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Abstract. In this paper we study a restricted family of holomorphic symplectic leaves
in the Poisson–Lie group GLr(KP1

x
) with rational quadratic Sklyanin brackets induced by

a one-form with a single quadratic pole at ∞ ∈ P1. The restriction of the family is that the
matrix elements in the defining representation are linear functions of x. We study how the
symplectic leaves in this family are obtained by the fusion of certain fundamental symplectic
leaves. These symplectic leaves arise as minimal examples of (i) moduli spaces of multiplica-
tive Higgs bundles on P1 with prescribed singularities, (ii) moduli spaces of U(r) monopoles
on R2×S1 with Dirac singularities, (iii) Coulomb branches of the moduli space of vacua of 4d
N = 2 supersymmetric Ar−1 quiver gauge theories compactified on a circle. While degree 1
symplectic leaves regular at∞ ∈ P1 (Coulomb branches of the superconformal quiver gauge
theories) are isomorphic to co-adjoint orbits in glr and their Darboux parametrization and
quantization is well known, the case irregular at infinity (asymptotically free quiver gauge
theories) is novel. We also explicitly quantize the algebra of functions on these moduli spaces
by presenting the corresponding solutions to the quantum Yang–Baxter equation valued in
Heisenberg algebra (free field realization).

Key words: symplectic leaves; Poisson–Lie group; Yang–Baxter equation; Sklyanin brackets;
Coulomb branch; multiplicative Higgs bundles
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1 Introduction

Complex completely integrable Hamiltonian systems can be typically constructed starting from
a locus M in the moduli space BunG(Σ) of holomorphic G-bundles or sheaves of certain type
on a complex holomorphic symplectic surface Σ with a structure of Lagrangian elliptic fibration
Σ→ X, where the fibers Σx are possibly degenerate elliptic curves, and X is an algebraic curve
typically called the base curve, see for example Section 0.3.6 in [27] and Section 3.8.2 in Donagi’s
lectures in [50] and [24, 25, 26, 27] for more complete details.

Indeed, the symplectic structure on Σ induces the symplectic structure on the spaceM which
becomes the phase space of integrable system, the structure of Lagrangian fibration Σ → X
induces the structure of Lagrangian fibration on M, and the fact that the fibers Σx are abelian
varieties (possibly degenerate elliptic curves) induces the structure of abelian varieties on the
Lagrangian fibers in M.

There are three cases to consider depending on whether the elliptic fibers are generically
cusped elliptic, nodal elliptic or smooth elliptic.

(1) Fibers are cusped elliptic. If X is an algebraic curve, and Σ → X is a cotangent bundle
whose fibers are compactified to cusped elliptic curves, this construction produces algebraic
integrable system called Hitchin system on the curve X [28, 41, 49]. Hitchin system is an example
of an abstract Higgs bundle on X valued in an abelian group K over X for the case when the
group K is the canonical line bundle on X endowed with natural linear additive group structure
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in the fiber direction. The Higgs field φ(x) is a holomorphic 1-form valued in the Lie algebra
adjoint bundle ad g. The respective integrable system is of additive type in the fiber direction.

(2) Fibers are nodal elliptic. If Σ → X is a fibration whose fibers are nodal elliptic curves,
then BunG(Σ) is equivalently described as a moduli space of multiplicative Higgs bundles
mHiggsG(X), that is moduli space of pairs (P, g) where P is a principal G-bundle on X, and
Higgs field g(x) is a section of Lie group adjoint bundle adG. The respective integrable system
is of multiplicative type in vertical direction. In Donagi’s lectures in [26, Section 3.9] one finds
a remark on three types of integrable system in the fiber direction corresponding to the three
types of connected 1-dimensional complex groups: an elliptic curve, the multiplicative group
Gm = C× and the additive group Ga = C, and that the latter two can be considered as groups
of non-singular points in the elliptic case in the nodal and cuspidal limit respectively. He goes
on to clarify that Hitchin systems are associated to the cuspidal type and principal bundles
on smooth elliptic fibrations to smooth elliptic type, and then asks “Is there an interesting
geometric interpretation of the remaining “trigonometric” case, where the values are taken in
multiplicative group Gm?” We believe so and we refer to several geometrical perspectives on the
multiplicative case further in the introduction. For the basic definitions see [17, 30, 33, 42, 55].

(3) Fibers are smooth elliptic. If Σ → X is an elliptically fibered complex surface with
generically smooth fibers, the corresponding case was studied in [25, 35]. Using Loojienga
description of moduli space of G-bundles on a smooth elliptic fiber as a space conjugacy classes
in the affine Kac–Moody Lie group Ĝ [47], we can also interpret BunG(Σ) as a moduli space
mHiggsĜ(X) of multiplicative Higgs bundles for the affine Kac–Moody group Ĝ. The respective
integrable system is of elliptic type in vertical direction.

The case (1) of additive Higgs bundles (Hitchin systems) received large amount of attention in
the mathematical literature in the context of geometrical Langlands correspondence and in the
physical literature in the context of 6d (2, 0) superconformal self-dual tensor theory compactified
on algebraic complex curve X for G of ADE type [2, 7, 45, 57]. Quantization of additive Higgs
bundles on the curve X relates to the theory of Kac–Moody current algebras on X, conformal
blocks of W -algebra on X with punctures, D-modules on BunG(X), and monodromy problems
for various related differential equations.

The case (2) of multiplicative Higgs bundles on a complex curve X appeared first in the
context of current Poisson–Lie groups G(x) with spectral parameter x ∈ X. A Poisson–Lie
group is a Lie group equipped with Poisson structure compatible with the group multiplication
law. There is a standard way to equip G(x) with Poisson structure called quadratic Skylanin
bracket given a holomorphic no-where vanishing differential 1-form on X (possibly with poles).
Quantization of this Poisson structure leads to the theory of quantum groups [29, 43] which
have been discovered in the context of the inverse scattering method, quantum integrable spin
chains, Yang–Baxter equation and R-matrix with spectral parameter. The standard horizontal
trichotomy of the rational, trigonometric or elliptic R-matrix corresponds to taking the base X
to be the P1 with 1-form with a single quadratic pole (rational type), the P1 with 1-form with
two simple poles (trigonometric type), or smooth elliptic curve (elliptic type).

For the smooth elliptic base curve X the multiplicative Higgs bundle was studied in [42],
following [11, 12]. Independently, the definition of multiplicative Higgs bundles was given in [33]
where they were called G-pairs. On another hand, multiplicative Higgs bundles on X have
been studied as periodic monopoles on real three-dimensional Riemannian manifold X × S1

via the monodromy map [15, 16, 17, 18, 37, 38, 55]. The relation between quantization of the
moduli space of monopoles on R3 and Yangian has been proposed in [36] and further work in
this direction has been in [44]. Recently a quantization of the holomorphic symplectic phase
space of the moduli space of monopoles on X×S1 by a formal semi-holomorphic Chern–Simons
functional on X×S1×Rt, where Rt is the time direction, has been studied in [20, 21]. For simple
Lie groups G of the ADE type these moduli spaces appear as Coulomb branches of the moduli
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space of vacua of the N = 2 supersymmetric ADE quiver gauge theory on R3 × S1 [13, 14, 53,
55]. Some constructions from the world of additive Higgs bundles have their versions in the
world of multiplicative Higgs bundles [30] leading to difference equations and their monodromy
problems [9, 58], q-geometric Langlands correspondence [1], q−W algebras [46, 54, 56].

The goal of this paper is to present very concretely a Darboux coordinate system on a mod-
uli space GLr multiplicative Higgs bundles of degree 1 on the rational base X = P1

x. The base
curve X is equipped with a holomorphic one-form dx that has the quadratic pole at x∞ = ∞.
The holomorphic one-form dx together with the Killing form on the Lie algebra induces the
quadratic Sklyanin Poisson structure with the classical r-matrix of rational type in the spectral
parameter x. Equivalently, we are studying degree 1 symplectic leaves in the rational Poisson–Lie
group GLr(KP1), where KP1 denotes the field of rational functions on P1, and degree 1 means that
all matrix elements (Lij(x))1≤i,j≤r of the multiplicative Higgs field g(x) in the defining represen-
tation of GLr by r × r matrices Lij(x) are degree 1 polynomials of x, i.e., linear functions of x.

By concrete presentation we mean introduction of explicit Darboux coordinates (canonically
conjugated set of (p, q) =

(
pI , q

I
)

variables with
{
pI , q

J
}

= δJI ) and presentation of explicit for-

mulae for the matrix elements Lij(x) in terms of
(
pI , q

J
)
. The complete set of commuting Hamil-

tonian functions is obtained from the coefficients of the spectral determinant of L(x). The matrix
L(x) valued in functions on the phase space is called Lax matrix and its matrix elements satisfy
quadratic Sklyanin Poisson brackets, see in particular [3, 31] but also the recent lecture notes [64].

The quadratic Sklyanin Poisson brackets can be also defined as semi-classical limit of the
quantum Yang–Baxter equation [61, 62]. In this paper we find all rational solutions of degree 1 in
the spectral parameter x associated to the classical Yang–Baxter equation defined by the rational
gl(r)-invariant r-matrix, cf. [8]. In another note we plan to consider the trigonometric case
associated to the base curve being a punctured nodal elliptic curve X = C×x equipped with the
holomorphic one-form dx

x that has simple pole at x = 0 and x =∞, a related work appears in [32].

The case of G = GL2 is well studied. Here the Sklyanin relation admits three different
elementary types of non-trivial solutions with matrix elements linear in the spectral parameter x
that yield integrable models. These solutions are called the 2 × 2 elementary Lax matrices for
the Heisenberg magnet, the DST chain and the Toda chain. For an overview we refer the reader
to lecture notes of Sklyanin [63].

For higher rank r, to the best knowledge of the authors the explicit presentation of all linear
solutions is missing in the literature. The case regular at the infinity x∞ ∈ X has been described
in [60] and many other places. Some partial cases of Toda like solutions for irregular case have
been described in [37, 38, 51]. The classifying labels appeared in [39]. In the quantum case
some solutions to the Yang–Baxter equation were studied in connection to non-compact spin
chains and Baxter Q-operators, in particular for the case of glr we refer the reader to [5, 22].
The solutions relevant for non-compact spin chains can be obtained by realising the quantum
R-matrix in terms of an infinite-dimensional oscillators algebra which is also known as free-field
realisation, see, e.g., [23]. The Lax matrices relevant for Q-operators are certain degenerate
solutions in the sense that the term proportional to the spectral parameter is not the identity
matrix but a matrix of lower rank. These Lax matrices can be obtained from the non-degenerate
case through a limiting procedure as discussed in [6] for gl(2|1), [37, 38] for gl3 or directly from
the universal R-matrix as shown in [10] for gl(3). Vice versa to the limiting procedure and as
discussed in [5], one can also obtain the Lax matrices of non-compact spin chains by fusing the
degenerate solutions relevant for Q-operators.

Here we follow the strategy of fusion in order to construct a family of GLr Lax matrices L(x)
whose matrix elements are linear in spectral parameter x.

The discrete data of labels in our family is specified by two partitions λ and µ such that the
total size is |λ|+ |µ| = r and whose columns λti, µ

t
i are restricted by r. In addition to the discrete

partition labels (λ, µ) we have a sequence of complex labels. There is a complex parameter xi as-
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signed to each column λti of the partition λ. Geometrically speaking, each pair
(
λti, xi

)
describes

a type of singularity of the multiplicative Higgs field g(x) at finite point xi ∈ C = P1 \ {x∞}
given by the conjugacy class of (x−xi)

ω̌
λt
i where ω̌k denotes k-th fundamental co-weight of GLr:

that is the highest weight of the k-th antisymmetric power of the fundamental representation
for the Langlands dual group GLr. Such highest weight is encoded by the column of height λti
in the partition λ. Equivalently, in the neighborhood of the point xi in the spectrum of the r×r
Lax matrix L(x) there are exactly λti eigenvalues which vanish linearly as x approaches xi, and
the remaining r − λti eigenvalues are regular non-zero at xi.

The partition µ specifies a dominant co-weight of singularity of the multiplicative Higgs field
at the infinity point x∞ ∈ P1, or equivalently the asymptotics of the eigenvalues of the Lax
matrix L(x) as x → ∞: given r rows (µj)j∈[1,...,r] of the partition µ, the j-th eigenvalue of the
Lax matrix L(x) has asymptotics (x−1)µj−1 as x→∞.

We remark that the restriction on the total size of two partitions |µ| +
∑

i λ
t
i = r is a con-

sequence of the restriction of the present paper to consider only Lax matrices whose matrix
elements are linear functions of x. In the complete classification, if we allow higher degree of x
in the matrix elements, which is not in the scope of the present paper, the label of a singularity
at any finite point xi is an arbitrary dominant GLr co-weight described by an arbitrary parti-
tion λi, so that if rows of partition λi are denoted by (λij)j∈[1,...,r] then j-th eigenvalue of the

Lax matrix L(x) behaves as (x−xi)λij as x→ xi. We leave for another note the presentation of
explicit formulae for complete classification of the symplectic leaves of the degree d whose matrix
elements are degree d polynomials of x for |µ| +

∑
i λ

t
i = dr. (By looking at the determinant

of g(x) we see that the moduli space is non-empty only if the total size |µ| +
∑

i λ
t
i is integral

multiple of rank r, cf., e.g., [42, 55]. This condition means that the total dominant co-weight
summed over all singularities ω̌tot belongs to the lattice of co-roots.1 To summarize, near every
singularity on CP1 in a local coordinate w such that w = 0 is a position of singularity, we have
asymptotics [g(w)] ∼ wω

∨
where ω∨ : C→ TG is a co-weight (either λti or µ) that characterizes

the singularity. Normally, because the total degree (U(1)-charge) vanishes, the sum of degrees
of all co-weights ω must vanish. We have chosen to shift the notational representation of the
singularity co-weight at infinity by adding 1 to each row of the co-weight ω∨∞ so that is described
by a positive partition µ. In consequence, the sum over all partitions λi’s and µ is r is no longer
zero but r, since there are r rows in ω∨∞, and each has been increased by 1 in our notations:
µj = ω∞,j + 1 for each row j = 1, . . . , r.

