusion rules of the untwisted
modules. It should be emphasized that this ambiguity is a finite one, which means that, as a last
resort, one can in principle go through a tedious case-by-case analysis of the allowed possibilities
to find out the correct one.

Besides its intrinsic interest, what could be the benefits of the deconstruction procedure in
the study of 2D CFT? There is one such benefit that is more or less obvious: if we can identify
both the deconstructed model and the twist group unambiguously, then we get an example of
an orbifold construction where the result, being the input of the deconstruction procedure, is
known right from the start, making possible a thorough investigation of the orbifolding process.
Actually, the procedure can be extended so as to give precise results not only about the modules
in the untwisted sector (the ones that are of interest for identifying the deconstructed model),
but also about the structure of all of the twisted modules. This is particularly important, since
the structure of g-twisted modules does only depend on the conjugacy class of g in Aut(V),
hence the deconstruction of a G-orbifold gives valuable information about the structure of all
orbifolds (of the deconstructed model) whose twist group contains elements that are conjugate
in Aut(V) to some element of G.

Finally, let us note that the above ideas might be used in attempts to classify rational
conformal models. For one thing, the classification problem can be reduced to that of primitive
models (the ones that don’t have nontrivial twisters), since all others are orbifolds of these,
and the latter can be classified by group theoretic means. On the other hand, even primitive
models can be grouped together if they arise from maximal deconstructions of one and the
same conformal model, i.e., if some of their orbifolds are identical. An interesting problem is
to develop simple criteria testing whether two primitive models are related in this way, and to
understand what kind of common structures are responsible for such behavior.
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