In our solutions we can obtain higher (non-fundamental co-weight) singularities at finite
point x∗ by collision of several fundamental singularities at xi1 , xi2 , . . . , xik which are associated
to some columns λti1 , . . . , λ

t
ik

of the partition λ by sending all of them to the common point x∗.
In this case, generically, the multiplicative Higgs field g(x) develops the singularity at point x∗

specified by a higher (non-fundamental) co-weight
k∑
j=1

ω̌λtij
.

As we will see, all Lax matrices regular at the infinity x∞, that is µ = ∅ in the current nota-
tions, and arbitrary λ can be obtained by the fusion procedure of the elementary Lax matrices
used in the Q-operator construction [5]. Also the case regular at infinity has been described
in [60], where it was shown that degree 1 rational symplectic leaves for G = GLr correspond to
the co-adjoint orbits in the dual Lie algebra gl∗r . The parametrization by Darboux coordinates
of the holomorpic symplectic co-adjoint orbits in gl∗r identical to the present paper has been
proposed in [4].

Then we proceed to build Lax matrices irregular at infinity from the fusion of a certain set
of elementary Lax matrices whose irregularity at infinity is of the simplest type.

1In the monopole picture, the topological degree of gauge bundle induced on a surface enclosing all singularities
is trivial. The topological degree is an element in π1(G) ' Λ̌/Q̌, where Λ̌ and Q̌ denote the lattice of co-weights
and co-roots.
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Let us clarify the geometrical meaning of fusion. A Lax matrix Lλ,x,µ(x; p, q) with a certain
prescribed type of singularities at x, x∞ parametrizes by a system of Darboux coordinates (p, q)
a finite-dimensional symplectic leaf in the infinite-dimensional Poisson–Lie group G = GLr(KP1)
where KP1 denotes the field of rational functions on P1. More geometrically, a Lax matrix
L(x, p, q) is a universal group valued (multiplicative) Higgs field on a Darboux chart in the
second factor of Cx ×Mλ,x,µ

represented in r × r matrices, where Mλ,x,µ is a moduli space
of multiplicative Higgs fields of a certain type (λ, x, µ), and complex spectral plane Cx is the
domain of the Higgs field g(x). So for us a Lax matrix Lλ,x,µ is a composition of Darboux chart
parametrization

C2dλ,µ →Mλ,x,µ

with a universal Higgs field map

Cx ×Mλ,x,µ → Matr×r.

Suppose we are given a symplectic leaf Mλ,x,µ ⊂ G described by a Lax matrix Lλ,x,µ(x; p, q)
and a symplectic leaf M′

λ′,x′,µ′
⊂ G described by a Lax matrix Lλ′,x′,µ′(x; p′, q′). By definition

of Poisson–Lie group structure on G the group multiplication map

m : G × G → G (1.1)

is a Poisson map, i.e., the pushforward of the product Poisson structure on G × G coincides
with the Poisson structure on G. The symplectic leaves M, M′ are, in particular, co-isotropic
submanifolds of G, hence M ×M′ is a co-isotropic submanifold of G × G. Now, since the
group multiplication map m in (1.1) is a Poisson map, and since the Poisson map preserves the
co-isotropic property of the submanifolds, the image m(M×M′) ⊂ G is a co-isotropic subspace.

The G-elements in the co-isotropic subspace m(M×M′) ⊂ G are represented by Lax matrices

Lλ,x,µ(x; p, q)Lλ′,x′,µ′(x; p′, q′) (1.2)

and their type of singularities is typically a combination of the types of singularities of (λ, x, µ)
and (λ′, x′, µ′). However, m(M×M′) ⊂ G is not in general a symplectic leaf but a co-isotropic
submanifold, and we can further slice it into symplectic leaves by determining the set of Casimir
functions q̃′ on m(M×M′) and a set of new conjugated coordinates p̃, q̃. We find that

Lλ,x,µ(x; p, q)Lλ′,x′,µ′(x; p′, q′) = C̃(q̃′)L̃λ̃,x̃,µ̃(x; p̃, q̃)

with the canonical transformation

dp ∧ dq + dp′ ∧ dq′ = dp̃ ∧ dq̃ + dp̃′ ∧ dq̃′.

Notice that the conjugate variables p̃′ to the Casimir functions q̃′ on S̃ do not appear on the
right side of (1.2). The Lax matrices L̃λ̃,x̃,µ̃(x; p̃, q̃) represent elements of G in a new symplectic
leaf Mλ̃,x̃,µ̃ covered by Darboux coordinates p̃, q̃.

The symplectic leavesMλ,x,µ arise as moduli spaces of multiplicative Higgs bundles of certain
type [30], and like additive Higgs bundles (Hitchin system), the symplectic leavesMλ,x,µ support
the structure of an algebraic completely integrable system. In fact, the moduli spaces Mλ,x,µ

can be also interpreted as moduli spaces of U(r) monopoles on 3-dimensional Riemannian space
R2×S1 where R2 ' C = P1 \ {x∞}, and consequently [16, 17, 18, 55] as moduli spaces of vacua
of certain N = 2 supersymmetric quiver gauge theories on R3 × S1 of quiver type Ar−1. The
complex parameters xi ∈ C which specify the position of singularities of the Lax matrix Lλ,x,µ
play the role of the masses of the fundamental multiplets attached to the quiver node λti in



6 R. Frassek and V. Pestun

the Ar−1 quiver diagram (i.e., the node associated to a simple root dual to the fundamental
co-weight λti), and at the same time they play the role of the complex part of the coordinates of
the positions of the Dirac singularities of the U(r) monopoles on R2 × S1 under identification
R2 ' C. For polynomial Lax matrices that we consider in this paper the eigenvalues of L(x) at
the singularities x can have only zeros and no poles, thus the corresponding periodic monopoles
can have only negatively charged Dirac singularities.

If the partition µ is empty, then the corresponding Ar−1 quiver gauge theory is N = 2
superconformal theory, and corresponding monopoles on R2 × S1 are regular at infinity. Non-
empty partition µ corresponds to monopoles on R2 × S1 with non-trivial growth (or charge) at
infinity controlled by µ, or to the Coulomb branches of asymptotically-free quiver gauge theories
with β-function controlled by µ.

Consequently, the integrable system supported on a symplectic leaf Mλ,x,µ is identical to
Seiberg–Witten integrable system for a certain Ar−1 quiver gauge theory.

The complete set of commuting Hamiltonians functionsHij can be extracted from the spectral
determinant of the associated Lax matrix

det
(
y − g∞Lλ,x,µ(x; p, q)

)
=
∑
i,j

Hijx
iyj (1.3)

by taking coefficients at the monomials xiyj where the appearing pairs of indices (i, j) can be
described by certain profiles like Newton diagrams. The spectral curves (1.3) coincide with the
spectral curves of the integrable systems studied in [55, 56]. Equivalently, since the determinant
can be expanded in terms of the characters trRk of the k-th external powers of the fundamental
representation, the commuting Hamiltonians are expressed as coefficients at powers of x in the
characters trRk L(x).

We remark that by switching the role of variables x ∈ C and y ∈ C× (fiber-base duality) the
spectral curve (1.3) of multiplicative Higgs bundle on X can be also interpreted as the spectral
curve of additive Higgs bundle (Hitchin system) on Y = C× = P1

0,∞. This is a peculiarity related

to the fact that we are considering the rational case of the base X = P1 corresponding to the
monopoles on R2 × S1 and 4d quiver gauge theories rather than the trigonometric or elliptic
base X corresponding to the monopoles on R× S1 × S1 or S1 × S1 × S1 that relate to 5d or 6d
quiver gauge theories compactified on S1 or S1 × S1, and also that we take the gauge group
to be of type GLr. In this situation, the moduli space of U(r) monopoles on R2 × S1 with
several singularities has alternative presentation (Nahm duality) as GLn Hitchin moduli space
on C× with r singularities where n depends on the number and type of the singularities of the
multiplicative Higgs bundle on X [16, 17, 18, 55].

Anyways, the fusion method of this paper allows us to analyze the multiplicative Higgs bun-
dles in more general cases, which we leave for a future work, when Nahm duality of multiplicative
Higgs bundle to a Hitchin system is not known. In particular, in the future one can study classi-
fication of symplectic leaves with matrix elements of higher degree in x, one can analyze trigono-
metric case with the base curve X is C× = P1 \ {0,∞} or elliptic case when the base curve X
is a smooth elliptic curve like [42] and consider arbitrary complex reductive Lie groups G.

The article is organised as follows. In Section 2 we remind and set notations about Poisson Lie
groups, Sklyanin brackets and Lax matrices. In Section 3 we build the Lax matrices for arbitrary
partitions λ and empty µ = ∅ from certain elementary building blocks by fusion. Similarly, in
Section 4 we build Lax matrices for arbitrary partitions µ with λ = ∅ again employing certain
elementary solutions using a slightly modified fusion procedure. In Section 5 we combine the
solutions of Sections 3 and 4 to write down the Lax matrices for arbitrary λ and µ. In Section 6
we study the spectral determinant of the derived Lax matrices and compare our results with [55].
In Section 7 we say a few words on higher degree symplectic leaves. In Section 8 we consider
the quantization of the algebra of functions and the integrable system.
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2 Rational Poisson–Lie group and Sklyanin brackets

Let X = P1 be the base curve equipped with the differential holomorphic volume form dx that
has a single quadratic pole at x∞ ∈ P1. Fix a Killing form tr on g. Then the residue pairing

tr

∮
x=0

f(x)g(x)dx

induces the metric on gD = g((x)) with respect to which g[[x]] and x−1g
[
x−1

]
are isotropic

subspaces and we have gD = g+ ⊕ g−. This splitting induces the structure of the Lie bi-algebra
on g+, which means that the space of functions on g+ is equipped with the Poisson bracket
(induced from the Lie bracket on g−). The data (gD, g+, g−) is called Manin triple. The Poisson
bracket on the functions on g+ can be extended to the Poisson bracket on the functions on the
Lie group G+ with the Lie algebra g+, and the resulting bracket is called Sklyanin quadratic
bracket with the rational r-matrix.

The space of rational multiplicative Higgs fields on X = P1 with a fixed framing of the gauge
bundle at x∞ forms a Poisson–Lie group [30].

In the following we consider gauge group G = GLr and for a Higgs field g(x) we call L(x)
the representation of g(x) by r× r matrix valued functions L(x) called Lax matrices. The space
of Lax matrices L(x) carries the quadratic Poisson bracket of rational Sklyanin type

{L(x)⊗ I, I ⊗ L(y)} = [L(x)⊗ L(y), r(x− y)], (2.1)

the quantization of which gives quantum Yang–Baxter equation [62]. Here the I denotes the
r × r identity matrix, and the classical rational r-matrix of gl(r) is

r(x) = x−1P, with P =

r∑
a,b=1

eab ⊗ eba. (2.2)

The bracket on the right-hand-side of (2.1) denotes the commutator [X,Y ] = XY − Y X. In
a system of Darboux coordinates

(
p, q
)

=
(
pI , q

I
)
, the Poisson bracket is

{X,Y } =
∑
I

(
∂X

∂pI

∂Y

∂qI
− ∂X

∂qI
∂Y

∂pI

)
,

where we sum over all conjugate variables (p, q) in the Lax matrices L. In index notations, the
Poisson bracket of matrix elements (2.2) reads as follows

{Lij(x), Lkl(y)} = − 1

x− y
(Lkj(x)Lil(y)− Lkj(y)Lil(x)).

The solutions to the Sklyanin relation (2.1) that appear in this paper are labelled by two
partitions

λ = (λ1, λ2, . . . , λr), µ = (µ1, µ2, . . . , µr),

with λ1 ≥ λ2 ≥ · · · ≥ λr and µ1 ≥ µ2 ≥ · · · ≥ µr where λi, µi ∈ Z≥0. The total number |λ|
of elements in the partition λ combined with total number |µ| of elements in the partition µ
is equal to r. We study solutions Lλ,x,µ(x; p, q) whose matrix elements are no higher than of
degree 1 in the spectral parameter x. We can assume that

Lλ,x,µ(x; p, q) = x× diag(0, . . . , 0︸ ︷︷ ︸
µt1

, 1, . . . , 1︸ ︷︷ ︸
r−µt1

) +Mλ,x,µ(p, q).
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Here µt1 denotes the first column, i.e., the first element in the transposed partition µt =(
µt1, µ

t
2, . . . , µ

t
r

)
and Mλ,x,µ(p, q) denotes an r × r matrix which is independent of the spectral

parameter x. In total the matrix Mλ,x,µ(p, q) contains

dλ,µ =
1

2

(
r2 −

λ1∑
i=1

(
λti
)2 − µ1∑

i=1

(
µti
)2)

, (2.3)

pairs of variables
(
pI , q

I
)
, i.e., I = 1, 2, . . . , dλ,µ. Again the transposed partition is denoted as

λt =
(
λt1, λ

t
2, . . . , λ

t
r

)
, and λti are called columns. The dimension of the corresponding symplectic

leaf or the moduli space of multiplicative Higgs bundles will be given by

dimCMλ,x,µ = 2dλ,µ.

We fix the singularity of the L(x) at points x → xi to be of the form [g(x)] ∼ (x − xi)
ω̌
λt
i ,

up to a regular factor, where ω̌k is the k-th fundamental co-weight associated in Young nota-
tions to a column of height k, and at infinity x → x∞ we take the singularity to be [g(x)] ∼
(x−1)

∑
i ω̌µt

i
−ω̌r

. Here ω̌r is a co-weight associated to the column of height r and denoting the
diagonal homomorphism GL1 → TGLr where T stands for the maximal torus, that is a co-weight
dual to the weight of the determinant line representation.

The determinant of L(x) determined by the partition λ is a polynomial of degree |λ| with
roots xi of degeneracy λti:

detLλ,x,µ(x; p, q) =

λ1∏
i=1

(x− xi)λ
t
i . (2.4)

The explicit form of the matrices Lλ,x,µ(x; p, q) is given in Section 3 for µ = ∅, in Section 4 for
λ = ∅ and for arbitrary λ and µ with |λ|+ |µ| = r in Section 5.

As explained in the introduction, we can allow parameters xi to collide in which case the
dominant co-weight ω̌∗ of the singularity at the collision point x∗ is represented by a partition
composed of several columns from λ, and is equal to the sum of the fundamental co-weights
associated to each individual column in λ. In this way we get a symplectic leaf Mλ,x,µ whose
singularity type at x∗ ∈ x is described by a partition λ∗ ∈ λ. Bearing this in mind, in the follow-
ing we assume that parameters xi are assigned to individual columns λti of a single partition λ.

3 Degree 1 symplectic leaves regular
with fundamental singularity at infinity

In this section we focus on the GLr Lax matrices that correspond to arbitrary partitions λ of
size |λ| and a single column µ-partition, µ = 1[r−|λ|]. In particular if |λ| = r then µ is empty.

Since µ is a single column, the singularity at infinity is specified by a fundamental co-weight.
The associated Ar−1 quiver gauge theory with fundamental hypermultiplets [55] differs from the
conformal class by absence of a single fundamental multiplet in the node µt1.

We will assume that each element of the transposed partition λt, i.e., each column λti of the
partition λ specifies a singularity of the Lax matrix Lλ,x,µ(x; p, q) at point x = xi of the type ω̌λti .
Here ω̌k denotes a fundamental co-weight of GLr of the form (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
r−k

) in the basis dual

to the standard basis of weights of the defining representation.
This type of GLr Lax matrices can be obtained by fusion of the fundamental solutions associ-

ated to a single column λ = 1[|λ|] and a single column µ = 1[r−|λ|]. The fundamental solutions are
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x1 ∞

µ
λ

Figure 1. Single column partition for r = 5 with λ = 1[3] and µ = 1[2].

given in Section 3.1, and the fusion is described in Section 3.3. The Lax matrices for arbitrary
partitions λ are given in Section 3.2. We closely follow [5] where the elementary building blocks
were derived, the factorisation was discussed on the quantum level and a closed formula for the
Lax matrices was obtained for the case λ = (r), see also [22].

3.1 Fundamental (λ, µ) orbits

The fundamental building blocks are r × r matrices that correspond to the partition

µ = (1, . . . , 1︸ ︷︷ ︸
|µ|

), λ = (1, . . . , 1︸ ︷︷ ︸
|λ|

),

with r = |λ|+ |µ|, see Fig. 1. They contain |λ| · |µ| pairs of conjugate variables (pij , qji) where
1 ≤ i ≤ |µ| and |µ| < j ≤ r and can be written as

Lλ,x,µ(x; p, q) =

 I −Pµ,λ

Qλ,µ (x− x1)I −Qλ,µPµ,λ

 . (3.1)

Here the upper diagonal block is of the size |µ| × |µ| and the lower one of size |λ| × |λ|. The
block matrices on the off-diagonal are parametrized as follows

(Pµ,λ)i,j = pi,|µ|+j , (Qλ,µ)i,j = q|µ|+i,j .

The letter I denotes the identity matrix of appropriate size. In particular we have L1[r],x,∅(x) =
(x− x1)I and L∅,∅,1[r] = I.

The matrices Lλ,x,µ(x; p, q) satisfy the Sklyanin relation (2.1) as can be verified by a direct
computation using

{(Pµ,λ)i,j , (Qλ,µ)k,l} = δi,lδk,j .

Consequently one finds

{(Qλ,µPµ,λ)i,j , (Qλ,µ)k,l} = +(Qλ,µ)i,lδk,j , {(Qλ,µPµ,λ)i,j , (Pµ,λ)k,l} = −(Pµ,λ)k,jδi,l,

and

{(Qλ,µPµ,λ)i,j , (Qλ,µPµ,λ)k,l} = δk,j(Qλ,µPµ,λ)i,l − δi,l(Qλ,µPµ,λ)k,j ,

which is sufficient in order to check the Sklyanin Poisson bracket. It is instructive to see that
Lλ,x,µ(x; p, q) is factorized into a product of upper diagonal, diagonal and lower diagonal matri-
ces:

Lλ,x,µ(x; p, q) =

 I 0

Qλ,µ I

 I 0

0 (x− x1)I

 I −Pµ,λ

0 I

 .

The determinant is

detLλ,x,µ(x; p, q) = (x− x1)|λ|.
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x1 x2 x3 x4 ∞

Figure 2. Regular partition with λ = (4, 3, 1), µ = (1, 1) and r = 10.

3.2 Canonical coordinates on regular orbits

In this section we will construct solutions Lλ,x,µ(x; p, q) for arbitrary partitions with λ composed

of columns λti and a single column partition µt =
(
µt1
)
.

The columns λti are associated to fundamental singularities at x = xi of type λti, which means
that the singularity of Lλ,x,µ(x; p, q) is in the conjugacy class of

diag((x− xi), . . . , (x− xi)︸ ︷︷ ︸
λti

, 1, . . . , 1), i = 1, . . . , λ1,

i.e., distinct λti eigenvalues of Lλ,x,µ(x; p, q) are vanishing linearly at x = xi.
The column µt1 describes a fundamental singularity at x =∞ which means that the singularity

of Lλ,x,µ(x; p, q) at x→∞ is in conjugacy class of

x diag
(
x−1, . . . , x−1︸ ︷︷ ︸

µt1

, 1, . . . , 1
)
.

We will prove recursively that regular Lax matrices Lλ,x,µ(x; p, q) can be parametrized as
a block matrix

Lλ,x,µ(x; p, q) =

 I −Pµ,λ

Qλ,µ xI − Jλ,λ −Qλ,µPµ,λ

 , (3.2)

where the upper-left block is of size µt1 × µt1 and bottom-right block is of size |λ| × |λ|. The
matrix elements of block Pµ,λ and block Qλ,µ are canonically conjugated variables with

{(Pµ,λ)ij , (Qλ,µ)kl} = δilδjk

and the matrix elements of Jλ,λ satisfy the algebra of λ×λ-matrices with respect to the Poisson
brackets

{Jij , Jkl} = δilJkj − δkjJil, (3.3)

while Poisson commuting with matrix elements of Pµ,λ and Qλ,µ.
The matrix elements of the |λ| × |λ| matrix Jλ,λ have an explicit parametrization in terms of

the canonically conjugated coordinates as follows

Jλ,λ = Qλ,λ(Xλ + [Pλ,λQλ,λ]+)Q−1
λ,λ, (3.4)

cf. [4, 60] and Appendix A. Here Xλ denotes the diagonal matrix

Xλ = diag(x1, . . . , x1︸ ︷︷ ︸
λt1

, x2, . . . , x2︸ ︷︷ ︸
λt2

, . . . , xλ1 , . . . , xλ1︸ ︷︷ ︸
λtλ1

). (3.5)
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The corresponding blocks on the diagonal are of the size λt1, . . . , λ
t
λ1

. The matrix [Pλ,λQλ,λ]+ is
strictly upper block triangular and reads

[Pλ,λQλ,λ]+ =



0 P̂1,2 P̂1,3 · · · P̂1,λ1

0 0 P̂2,3 · · · P̂2,λ1

0 0 0
. . .

...

0 0 0 0 P̂λ1−1,λ1

0 0 0 0 0


.

Here the matrices P̂ij are of the size λti × λtj and explicitly given by

P̂ij = (Pλ,λ)ij +

λ1∑
k=j+1

(Pλ,λ)ik(Qλ,λ)kj . (3.6)

The matrix Qλ,λ is lower triangular and only depends on the variables q while Pλ,λ is upper
triangular and only depends on the variables p. They read

Pλ,λ =



0 P1,2 P1,3 · · · P1,λ1

0 0 P2,3 · · · P2,λ1

0 0 0
. . .

...

0 0 0
. . . Pλ1−1,λ1

0 0 0 0 0


,

Qλ,λ =



I 0 0 0 0

Q2,1 I 0 0 0

Q3,1 Q3,2 I 0 0

...
...

. . .
. . . 0

Qλ1,1 Qλ1,2 · · · Qλ1,λ1−1 I

,


(3.7)

where Qij and Pij denote λti × λtj block matrices explicitly given by

(Qij)kl = q`(i)+k,`(j)+l, k ∈ [1, λti], l ∈ [1, λtj ],

(Pij)kl = p`(i)+k,`(j)+l, k ∈ [1, λti], l ∈ [1, λtj ].

Here we defined `(i) = |µ|+
i−1∑
k=1

λtk.

The realization (3.4) of the gl(|λ|) algebra, also known as free field representation, can be
constructed as algebra of twisted differential operators on the flag variety G/Pλ,+. Here G =
GL(|λ|) and Pλ,+ denotes a parabolic subgroup of GL(|λ|) whose Levi is

∏
i GL(λti). The big

cell of the flag variety G/Pλ,+ is identified with the λt-blocks unipotent subgroup Nλ,− whose
elements are represented by matrices Qλ,λ as in (3.7). In the classical limit twisted differential
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operators in Jλ,λ form a co-adjoint orbit OXλ in the dual Lie algebra g∗ for g = gl(|λ|) of the
semi-simple element Xλ (3.5). See details in Appendix A.

The number of pairs of conjugate variables in the Lax matrix (3.2) agrees with (2.3). There
are µt1 × |λ| pairs in Pµ,λ, Qλ,µ and

∑
i<j

λtiλ
t
j in Jλ,λ. Further we verify that the determinant

of (3.2) agrees with (2.4).

3.3 Regular orbits from fusion of fundamental orbits

We will construct the solution in the form of (3.2) associated to regular (λ̃, µ̃) by fusion of two
solutions associated to (λ, µ) and (λ′, µ′). Here (λ̃, µ̃) is defined such that

λ̃t =
(
λ′
t
, λt
)
, |λ̃| = |λ|+ |λ′|,

where (λ′t, λt) denotes the partition given by the union of λ′t and λt. The partitions µ, µ′ and µ̃
are single columns

µt = (r − |λ|), µ′
t

= (r − |λ′|), µ̃t =
(
r − |λ̃|

)
.

Then, by assumption of the recursion we represent Lλ,x,µ(x; p, q) in the form

Lλ,x,µ(x; p, q) =


I 0 −Pµ̃,λ

0 I −Pλ′,λ

Qλ,µ̃ Qλ,λ′ xI − Jλ,λ −Qλ,µ̃Pµ̃,λ −Qλ,λ′Pλ′,λ

 . (3.8)

The blocks on the diagonal are of the size |µ̃|, |λ′| and |λ| respectively, with |µ̃|+ |λ′|+ |λ| = r.
The matrix Lλ,x,µ(x; p, q) explicitly depends on |λ|(r−|λ|) pairs of conjugate variables arranged
in the matrices Pµ̃,λ, Pλ′,λ and Qλ,µ̃, Qλ,λ′ defined as

(Pµ̃,λ)ij = pi,|µ̃|+|λ′|+j , (Pλ′,λ)ij = p|µ̃|+i,|µ̃|+|λ′|+j ,

(Qλ,µ̃)ij = q|µ̃|+|λ′|+i,j , (Qλ,λ′)ij = q|µ̃|+|λ′|+i,|µ̃|+j ,

and the matrix Jλ,λ of the size |λ| × |λ| defined in (3.4).
Similarly, we consider another Lax matrix

L′λ′,x′,µ′(x; p′, q′) =


I −P ′µ̃,λ′ 0

Q′λ′,µ̃ xI − J ′λ′,λ′ −Q′λ′,µ̃P ′µ̃,λ′ + P ′λ′,λQ
′
λ,λ′ −P ′λ′,λ

0 −Q′λ,λ′ I

 , (3.9)

with the same block structure as in (3.8). This matrix L′λ′,x′,µ′(x; p′, q′) explicitly depends on

|λ′|(r − |λ′|) pairs of conjugate variables

(Q′λ′,µ̃)ij = q′|µ̃|+i,j , (Q′λ,λ′)ij = q′|µ̃|+|λ′|+i,|µ̃|+j ,

(P ′µ̃,λ′)ij = p′i,|µ̃|+j , (P ′λ′,λ)ij = p′|µ̃|+i,|µ̃|+|λ′|+j ,

and another set of variables appearing in the expression for J ′λ′,λ′ like in (3.4). The matrix
L′λ′,x′,µ′(x; p′, q′) that appears in (3.9) is obtained from the canonical form (3.2) by permutation,
that is a conjugation by an element of the Weyl group of GLr, and a canonical transformation
in the variables p and q.
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In the next step we multiply the matrices (3.8) and (3.9). It was pointed out in [5] for the cor-
responding solutions of the quantum Yang–Baxter equation that the product can be written as

Lλ,x,µ(x; p, q)L′λ′,x′,µ′(x; p′, q′) = Q̃′L̃λ̃,x̃,µ̃(x; p̃, q̃). (3.10)

Here L̃λ̃,x̃,µ̃(x; p̃, q̃) denotes a spectral parameter dependent Lax matrix and Casimir Q̃′ is a lower
triangular matrix. They are of the form

L̃λ̃,x̃,µ̃(x; p̃, q̃) = WU


I 0 0

0 xI − J ′λ′,λ′ −P̃λ′,λ

0 0 xI − Jλ,λ

U−1V −1, Q̃′ =


I 0 0

0 I 0

0 Q̃′λ,λ′ I

 ,

where

W =


I 0 0

Q̃λ′,µ̃ I 0

Q̃λ,µ̃ 0 I

 , U =


I 0 0

0 I 0

0 Q̃λ,λ′ I

 , V =


I P̃µ̃,λ′ P̃µ̃,λ

0 I 0

0 0 I


expressed in terms of the new variables

P̃λ′λ = P ′λ′λ + Pλ′λ −Q′λ′µ̃Pµ̃λ, Q̃λλ′ = Q′λλ′ ,

P̃µ̃λ′ = P ′µ̃λ′ − Pµ̃λQ′λλ′ , Q̃λ′µ̃ = Q′λ′µ̃,

P̃µ̃λ = Pµ̃λ, Q̃λµ̃ = Qλµ̃ +Q′λλ′Q
′
λ′µ̃,

P̃ ′λ′λ = Pλ′λ, Q̃′λλ′ = Qλλ′ −Q′λλ′ . (3.11)

The polynomial change of variables (3.11) is a symplectomorphism (i.e., canonical transfor-
mation) as we can directly verify. Indeed, computing the differentials we find

dP̃λ′λ ∧ dQ̃λλ′ = (dP ′λ′λ + dPλ′λ − dQ′λ′µ̃Pµ̃λ −Q′λ′µ̃dPµ̃λ) ∧ dQ′λλ′ ,

dP̃µ̃λ′ ∧ dQ̃λ′µ̃ = (dP ′µ̃λ′ − dPµ̃λQ
′
λλ′ − Pµ̃λdQ′λλ′) ∧ dQ′λ′µ̃,

dP̃µ̃λ ∧ dQ̃λµ̃ = dPµ̃λ ∧ (dQλµ̃ + dQ′λλ′Q
′
λ′µ̃ +Q′λλ′dQ

′
λ′µ̃)

dP̃ ′λ′λ ∧ dQ̃′λλ′ = dPλ′λ ∧ (dQλλ′ − dQ′λλ′),

and hence, after cancellations, we find that the canonical symplectic form is invariant∑
I∈{µ̃λ′,µ̃λ,λ′λ}

dP̃I ∧ dQ̃It +
∑

I∈{λ′λ}

dP̃ ′I ∧ dQ̃′i

=
∑

I∈{µ̃λ,λ′λ}

dPI ∧ dQIt +
∑

I∈{µ̃λ′,λ′λ}

dP ′I ∧ dQ′It .

In analogy to the Yang–Baxter equation, the product of two solutions to the Sklyanin re-
lation (2.1) with different sets of conjugate variables (p, q) is again a solution to the Sklyanin
relation (2.1).

Therefore the matrix in (3.10) satisfies the Sklyanin bracket when taking the Poisson bracket
with respect to the variables (p̃, q̃) which denote the elements of the matrices defined in (3.11).
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Finally, we note that the result is independent of P̃ ′λ′,λ which allows us to strip off the

matrix Q̃′ from (3.10). Thus we conclude that

L̃λ̃,x̃,µ̃(x; p̃, q̃) =

 I −P̃µ̃,λ̃

Q̃λ̃,µ̃ xI − J̃λ̃,λ̃ − Q̃λ̃,µ̃P̃µ̃,λ̃

 ,

with (
P̃µ̃,λ̃

)
ij

= p̃i,|µ̃|+j ,
(
Q̃λ̃,µ̃

)
ij

= q̃|µ̃|+i,j

is a solution of the Sklyanin relation. Here the generators J̃λ̃,λ̃ of the gl(|λ′| + |λ|) subalgebra
are realised as

J̃λ̃,λ̃ =

 I 0

Q̃λ,λ′ I

 ·
 J ′λ′,λ′ P̃λ′,λ

0 Jλ,λ

 ·
 I 0

−Q̃λ,λ′ I

 ,

where(
P̃λ′,λ

)
ij

= p̃|µ̃|+i,|µ̃|+|λ′|+j ,
(
Q̃λ,λ′

)
ij

= q̃|µ̃|+|λ′|+i,|µ̃|+j .

Let us remark that here we have chosen a certain order of fusion, but depending on the order
we would get different parametrization related by a polynomial choice of variables, see, e.g.,
Appendix G. It would be interesting to explore the resulting cluster structure in more details.

3.3.1 Linear fusion

Now to demonstrate the particular parametrization (3.4) for J̃λ̃,λ̃ it is sufficient to assume that λ′

is a single column partition λ′t = (λ′t1) while λ is an arbitrary collection of columns. In this case

J ′λ′,λ′ = Xλ′ , Jλ,λ = Qλ,λ(Xλ + [Pλ,λQλ,λ]+)Q−1
λ,λ.

Then we find that J̃λ̃,λ̃ can be again represented in the form

J̃λ̃λ̃ =

 I 0

Q̃λλ′ I

 I 0

0 Qλλ


 Xλ′ P̃λ′λQλ,λ

0 Xλ + [Pλ,λQλ,λ]+


×

 I 0

0 Qλ,λ

−1 I 0

Q̃λλ′ I

−1

(3.12)

or

J̃λ̃,λ̃ = Qλ̃,λ̃(Xλ̃ + [Pλ̃,λ̃Qλ̃,λ̃]+)Q−1

λ̃,λ̃

with

Qλ̃,λ̃ =

 I 0

Q̃λλ′ Qλ,λ

 , Pλ̃,λ̃ =

 0 P̃λ′λ

0 Pλ,λ

 .

As a consequence it follows that the Lax matrices (3.2) satisfy the Sklyanin relation (2.1).
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β

α

γ

Figure 3. Example of the decomposition in (4.1) for µ = (5, 4, 2, 1, 1). We have α = (1, 1, 1), β = (1, 1)

and γ = (4, 3, 1).

4 Degree 1 symplectic leaves singular only at infinity

In the following section we focus on the Lax matrices that correspond to λ = ∅ and arbitrary
partition µ. Similar to the case labelled by pure λ partitions in Section 3 the present case can be
obtained from fusion of the basic building blocks. These basic building blocks are generalisations
of the well-known Lax matrix of the Toda chain [31] corresponding to the partition µ = (2).
They are introduced in Sections 4.1 and 4.2. The Lax matrices for arbitrary partitions µ are
presented in Section 4.3. As discussed in Section 4.4 we can apply a similar fusion procedure as
in Section 3.2 to derive the general form of the Lax matrices.

To describe the Lax matrices it is convenient to introduce the partitions

α =
(

1, . . . , 1︸ ︷︷ ︸
µt2

)
, β =

(
1, . . . , 1︸ ︷︷ ︸
µt1−µt2

)
, γ =

(
µt2, . . . , µ

t
µ1

)t
, (4.1)

as shown in Fig. 3. The partition µ is then written as µt =
(
|α|+ |β|, γt1, . . . , γtγ1

)
. For simplicity

we are only considering partitions with µi ≥ µj for 1 ≤ i < j ≤ µt1.

4.1 Elementary µ partitions: α = γ and β = 0

First we introduce the Lax matrices that correspond to the partitions λ = ∅ and µ = 2[ r
2

] with

α = (1, . . . , 1︸ ︷︷ ︸
µt1

), β = 0, γ = (1, . . . , 1︸ ︷︷ ︸
µt2

),

where µt1 = µt2 = r
2 and r ∈ 2N. The Lax matrices Lµ(x; p, q) = L∅,∅,µ(x; p, q) are r× r matrices

with |α| + |γ| = r whose determinant evaluates to unity. They contain
(
r
2

)2
pairs of conjugate

variables
(
pI , q

I
)

and can be written in the form

Lµ(x; p, q) =

 0 Kα,γ

K̄γ,α xI − Fγ,γ

 . (4.2)

For later purposes we labeled the upper block by α and the lower block by γ such that the block
on the diagonal are of equal size |α| × |α| and |γ| × |γ| respectively. Further we introduced the
matrices

Fγ,γ = Q−GQ
−1
− , with G = P0 + [P+Q−]+ +Q0[Q+P−]−Q

−1
0 , (4.3)

where [ ]± denotes the projection on the upper and lower diagonal part respectively and

K̄γ,α = Q−Q0Q+, Kα,γ = −Q−1
+ Q−1

0 Q−1
− = −K̄−1

γ,α. (4.4)
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The matrices Q±,0 are parametrized in terms of the conjugate variables (p, q) as follows

Q− = I +
∑

|µ|≥i>j>µt1

qijeij , Q+ = I +
∑

µt1<i<j≤|µ|

qijeij , Q0 =

|µ|∑
i=µt1+1

eqiieii,

and

P− =
∑

|µ|≥i>j>µt1

pijeij , P+ =
∑

µt1<i<j≤|µ|

qijeij , P0 =

|µ|∑
i=µ1+1

piieii.

We note that Q+ is an upper triangular matrix containing variables qij with i > j, while Q− is
lower triangular containing the variables qij with i < j. The diagonal matrix Q0 only contains
the exponential function of qii. All variables pij are contained in G which is decomposed as the
sum of a diagonal, a lower diagonal and an upper diagonal matrix.

The Sklyanin relation is equivalent to the commutators

{Fij ,Kkl} = −Kkjδil, {Fij , K̄kl} = K̄ilδkj , {Kij , K̄kl} = 0, (4.5)

{Fij , Fkl} = δkjFil − δilFkj . (4.6)

Here the latter can be identified with commutators of the gl( r2) algebra, while the parametrization
of Kα,γ is given in terms of a Gauss decomposition of GL( r2). These relations are verified
explicitly in Appendix C.

For µ = (2), i.e., |α| = |γ| = 1, the Lax matrix in (4.2) reproduces the well known Lax matrix
for the Toda chain

L(2)(x; p, q) =

(
0 −e−q

eq x− p

)
.

4.2 Elementary µ partitions: α = γ and β 6= 0

We can extend the elementary Lax matrices to the case β 6= 0 which can be used to obtain the
Lax matrices for arbitrary partitions µ. They correspond to the partitions

µ = (2, . . . , 2︸ ︷︷ ︸
|α|=|γ|

, 1, . . . , 1︸ ︷︷ ︸
|β|

),

with |α|+ |β|+ |γ| = r and contain |γ|(|α|+ |β|) pairs of conjugate variables. The Lax matrices
can be defined from Lµ(x; p, q) with α = γ and β = 0 given in (4.2) as

Lµ(x; p, q) =


0 0 Kα,γ

0 I −Pβ,γ

K̄γ,α Qγ,β xI − Fγ,γ −Qγ,βPβ,γ

 . (4.7)

Here Fγ,γ , Kα,γ and K̄γ,α are defined in (4.4) and do not depend on β. The diagonal block
containing the identity matrix I is of the size |β|. The matrices Pβ,γ and Qγ,β read

(Pβ,γ)i,j = p|α|+i,|α|+|β|+j , (Qγ,β)i,j = q|α|+|β|+i,|α|+j . (4.8)

The proof of Sklyanin relation is straightforward combining the proofs in Sections 3.1 and 4.1.
The determinant can be obtained using (B.1) and yields unity. From here one may build all other
Lax matrices corresponding to arbitrary µ partitions by factorisation. The result is presented
in the next subsection.
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4.3 Lax matrices for µ partitions

The Lax matrix for arbitrary µ partitions can be written in the form

Lµ(x; p, q) =


0 0 Kα,γ

0 I −Pβ,γ

K̄γ,α Qγ,β xI − Fγ,γ −Qγ,βPβ,γ

 . (4.9)

The blocks on the diagonal of this Lax matrix are of the size |α|, |β| and |γ|, respectively, with
|α|+ |β|+ |γ| = r. The matrices Pβ,γ and Qγ,β are defined as in (4.8) and contain |γ| · |β| pairs
of conjugate variables. The remaining matrix elements can then be expressed in terms of γ1

copies of the matrices defined in (4.3) and (4.4). We have

Fγ,γ = Qγ,γ



F1,1 P̂1,2 P̂1,3 · · · P̂1,γ1

W2,1 F2,2 P̂2,3 · · · P̂2,γ1

W3,1 W3,2 F3,3
. . .

...

...
...

. . .
. . . P̂γ1−1,γ1

Wγ1,1 Wγ1,2 · · · Wγ1,γ1−1 Fγ1,γ1


Q−1
γ,γ , (4.10)

Kα,γ =

(
D[γ1]
α,α · · ·D[2]

α,αKα,1 · · · D[γ1]
α,αKα,γ1−1 Kα,γ1

)
Q−1
γ,γ (4.11)

and

K̄γ,α = Qγ,γ



K̄1,α

K̄2,αD
[1]
α,α

· · ·

K̄γ1,αD
[γ1−1]
α,α · · ·D[1]

α,α


. (4.12)

Each block (i, j) in (4.10) is of the size γti × γtj . The matrices P̂ij are defined as in (3.6) with

P̂ij = (Pγ,γ)ij +

γ1∑
k=j+1

(Pγ,γ)ik(Qγ,γ)kj .

The corresponding matrices Qγ,γ and Pγ,γ as defined for the partition λ in (3.7) read

Qγ,γ =



I 0 0 0 0

Q2,1 I 0 0 0

Q3,1 Q3,2 I 0 0

...
...

. . .
. . . 0

Qγ1,1 Qγ1,2 · · · Qγ1,γ1−1 I


, Pγ,γ =



0 P1,2 P1,3 · · · P1,γ1

0 0 P2,3 · · · P2,γ1

0 0 0
. . .

...

0 0 0
. . . Pγ1−1,γ1

0 0 0 0 0


,
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where Qij and Pij denote block matrices explicitly given by

(Qij)kl = q`(s)+k,`(t)+l, k ∈
[
1, γti

]
, l ∈

[
1, γtj

]
,

(Pij)kl = p`(s)+k,`(t)+l, k ∈
[
1, γti

]
, l ∈

[
1, γtj

]
.

Here we defined `(i) = |α|+ |β|+
i−1∑
l=1

γtl .

The elements on the lower diagonal of the middle part of Fγ,γ in (4.10) are defined as the
product

Wij = −K̄i,αD
[i−1]
α,α · · ·D[j+1]

α,α Kα,j ,

which in particular yields Wi+1,i = −K̄i+1,αKα,i. The remaining matrices are parametrized in
terms of the matrices defined in (4.3) and (4.4) as

Fk,k =
(
Q−GQ

−1
−
)
γtk,γ

t
k

+Qγtk,|α|−γ
t
k
P|α|−γtk,γ

t
k
, Kα,k = −

 (Q−Q0Q+)−1
γtk,γ

t
k

P|α|−γtk,γ
t
k

 ,

K̄k,α =

(
(Q−Q0Q+)γtk,γ

t
k

Qγtk,|α|−γ
t
k

)
, D[k]

α,α = diag(0, . . . , 0︸ ︷︷ ︸
γtk

, 1, . . . , 1︸ ︷︷ ︸
|α|−γtk

). (4.13)

Here the matrices (Q−Q0Q+)γtk,γ
t
k
, (Q−Q0Q+)−1

γtk,γ
t
k

and
(
Q−GQ

−1
−
)
γtk,γ

t
k

are built from the vari-

ables qij and pji where `(k) < i, j ≤ `(k+ 1) with `(k) = |α|+ |β|+
k−1∑
l=1

γtl . Further the matrices

Qγtk,|α|−|γ|
t
k

and P|α|−γtk,|γ|
t
k

are of the form(
Qγtk,|α|−|γ|

t
k

)
ij

= q`(k)+i,γtk+j , i ∈
[
1, γtk

]
, j ∈

[
1, |α| − γtk

]
,(

P|α|−γtk,|γ|
t
k

)
ij

= pγtk+i,`(k)+j , i ∈
[
1, |α| − γtk

]
, j ∈

[
1, γtk

]
.

The total number of pairs (pI , qI) in the Lax matrix for general µ partitions is 1
2

(
r2 −

µ1∑
i=1

(
µti
)2)

. Here |β| · |γ| pairs come from the elements P and Q in (4.9), the matrices Pγ,γ

and Qγ,γ contain
∑
i<j

γtiγ
t
j pairs of conjugate variables and the matrices Fk,k, Kα,k and K̄k,α

in (4.13) contain for k = 1, . . . , γ1 in total |α| · |γ| pairs of variables.

The expression for the Lax matrix Lµ(x; p, q) in (4.9) is in principle valid for any ordering
of columns where |α| + |β| denotes the height of the biggest columns and γ the partition that
remains after removing that column. If the partition is ordered, i.e., λi ≥ λj for i < j, we have

that D
[i]
α,αD

[j]
α,α = D

[j]
α,αD

[i]
α,α = D

[i]
α,α for i < j and D

[1]
α,α = 0 which simplifies the expressions

above.

4.4 Fusion procedure for µ partitions

The formula for the Lax matrices of the µ partitions can be shown in analogy to Section 3.2.
We define three partitions µ, µ′ and µ̃ with |µ| = |µ′| = |µ̃| = r. They are related by fusion via

|α̃| = max(|α|, |α′|), |β̃| = min(|β|, |β′|), γ̃t =
(
γt, γ′

t)
. (4.14)
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Here we consider a solution to the Sklyanin relation of the form (4.7) written as a 4×4 block
matrix

Lµ(x; p, q) =



Dα̃,α̃ 0 0 Kα̃,γ

0 I 0 −Pβ̃,γ

0 0 I −Pγ′,γ

K̄γ,α̃ Qγ,β̃ Qγ,γ′ xI − Fγ,γ −Qγ,β̃Pβ̃,γ −Qγ,γ′Pγ′,γ


. (4.15)

The blocks on the diagonal are of the size |α̃|, |β̃|, |γ′| and |γ|, respectively with |α̃|+ |β̃|+ |γ′|+
|γ| = r. The matrices Qγ,β̃, Qγ,γ′ and Pβ̃,γ , Pγ′,γ are explicitly given in terms of the conjugate
variables. They read

(Pβ̃,γ)i,j = p|α̃|+i,|α̃|+|β̃|+|γ′|+j , (Pγ′,γ)i,j = p|α̃|+|β̃|+i,|α̃|+|β̃|+|γ′|+j ,

(Qγ,β̃)i,j = q|α̃|+|β̃|+|γ′|+i,|α̃|+j , (Qγ,γ′)i,j = q|α̃|+|β̃|+|γ′|+i,|α̃|+|β̃|+j .

Furthermore we define a second Lax matrix, cf. (3.9), which also is a solution of the Sklyanin
relation. It has the same block structure as (4.15) and reads

L′µ′(x; p′, q′) =



D′α̃,α̃ 0 K ′α̃,γ′ 0

0 I −P ′
β̃,γ′

0

K̄ ′γ′,α̃ Q′
γ′,β̃

xI − F ′γ′,γ′ −Q′γ′,β̃P
′
β̃,γ′

+ P ′γ′,γQ
′
γ,γ′ −P ′γ′,γ

0 0 −Q′γ,γ′ I


.

We got

(P ′
β̃,γ′

)i,j = p|α̃|+i,|α̃|+|β̃|+j , (P ′γ′,γ)i,j = p|α̃|+|β̃|+i,|α̃|+|β̃|+|γ′|+j ,

(Q′
γ′,β̃

)i,j = q|α̃|+|β̃|+i,|α̃|+j , (Qγ,γ′)i,j = q|α̃|+|β̃|+|γ′|+i,|α̃|+|β̃|+j .

We proceed as in Section 3.2 and multiply the two solutions of the Sklyanin relation. The
product can again be written as

Lλ,x,µ(x; p, q)L′µ′(x; p′, q′) = Q̃′L̃µ̃(x, p̃, q̃),

cf. (3.10). The spectral parameter dependent matrix L̃µ̃(x, p̃, q̃) and the matrix Q̃′ take the form

L̃µ̃(x, p̃, q̃) = WU



Dα̃,α̃D
′
α̃,α̃ 0 Dα̃,α̃Kα̃,γ′

′ Kα̃,γ

0 I 0 0

K̄ ′γ′,α̃ 0 xI − F ′γ′,γ′ −P̃γ′,γ

K̄γ,α̃D
′
α̃,α̃ 0 K̄γα̃K

′
α̃,γ′ xI − Fγ,γ


U−1V −1,

and

Q̃′ =


I 0 0 0

0 I 0 0

0 0 I 0

0 0 Q̃′γ,γ′ I

 .
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Here we have written L̃µ̃(x, p̃, q̃) in a factorised form and introduced the matrices

W =



I 0 0 0

0 I 0 0

0 Q̃γ′,β̃ I 0

0 Q̃γ,β̃ 0 I


, U =


I 0 0 0

0 I 0 0

0 0 I 0

0 0 Q̃γ,γ′ I

 ,

V −1 =


I 0 0 0

0 I P̃β̃,γ′ P̃β̃,γ

0 0 I 0

0 0 0 I

 .

They are expressed in terms of the new variables

P̃γ′γ = P ′γ′γ + Pγ′γ −Q′γ′β̃Pβ̃γ , Q̃γγ′ = Q′γγ′ ,

P̃β̃γ′ = P ′
β̃γ′
− Pβ̃γQ

′
γγ′ , Q̃γ′β̃ = Q′

γ′β̃
,

P̃β̃γ = Pβ̃γ , Q̃γβ̃ = Qγβ̃ +Q′γγ′Q
′
γ′β̃
,

P̃ ′γ′γ = Pγ′γ , Q̃′γγ′ = Qγγ′ −Q′γγ′ .

This is the same change of variables as in (3.11) and therefore it is canonical. Following the
same logic as in Section 3.2 we conclude that L̃µ̃(x, p̃, q̃) is a solution of the Sklyanin relation.
For convenience we write it in the same form as Lµ(x; p, q) such that

L̃µ̃(x, p̃, q̃) =


D̃α̃,α̃ 0 Kα̃,γ̃

0 I −P̃β̃,γ̃

K̄γ̃,α̃ Q̃γ̃,β̃ xI − F̃γ̃,γ̃ − Q̃γ̃,β̃P̃β̃,γ̃

 . (4.16)

The size of the block matrices on the diagonal is |α̃|, |β̃| and |γ̃|. We defined the matrices(
P̃β̃,γ̃

)
i,j

= p̃|α̃|+i,|α̃|+|β̃|+j ,
(
Q̃γ̃,β̃

)
i,j

= p̃|α̃|+|β̃|+i,|α̃|+j ,

while the remaining elements are given by

F̃γ̃,γ̃ = Q̃−

 F ′γ′,γ′ P̃ ′γ′,γ

−K̄γ,α̃K
′
α̃,γ′ Fγ,γ

 Q̃−1
− , with Q̃− =

 I 0

Q̃′γ,γ′ I

 ,

K̄γ̃,α̃ = Q̃−

 K̄ ′γ′,α̃

K̄γ,α̃D
′
α̃,α̃

 , Kα̃,γ̃ =

(
Dα̃,α̃K

′
α̃,γ′ Kα̃,γ

)
Q̃−1
− ,

and D̃α̃,α̃ = Dα̃,α̃D
′
α̃,α̃.
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4.4.1 Recursion

We specify the matrix elements in the fusion procedure to describe the fusion of one arbitrary
partition µ as proposed in Section 4.3 and an elementary matrix (4.7) corresponding to the
partition µ′ with the restriction α′ = γ′. The resulting partition µ̃ is then written in terms of µ
and µ′ as in (4.14).

This can be seen as follows. The primed letters correspond to elements of the Lax matrix
corresponding to µ′ and read

F ′γ′,γ′ =
(
Q−GQ

−1
−
)
γ′,γ′

+Qγ′,α̃−α′Pα̃−α′,γ′ ,

K̄ ′γ′,α̃ =

( (
Q−Q0Q+

)
γ′,α′

Qγ′,α̃−α′

)
, K ′α̃,γ′ = −


(
Q−Q0Q+

)−1

α′,γ′

Pα̃−α′,γ′


and

D′α̃,α̃ = D
[γ′]
α̃,α̃ = diag(0, . . . , 0︸ ︷︷ ︸

α′

, 1, . . . , 1︸ ︷︷ ︸
α̃−α′

).

The unprimed letters correspond to the partition µ as given in (4.10), (4.11) and (4.12). We
find that

Fγ̃,γ̃ = Qγ̃,γ̃



F ′γ′,γ′ P̃γ′,γQγ,γ

−Q−1
γ,γK̄γ,α̃K

′
α̃,γ′

F1,1 P̂1,2 · · · P̂1,γ1

W2,1 F2,2
. . .

...

...
. . .

. . . P̂γ1−1,γ1

Wγ1,1 · · · Wγ1,γ1−1 Fγ1,γ1


Q−1
γ̃,γ̃ ,

where similar as for the case of λ-partitions in (3.12) we identify

P̃γ′,γQγ,γ =

(
P̂γ′,1 P̂γ′,2 · · · P̂γ′,γ1

)
.

Furthermore we identify

−Q−1
γ,γK̄γ,α̃K

′
α̃,γ′ = −



K̄1,α̃K
′
α̃,γ′

K̄2,α̃D
[1]
α̃,α̃K

′
α̃,γ′

...

K̄γ1,α̃D
[γ1−1]
α̃,α̃ · · ·D[1]

α̃,α̃K
′
α̃,γ′


=



W1,γ′

W2,γ′

...

Wγ1,γ′
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and obtain

K̄γ̃,α̃ = Qγ̃,γ̃



K̄ ′γ′,α̃

K̄1,α̃D
[γ′]
α̃,α̃

K̄2,α̃D
[1]
α̃,α̃D

[γ′]
α̃,α̃

...

K̄γ1,α̃D
[γ1−1]
α̃,α̃ · · ·D[1]

α̃,α̃D
[γ′]
α̃,α̃


and

Kα̃,γ̃ =

(
D

[γ1]
α̃,α̃ · · ·D

[1]
α̃,α̃K

′
α̃,γ′ D

[γ1]
α̃,α̃ · · ·D

[2]
α̃,α̃Kα̃,1 · · · D[γ1]

α,αKα,γ1−1 Kα,γ1

)
Q−1
γ̃,γ̃ .

Thus we conclude that (4.9) satisfies Sklyanin’s quadratic Poisson bracket.

5 Generic degree 1 symplectic leaves

We will now define the Lax matrices Lλ,x,µ(x; p, q) for arbitrary partitions λ and µ. They can
be obtained by fusing the Lax matrix for regular partitions (3.2) with the Lax matrix for µ
partitions (4.9).

5.1 Lax matrix for λ, µ partitions

The Lax matrix for arbitrary partitions λ and µ can compactly be written as

Lλ,x,µ(x; p, q) =


0 0 Kα,γλ

0 I −Pβ,γλ

K̄γλ,α Qγλ,β xI − Fγλ,γλ −Qγλ,βPβ,γλ

 . (5.1)

The blocks on the diagonal are of the size |α|, |β| and |γ|+ |λ| respectively. Here Qλ,γ and Pγ,λ
are defined as

(Pγ,λ)i,j = p|α|+|β|+i,|α|+|β|+|γ|+j , (Qλ,γ)i,j = q|α|+|β|+|γ|+i,|α|+|β|+j .

The remaining matrix elements in (5.1) are given in terms of the components of the Lax matrix
for regular partitions (3.2) and the Lax matrix for µ partitions (4.9). We have

Fγλ,γλ =

 I 0

Qλ,γ I

 ·
 Fγ,γ Pγ,λ

−Qλ,αKα,γ Jλ,λ +Qλ,αPα,λ

 ·
 I 0

−Qλ,γ I

 ,

and

K̄γλ,α =

 K̄γ,α

Qλ,γK̄γ,α

 , Kα,γλ =
(
Kα,γ + Pα,λQλ,γ −Pα,λ

)
,
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Qγλ,β =

 Qγ,β

Qλ,β

 , Pβ,γλ =
(
Pβ,γ Pβ,λ

)
.

Again we can check that the number of pairs of conjugate variables agrees with (2.3). First we
note that F contains

∑
i<j

γtiγ
t
j + |α| · |γ| and J contains

∑
i<j

λtiλ
t
j pairs. The remaining variables

are contained in Pβ,γλ, Qγλ,β, Pα,λ, Qλ,α and Pγ,λ, Qλ,γ . By construction, cf. Section 5.2, the
determinant of the Lax matrix in (5.1) satisfies (2.4).

The symplectic leaves that we found in the Poisson–Lie group G are orbits of certain represen-
tative elements under the dressing action of the dual Poisson–Lie group G∗. These representative
elements are easily seen as Lax matrices at p = q = 0. Here the Lax matrix (5.1) reduces to
a block matrix of the form

Lλ,x,µ(x;∅,∅) =

 xIµ − Σµ 0

0 xI −Xλ

 ,

where

Iµ = diag(0, . . . , 0︸ ︷︷ ︸
|α|+|β|

, 1 . . . , 1︸ ︷︷ ︸
|γ|

)

and Xλ denotes the diagonal matrix defined in (3.5). The matrix Σµ is a permutation matrix
containing the elements ±1. This matrix can be block diagonalized such that it contains |α|+ |β|
blocks of the size µi, i = 1, . . . , |α| + |β|, corresponding to the rows of the partitions µ. The
diagonal of each block i reads diag(0, x, . . . , x) and its remaining elements ±1 correspond to
a cyclic permutation of length µi. For example for a row of µi = 4 we obtain

0 −1 0 0
0 x −1 0
0 0 x −1
1 0 0 x

 .

For µi = 1 where i = |α|+1, . . . , |α|+ |β|, we obtain a 1×1 block containing only the element 1.

5.2 Fusion procedure

The Lax matrix (5.1) can be derived using the factorisation formula in Section 4.4 when substi-
tuting the γ block for a λ = λ̃ block as follows

Fγ,γ → Jλ̃,λ̃ +Qλ̃,α̃Pα̃,λ̃, K̄γ,α̃ → Qλ̃,α̃, Kα̃,γ → −Pα̃,λ̃, Dα̃,α̃ → I.

Here I is the |α̃| × |α̃| identity matrix. The primed elements in the second Lax matrix L′ are
taken to be as defined in (4.9) as

F ′γ′,γ′ = Fγ̃,γ̃ , K̄ ′γ′,α̃ = K̄γ̃,α̃, K ′α̃,γ′ = Kα̃,γ̃ , D′α̃,α̃ = 0.

Here D′ is equal to the |α̃| × |α̃| zero matrix.
This factorisation corresponds to the fusion of the partitions λ, µ and λ′, µ′ expressed in

terms of the resulting partition λ̃, µ̃ via

α = ∅, β = ( 1, . . . , 1︸ ︷︷ ︸
|α̃|+|β̃|+|γ̃|

), γ = ∅, λ = λ̃,

α′ = α̃, β′ = (1, . . . , 1︸ ︷︷ ︸
|β̃|+|λ̃|

), γ′ = γ̃, λ′ = ∅.
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Figure 4. An example of non-vanishing commuting Hamiltonians X [λ,µ]
i,j for a GLr Lax matrix

Lλ,x,µ(x; p, q) corresponding to a partition ν = (5, 5, 2, 2, 1, 1, 1) with r = 17 and dν = 106, with non-zero

m2 = 3 and m4 = m7 = 1. The horizontal axis i labels the nodes of the Ar−1 quiver diagram for

i ∈ [1, r − 1], and the vertical coordinate j of the enveloping profile denotes the color ranks ni in the

quiver diagram.

The final result of the factorisation can be directly read off from (4.16). We conclude that (5.1)
is a solution to Skyanin’s relation (2.1).

6 Algebraic completely integrable systems
and Coulomb branches of Ar−1 quiver gauge theory

The symplectic leaf Mλ,x,µ, i.e., the moduli space of multiplicative Higgs bundles with fixed
singularities, supports fibration of an algebraic completely integrable system

H : Mλ,x,µ → Uλ,x,µ. (6.1)

Here H denotes a complete set of independent commuting Hamiltonian functions (also known as
conserved charges or action variable or integrals of motion of an integrable Hamilonian dynamical
system) and Uλ,x,µ denotes the space where the complete set of independent Hamiltonians takes
value. The fibers Au = H−1(u), u ∈ Uλ,x,µ of the map (6.1) are abelian varieties which are
holomorphic Lagrangians with respect to the holomorphic symplectic structure on Mλ,x,µ, so
that

dimC Uλ,x,µ = dimCAu = 1
2 dimMλ,x,µ

Let

dλ,x,µ = 1
2 dimMλ,x,µ
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denote the half-dimension of the symplectic leaf (phase space)Mλ,x,µ. In the context of Seiberg–
Witten integrable systems [17, 18, 55, 59] the holomorphic symplectic phase spaceMλ,x,µ is the
Coulomb branch of the hyperkähler moduli space of vacua of N = 2 supersymmetric quiver
gauge theory on R3 × S1 viewed as a holomorphic symplectic manifold at a distinguished point
ζ = 0 on the twistor sphere of complex structures. The complex base space Uλ,x,µ is the moduli
space of vacua of the same N = 2 supersymmetric gauge theory on R4 called U-plane in the
respective context. In terms of action-angle variables, the complex action variables parametrize
the base U-plane, and the complex angle variables parametrize the abelian fibers Au.

To realize the structure of an algebraic completely integrable system (6.1) we need to con-
struct dλ,x,µ independent Poisson commuting Hamiltonian functions onMλ,x,µ. Like in the case
of additive Higgs bundles (Hitchin system), the commuting Hamiltonian functions on multiplica-
tive Higgs bundles (or more general abstract Higgs bundles) can be realized by the abstract cam-
eral cover construction [27]. In the case of additive Higgs bundles on X, the cameral cover con-
struction generates Poisson commuting Hamiltonian functions as coefficients of P (φ(x)) where
the Higgs field φ(x) is a section of ad g⊗KX and P is an adjoint invariant function on the Lie
algebra g. Similarly, in the case of multiplicative Higgs bundles onX, the cameral cover construc-
tion generates Poisson commuting Hamiltonian functions as coefficients of χ(g(x)) where χ is an
adjoint invariant function on the group G and multiplicative Higgs field g(x) is a section of AdG
onX. The complete set of independent Poisson commuting Hamiltonians for simpleG is spanned
by the characters χRi of the fundamental irreducible highest weight modules Rk whose highest
weight is the fundamental weight ωk for each k in the set of nodes of the Dynkin diagram of g.

If G = GLr, the irreducible highest weight module Rk with highest weight ωk associated
to the k-th node of the Ar−1 Dynkin diagram of the simple factor SLr ⊂ GLr is isomorphic
to the k-th external power Rk =

∧k R1, for k = 1, . . . , r − 1, of the defining r-dimensional
representation R1, and we set Rr =

∧r R1 to be the determinant 1-dimensional representation.
It is convenient to assemble the fundamental characters χk = χRk for k = 1, . . . , r into the
spectral polynomial

det(yIr×r − L(x))r×r =
r∑

k=0

(−1)kyr−kχk(g(x)),

where χk(g(x)) = trRk ρk(g(x)) is a character for a fundamental representation ρk : G →
End(Rk) evaluated on Higgs field g(x).

Now we illustrate explicitly the construction of commuting Hamiltonians for the Lax matrices
constructed in the previous sections that describe the symplectic leaves Mλ,x,µ.

First, for any symplectic leaf Mλ,x,µ and its representing Higgs field gλ,x,µ(x) we define its
twisted version

gλ,x,µ,gL;gR(x) = gLgλ,x,µ(x)gR,

which represents a symplectic leaf Mλ,x,µ;gL,gR . Here gL ∈ G, gR ∈ G are arbitrary constant
(x-independent) Higgs fields. We remark that the symplectic leavesMλ,x,µ;gL,gR are isomorphic
for various gL, gR, and for certain relation between gL and gR they in fact coincide, in this
sense the labeling by both gL and gR are redundant.2 For the following, it is sufficient to take,
gL ≡ g∞, gR ≡ 1, and define the Lax matrix

Lλ,x,µ,g∞(x) = ρ1(g∞)Lλ,x,µ(x), (6.2)

2What is exactly the degree of redundancy? We can see that for the case regular at infinity µ = ∅, when L(x)
is an x-shifted co-adjoint orbit in g, the non-redundant label is the product gRgL. In any case, the resulting
completely integrable system depends only on the product gRgL as we see from the spectral polynomial (6.3).
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where ρ1(g∞) is r × r matrix representing g∞ ∈ G. Note that due to the symmetries of the
r-matrix in (2.1) the product ρ1(g∞)Lλ,x,µ(x) is a solution to the Sklyanin relation if Lλ,x,µ is.

Now define the spectral determinant to be a polynomial of two variables x and y

Wλ,x,µ,g∞(x, y) = det(y − Lλ,x,µ,g∞(x)) =
r∑

k=0

(−1)kyr−kχk(x). (6.3)

The commuting Hamiltonians are coefficients of the monomials xjyi. With

χk(x) = Q[λ]
r−kX

[λ,µ]
k (x), (6.4)

we find that the spectral determinant can be written as

Wλ,x,µ,g∞(x, y) = yr +

r−1∑
i=1

(−1)r−iQ[λ]
i (x)X [λ,µ]

r−i (x)yi + (−1)rQ[λ]
0 (x), (6.5)

where Q[λ]
i is a polynomial in x, cf. (E.2), which is independent of the conjugate variables (p, q)

of the Lax matrix and which takes the form

Q[λ]
i (x) =

λi+1∏
j=1

(x− xj)λ
t
j−i. (6.6)

All commuting Hamiltonians are thus contained in X [λ,µ]
i (x). More precisely X [λ,µ]

r−k (x) is a poly-
nomial in x of degree

n
[λ,µ]
k =

k∑
j=1

(νj − 1) with νi = λi + µi, k ∈ [1, r − 1]. (6.7)

We note that the number of independent commuting Hamiltonians only depends on the total
dominant co-weight represented by the partition obtained by the union of columns of the parti-
tions λ and µ minus the shift by the diagonal co-representation (see below (6.10). The charges
are obtained as the coefficients of the expansion

X [λ,µ]
r−i (x) =

n
[λ,µ]
i∑
j=0

X [λ,µ]
r−i,jx

j ,

cf. Fig. 4. The highest coefficients do not depend on the conjugate variables (pI , qI) but all
other coefficients in the expansion do. The total number of linearly independent charges is equal
to the number of conjugate pairs in the corresponding Lax matrix

dλ,µ =

r−1∑
k=1

n
λ,µ
k , (6.8)

cf. (2.3). This relation is shown using Frobenius-like coordinates for the partitions in Ap-
pendix D.

For given partitions we can plot the non vanishing coefficients of the spectral determinant in
a Newton diagram as done in Fig. 4. Here we introduce the parameters

m
[λ,µ]
k =

(
n

[λ,µ]
k − n[λ,µ]

k−1

)
−
(
n

[λ,µ]
k+1 − n

[λ,µ]
k

)
= νk − νk+1 for k ∈ [1, r − 1] (6.9)

to label the partition and the corresponding Newton diagram.
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The representation theoretical meaning of the equations (6.7), (6.8) and (6.9) is the following.
The partitions λ and µ encode the GLr co-weights of the respective singularity of the multi-
plicative Higgs field at finite points x and x∞. The encoding is in the r-dimensional basis of the
dual to the weights of the defining representation that we call ěk with k = 1, . . . , r. In terms
of ei define the simple co-roots αi of SLr to be

α̌k = ěk − ěk−1, k ∈ [1, r − 1]

and define the fundamental weights to be

ω̌k =

k∑
j=1

ěk −
k

r

r∑
j=1

ěj , k ∈ [1, r − 1].

The dominant co-weight associated to each singularity x∗ ∈ x with associated partition
λ∗ = λ∗,1 ≥ λ∗,2 ≥ · · · ≥ λ∗,r = 0 is given by

ω̌∗ =

r∑
k=1

λ∗,i ěi

and the dominant co-weight associated to the singularity at x∞ =∞ with associated partition µ
is given by

ω̌∞ =

r∑
k=1

(µi − 1)ěi, (6.10)

so that the GLr multiplicative Higgs field behaves up to a multiplication by a regular function
as (x− x∗)ω̌∗ as x→ x∗ and as (1/x)ω̌∞ as x→∞.

Let ρ be the Weyl vector

ρ =
1

2

∑
α>0

α =
r−1∑
k=1

ωk =
r∑

k=1

r − (2k + 1)

2
ek

and let

ω̌tot = ω̌∞ +
∑
x∗∈x

ω̌x∗

be the sum of the co-weights of all singularities in x and x∞. Then we see that the dimension
formula (6.8) is equivalent to

dimMλ,x,µ;gL,gR = 2dλ,x,µ = 2(ρ, ω̌tot)

in agreement with the general formula for the dimension of the moduli space of monopoles with
Dirac singularities encoded by the total co-weight ω̌tot.

The numbers nk and mk for k ∈ [1, r − 1] are the number of colors in the node k and the
number of fundamental flavours attached to the node k of the Dynkin quiver [55], including
the “deficit” fundamental flavours multiplets of asymptotically free theory which would make it
conformal if added. We have

ω̌tot =
r−1∑
k=1

α̌knk =
r−1∑
k=1

ω̌kmk
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10 9 8 7 6 5 4 3 2 14 8 9 10 10 10

3 1 1

Figure 5. Representation of the Newton polygon in Fig. 4 corresponding to the partition ν =

(5, 5, 2, 2, 1, 1, 1) with r = 17 as quiver diagram. Here the integers in the circles denote the number

of charges for a given index i indicated below. The parameters m
[λ,µ]
i are given in the squared boxes.

x1 x2 x3 x4 x5 x6 x7 x8

Figure 6. Decomposition of the partition λ = (8, 4) for r = 3 into three partitions (3, 3), (2, 1) and (3).

in agreement with (6.7) and (6.9). The position of each singularity x∗ ∈ x to which we have
associated a column λt∗ encoding a fundamental co-weight ω̌λt∗ is the mass of the fundamental
flavour multiplet at the node λt∗.

Now the spectral curve can be compared with [55] where a slightly different notation is

used. To do so we note that the polynomials Q[λ]
i in (6.6) can be written in terms of the

parameters m
[λ,∅]
i introduced in (6.9) as

Q[λ]
k (x) =

|λ|∏
i=k+1

P i−kr−i (x), with Pr−i(x) =

m
[λ,∅]
i∏
j=1

(x− xλi−j+1). (6.11)

This relation is shown in Appendix E. Setting m
[λ,∅]
i = 0 for i > |λ| we can now write the

spectral determinant (6.5) in the notation used in (7.5) of [55]. We find

Wλ,x,µ,g∞(x, y) = yr +
r−1∑
i=1

(−ζ(x))i
i−1∏
j=1

P i−jj (x)Xi(x)yr−i + (−ζ(x))r
r−1∏
j=1

Pr−jj (x),

where we defined

ζ(x) = P0(x) Xi(x) = X [λ,µ]
i (x),

with i = 1, . . . , r− 1. We note that here the so-called matter polynomials P only depend on the
partition λ and not on µ.

For singularities associated to the partition ν = (5, 5, 2, 2, 1, 1, 1) as plotted in Fig. 4 the
quiver diagram is depicted in Fig. 5. Further examples are discussed in Appendix F.

7 Higher degree symplectic leaves

In this section we discuss some symplectic leaves of higher degree n in the spectral parameter x
corresponding to the partitions of the total size nr for G = GLr.

In the case r = 2 we can factorize the higher degree Lax matrices for partitions λ = (2n) as
a product of degree 1 Lax matrices labelled by partitions λ = (2)

L(2n),x,∅(x; p, q) = L(2),(x1,x2),∅(x; p1, q1) · · ·L(2),(x2n−1,x2n),∅(x; pn, qn),

cf. [60].
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For r = 3 the partitions are of the form λ = (λ1, 3n−λ1) with λ1 ≤ 3n. The Lax matrices for
these partitions can be factorized as a product of Lax matrices of partitions λ = (3), λ = (2, 1)
and their conjugates. The conjugates correspond to the partitions λ = (3, 3) and λ = (2, 1)
respectively and are obtained via

L̄λ,x,µ(x; p, q) = detLλ,x,µ(x; p, q)L−1
λ,x,µ(−x; p, q).

This can be seen as follows. If 3n − λ1 = 0 we can build the partition from copies of λ = (3)
as for the case r = 2. Any such partition is extended to the case where 3n− λ1 = 1 by adding
a partition λ = (2, 1) which again extends to 3n−λ1 = 2 by adding another partition λ = (2, 1).
Now we note that any λ = (λ1, 3n − λ1) can be reduced to the cases discussed when stripping
off multiples of the partition λ = (3, 3). An example is shown in Fig. 6.

A similar factorization of higher degree leaves to the product of the degree 1 leaves applies to
the case of GL4. However in the case of GL5 and higher rank such factorization fails, first time
for the n = 2 and the partition λ = (4, 3, 3), i.e., λt = (3, 3, 3, 1), of the total size |λ| = 10. The
Lax matrix associated to this partition is not factorized into a product of degree 1 Lax matrices.
However, we can compute Lλ=(4,3,3) using the fusion method.

7.1 Fusion of degree 2

In this subsection we present the degree 2 fusion of two elementary Lax matrices

L(x) =


x− x1 + P12Q21 −P12 P12P23

−Q21 I −P23

−Q32Q21 Q32 x− x1 −Q32P23


and

L′(x) =


x− x2 + P ′13Q

′
31 P ′13Q

′
32 −P ′13

P ′23Q
′
31 x− x2 + P ′23Q

′
32 −P ′23

−Q′31 −Q′32 I


as introduced in (3.1). Here the blocks on the diagonal are of the size k1 × k1, k2 × k2 and
k3 × k3 and the Lax matrices contain k2(k1 + k3) and k3(k1 + k2) pairs of conjugate variables
respectively.

We find that their product can be decomposed as

L(x)L′(x) = Q̃L̃(x),

where

Q̃ =


I 0 0

0 I 0

0 Q̃32 I


and

L̃(x) =

 (x− x1)(x− x2)I + P̃12̃(xI − J̃)Q̃2̃1 −P̃12̃(xI − J̃)

−(xI − J̃)Q̃2̃1 xI − J̃

 . (7.1)
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Here we defined

P̃12̃ =

(
P̃12 P̃ ′13

)
, Q̃2̃1 =

 Q̃21

Q̃′31

 ,

and

J̃ =

 I 0

Q̃′32 I

 x2I P̃ ′23

0 x1I

 I 0

−Q̃′32 I

 .

As in the linear fusion we introduced the new canonical variables

P̃12 = P12 − P ′13Q
′
32, Q̃21 = Q21,

P̃ ′13 = P ′13, Q̃′31 = Q′31 +Q′32Q21,

P̃ ′23 = P ′23 + P23 −Q21P
′
13, Q̃′32 = Q′32,

P̃23 = P23, Q̃32 = Q32 −Q′32.

The final Lax matrix has k1k2+k1k3+k2k3 pairs (p, q) and det L̃(x) = (x−x1)k1+k3(x−x2)k1+k2 .

It corresponds to the partition λ̃t = (k1 +k3, k1 +k2). This can be seen when setting all p and q
equal to zero in (7.1). One obtains

L̃(x)
∣∣∣
p,q=∅

= diag
(

(x− x1)(x− x2)Ik1×k1 (x− x2)Ik2×k2 (x− x1)Ik3×k3

)
.

7.2 Full fusion of degree 2

We can further multiply the resulting Lax matrix in (7.1)

L′(x) =

 (x− x1)(x− x2)I + P ′
12̃

(xI − J ′)Q′
2̃1
−P ′

12̃
(xI − J ′)

−(xI − J ′)Q′
2̃1

xI − J ′

 ,

with

L(x) =

 I −P12̃

Q2̃1 xI − J −Q2̃1P12̃

 ,

which corresponds to a general regular partition (3.2) with arbitrary λ and µ = 1[k1]. The blocks
on the diagonal are of the size k1 × k1 and k̃2 = k2 + k3 as defined in Section 7.1. One finds

L(x)L′(x) = Q̃L̃(x)

with

Q̃ =

 I 0

Q̃2̃1 I

 ,

and

L̃(x) =

 I 0

Q̃′
2̃1

I


 (x− x1)(x− x2)I −P̃ ′

12̃
(xI − J ′)

0 (xI − J)(xI − J ′)


 I 0

−Q̃′
2̃1

I

 .
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Here we defined

P̃ ′
12̃

= P ′
12̃

+ P12̃, P̃12̃ = P12̃, Q̃′
2̃1

= Q′
2̃1
, Q̃2̃1 = Q2̃1 −Q

′
2̃1
.

The final Lax matrix contains k1k̃2 + kJ + kJ ′ pairs of conjugate variables where kJ and kJ ′

denote the number of pairs in J and J ′ respectively. It corresponds to the partition λ̃t =
(k1 + k3, k1 + k2, λ

t). Setting p, q = 0 yields the block matrix

L̃(x)
∣∣∣
p,q=∅

(x) = diag

(
(x− x1)(x− x2)Ik1×k1 (x−Xλ)(x−X ′λ′)Ik̃2×k̃2

)
. (7.2)

Here Xλ is defined in (3.5) corresponding to an arbitrary partition λ and X ′λ′ follows from (7.1)
and reads

X ′λ′ = diag
(

((x− x2)Ik2×k2 (x− x1)Ik3×k3

)
.

7.3 Example λ̃ = (4, 3, 3)

The case GL5 and λ̃ = (4, 3, 3) we discussed at the beginning of this section corresponds to
setting k1 = 1 and k̃2 = 4 in Section 7.2 while setting λ = (2, 1, 1) such that nJ = 3. The Lax
matrix L′ is obtained in the case k1 = 1, k2 = 2 and k3 = 2 from the fusion in Section 7.1 and
thus yields nJ ′ = 4. The half-dimension is 1

2 dimCM4,3,3 = 11. For p, q = 0 the diagonal of the
Lax matrix follows from (7.2) when taking Xλ = diag(x3, x3, x3, x4).

8 Quantization

Notice that the classical Yang–Baxter equation (2.1) is a limit of quantum Yang–Baxter equation

R12(x− y)L̂13(x)L̂23(y) = L̂23(y)L̂13(x)R12(x− y)

in End(V ) ⊗ End(V ) ⊗ A where V ' Cr is the fundamental representation of glr and A is the
quantized algebra of functions on the classical phase space parametrized locally by

(
pI , q

I
)
. Here

the quantum R-matrix is R ∈ End(V )⊗End(V ) and the quantum L-operator is L̂ ∈ End(V )⊗A,
that is an r × r matrix valued in operators in A. The quantum R-matrix is

R(x) = 1 +
εP
x
,

where ε = −i~ is the quantization parameter and P is the permutation operator (2.2).

In terms of matrix elements L̂ij we have the quantum Yang Baxter equation in A[
L̂ij(x), L̂kl(y)

]
= − ε

x− y
(
L̂kj(x)L̂il(y)− L̂kj(y)L̂il(x)

)
and its classical limit is

{Lij(x), Lkl(y)} = − 1

x− y
(Lkj(x)Lil(y)− Lkj(y)Lil(x))

with the standard convention[
φ̂, ψ̂

]
= ε{φ, ψ}+O

(
ε2
)
, ε→ 0,
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where
[
φ̂, ψ̂

]
denotes the commutator of the elements φ̂, ψ̂ of the algebra A that correspond to

the quantization of the functions φ, ψ on the classical phase space with Poisson brackets {φ, ψ}.
In particular the canonical coordinates pI , q

I have Poisson bracket{
pI , q

J
}

= δJI

and the respective operators have commutation relations[
p̂I , q̂

J
]

= εδJI

that can be represented in the algebra of differential operators acting on Hilbert space of states
represented by function of qI as

q̂I 7→ qI , p̂I 7→ ε
∂

∂qI
.

For a polynomial function f(q̂, p̂) the normal ordering notation :f(q̂, p̂): means placing all

operators p̂I to the right of the operators q̂I in each monomial.
The quantum version L̂λ,x,µ(x) of all our classical solutions Lλ,x,µ(x) is obtained by replacing

all variables (p, q) by the operators p̂, q̂ and assuming normal ordering convention. One can

check that such operator valued matrix L̂λ,x,µ(x) satisfies quantum Yang–Baxter equation. The
commuting Hamiltonians are obtained from the expansion of the quantum spectral determinant
(quantum spectral curve) as in [19]

Ŵx,y = trAr
(
y − eε∂xL̂′1(x)

)(
y − eε∂xL̂′2(x)

)
· · ·
(
y − eε∂xL̂′r(x)

)
=

r∑
k=0

(−1)kyr−kχ̂k(x+ ε)eεk∂x , (8.1)

where L̂′(x) = ρ1(g∞)L̂λ,x,µ(x), cf. (6.2), and Ak is the normalised antisymmetrizer acting on
the k-fold tensor product of Cr. The quantum characters whose coefficients generate the algebra
of quantum commuting Hamiltonians (Bethe subalgebra) are

χ̂k(x) = trAkL̂
′
1(x) · · · L̂′k(x+ ε(k − 1)) (8.2)

see also [52]. The definition of the quantum spectral determinant (8.1) is a quantum version of
the classical spectral curve (6.3), and there is a quantum version of the factorization (6.4)

χ̂k(x) = Q̂[λ]
r−k(x+ ε|µ|)X̂ [λ,µ]

k (x),

where the c-valued polynomials are

Q̂[λ]
i (x) =

λi+1∏
j=1

λtj−i∏
k=1

(
x− xj + ε

(
j−1∑
l=1

λtl + k − 1

))
.

The quantization of the corresponding integrable systems in the context of the N = 2 su-
persymmetric quiver gauge theories has been considered in [56], in particular the q-character
functions appearing in [56] after [34] stand for the eigenvalue of the quantum commuting Hamil-
tonians (8.2).

The quantized symplectic leaves M̂λ,x,µ are modules, typically infinite-dimensional, for the
dual Yangian algebra Y(glr)

∗ which is a quantum deformation algebra of the space of functions
on the Poisson–Lie group GLr(KP1

x
). This representation theory relates to the ‘pre-fundamental’

modules of Hernandez–Jimbo [40] associated to the individual singularities at points xi labeled
by a fundamental co-weight ω̌λti .
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A Twisted cotangent bundles of generalized flag varieties

Let g be a reductive Lie algebra and let g = n−⊕h⊕n+ be a decomposition of g into the Cartan
subalgebra h, the negative nilpotent subspace n− = ⊕α<0gα and positive nilpotent subspace
n+ = ⊕α>0gα. Here α denote a root of g and gα the α-root subspace of g. Let b+ = h+ n+ and
b− = h + n− be the respective Borel subalgebras. If g = glr then b+ (or b−) is represented by
upper (or lower) triangular matrices including the diagonal, and n+ (or n−) is represented by
strictly upper (or lower) triangular matrices excluding the diagonal.

Let G, H, N±, B± the respective Lie groups with Lie algebras g, h, n±, b±, and let x ∈ h∗

be a weight. Here we record explicit formulas for representation of Ug in x-twisted differen-
tial operators on the complete flag manifold G/B+ following the approach of Harish-Chandra,
Springer, Kostant, Beilinson–Bernstein. We identify the big cell of G/B+ with N− and denote
elements of N− by Q.

We compute the vector field LX associated to the action of Lie algebra element X on G/B+

from the left. Let ε be infinitesimal parameter, and let 1+εX be a group element corresponding
to Lie algebra element X ∈ g. Let Q̃ = Q + εδXQ denotes a coset representative in G/B+

obtained from the action of 1 + εX on Q from the left:

(1 + εX)Q = (Q+ εδXQ)(1 + εn+ + εh), n+ ∈ n+, h ∈ h, (A.1)

where (1 + εn+ + εh) is an element of B+ that gauges the deformation of Q. We find

XQ = Q(n+ + h) + δXQ, n+ ∈ n+, h ∈ h

and thus

δXQ = Q
[
Q−1XQ

]
−,

where [ ]− denotes the projection g → n−. The corresponding vector field and the differential
operator on scalar functions on N− is LX = −δXQ ∂

∂Q that is

LX = −Q
[
Q−1XQ

]
−
∂

∂Q
,

where the minus sign comes from the standard convention of defining the vector fields associated
to the group actions on manifolds in such a way as to preserve the Lie algebra bracket.

We are actually interested in a more general situation, when the differential operator LX
acts not on functions on G/B+ but on sections of line bundle induced from the H-bundle
G/N+ → G/B+ by a semi-simple co-weight x ∈ h∗, e.g.,

x =

x1

x2

x3

 .

The additional connection term is −x(hX) for the diagonal variation hX in the coset computa-
tion (A.1)

LX,x = LX − x(h)

and since

hX =
[
Q−1XQ

]
0
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where [ ]0 denotes the projection to the diagonal part g→ h, we find the differential operator

LX,x = −Q
[
Q−1XQ

]
−
∂

∂Q
−
〈
x,
[
Q−1XQ

]
0

〉
.

acting on sections of the line bundle on G/B+.
Now we fix g = glr. Let (eij)i,j∈[1,r] denote the standard basis elements of glr represented

by matrices whose (i, j)-entry is equal to 1 and the rest is 0. The upper-triangular Borel
subgroup B+ preserves the standard full flag

0 ⊂ Ce1 ⊂ Ce1 ⊕ Ce2 ⊂ · · · ⊂ Ce1 ⊕ Ce2 · · · ⊕ Cer.

Further we define the coordinates (qi,j) with 1 ≤ j < i ≤ r on N− taking the matrix elements
of Q ∈ N− in the defining representation of glr

qij := Qij , 1 ≤ j < i ≤ r

for example, for gl3 we have

Q =

 1
q2,1 1
q3,1 q3,2 1

 .

We evaluate in coordinates (q)ij the differential operator Lx,x associated to each basis element
X = eij in g, and we assemble r × r matrix L̂ valued in twisted differential operators

L̂ij,x = Leji,x.

Let us denote

pij =
∂

∂qij
, i > j

with

[pij , qkl] = δikδjl,

and assemble the upper triangular matrix with only non-zero entries (P )ij = pji for i > j

P =

0 p21 p31

0 0 p32

0 0 0

 .

Then

Leij ,x = − trQ
[
Q−1eijQ

]
−P − trQ−1eijQx = −: tr eijQ(x+ [PQ]+)Q−1:

= −:
(
Q(x+ [PQ]+)Q−1

)
ji

:

where normal ordering notation : : means that all symbols of the operators pij are kept to the
right, and consequently we find

L̂ij = −:
(
Q(x+ [PQ]+)Q−1

)
ij

:.

B Determinant formula

The determinant of a block matrix can be written as∣∣∣∣A B
C D

∣∣∣∣ = det
(
A−BD−1C

)
detD. (B.1)
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C Sklyanin relation for elementary µ partitions

In order to show that the Lax matrix (4.2) satisfies the Sklyanin relation (2.1) we verify (4.5)
and (4.6) in the following.

Starting with (4.6) we first note that Fγ,γ in (4.3) can be written as

Fγ,γ = Jγ,γ +Q−G
′Q−1
− with G′ = P0 +Q0[Q+P−]−Q

−1
0 ,

where Jγ,γ has been defined in (3.4) and satisfies the gl
(
r
2

)
commutation relations (3.3).

It follows that (4.6) is equivalent to[{
([P+Q−]+)2,

(
Q−1
−
)

1

}
(Q−)1, G

′
1

]
−
[{

([P+Q−]+)1,
(
Q−1
−
)

2

}
(Q−)2, G

′
2

]
+ {G′1, G′2} = (G′1 −G′2)P, (C.1)

where [X,Y ] = XY −Y X denotes the anticommutator. Further we use the notation X1 = X⊗I
and X2 = I ⊗X and P act as a permutation such that PX1 = X2P. It is convenient to consider
different cases. Writing (C.1) in components and taking into account that G′ and Q− are lower
diagonal while [P+Q−]+ is upper diagonal results in the conditions

{G′ab, G′cd} = δcbG
′
ad − δadG′cb for a ≥ b ∧ c ≥ d,[{

([P+Q−]+)cd, Q
−1
−
}
Q−, G

′]
ab

= δcbG
′
ad − δadG′cb for c < d.

The first relation can be verified straightforwardly. The second relation follows when noting
that

{
([P+Q−]+)ab, Q

−1
−
}
Q− = −eba for a < b.

To show (4.5) we note that K̄γ,α and Kα,γ are independent of the variables pij . Thus the
brackets reduces to

r
2∑

s,t=1

∂Fij
∂pst

∂K̄kl

∂qts
= +K̄ilδkj ,

r
2∑

s,t=1

∂Fij
∂pst

∂Kkl

∂qts
= −Kkjδil. (C.2)

Here we suppressed the subindeces α and γ. The Latin indices take values i, j, k, l = 1, . . . , r2 .
Using the relation ∂qK = K

(
∂qK̄

)
K which follows from (4.4), one finds that the two equations

in (C.2) are equivalent. They can be written as∑
s,t

∂Gij
∂pst

∂K̄kl

∂qts
= (Q0Q+)il(Q−)kj . (C.3)

In order to show this relation it is again convenient to consider different cases and take into
account the dependence of G on p. For a particular choice of the indices i and j we see that (C.3)
is equivalent to:
Case i < j∑

s<t

∂(P+Q−)ij
∂pst

∂(Q−)kl
∂qts

= δil(Q−)kj .

Case i > j∑
s>t

∂(Q+P−)ij
∂pst

∂(Q+)kl
∂qts

= (Q+)ilδkj .

Case i = j∑
s=t

∂(P0)ij
∂pst

∂(Q0)kl
∂qts

= (Q0)ilδkj .

These equations can be checked explicitly. The derivatives with respect to qij for i 6= j essentially
yield delta functions while the derivatives with respect to pij give the q-dependence.
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h1

h2

h3

v1

v2

v3

Figure 7. Frobenius-like coordinates of the partition (7, 4, 3, 3, 2, 1): f = 3, h1 = 4, h2 = 1, h3 = 0,

v1 = 3, v2 = 2, v3 = 1.

D The number of independent commuting Hamiltonians

In order to show the relation (6.8) it is convenient to introduce Frobenius-like coordinates to
label the partitions, compare, e.g., [48].

Let us focus on the case µ = ∅ which is sufficient as we will argue at the end of this section.
Using Frobenius-like coordinates any partition λ can be written as

λ = (h1 + f, . . . , hf + f, f, . . . , f︸ ︷︷ ︸
vf

, f − 1, . . . , f − 1︸ ︷︷ ︸
vf−1−vf

, . . . , 1, . . . , 1︸ ︷︷ ︸
v1−v2

).

Here f denotes the length of the sides of the maximal square which fits into the lower left corner
of the corresponding Young diagram as shown in Fig. 7. the variables hi denote the number of
boxes on the right of the square in the ith row while the variables vk denote the number of boxes
above the square in the kth row. The coordinates introduced in this way have the advantage
that the transpose can be obtained by interchanging hi and vi where i = 1, . . . , f such that

λt = λ
∣∣
vi↔hi

= (v1 + f, . . . , vf + f, f, . . . , f︸ ︷︷ ︸
hf

, f − 1, . . . , f − 1︸ ︷︷ ︸
hf−1−hf

, . . . , 1, . . . , 1︸ ︷︷ ︸
h1−h2

).

To introduce Frobenius-like coordinates in (6.8) we decompose the sum over the elements of the
partition λ as

r∑
k=0

n
[λ,∅]
k =

r∑
k=1

k∑
j=1

λj −
r(r + 1)

2

=

f∑
k=1

(r − k + 1)λk +

r−f∑
k=1

(r − f − k + 1)λk+f −
r(r + 1)

2
. (D.1)

Now the first term on the right-hand-side of (D.1) can be written in terms of the variables hi as

f∑
k=1

(r − k + 1)λk =

f∑
k=1

(r − k + 1)(hk + f),

while the second one can be written in terms of the variables vi as

r−f∑
k=1

(r − f − k + 1)λk+f = f

vf∑
k=1

(r − f − k + 1) +

f−1∑
l=1

l

vl∑
k=vl+1+1

(r − f − k + 1)

= −1

2

(
f∑
l=1

v2
l + (2f − 2r − 1)

f∑
l=1

vl

)
.
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Finally, using the relation r =
f∑
i=1

hi + f2 +
f∑
i=1

vi we find that

r∑
k=0

n
[λ,∅]
k =

1

2

(
r2 −

f∑
l=1

(vl + f)2 −
f∑
l=1

hl(2l − 1)

)
=

1

2

(
r2 −

λ1∑
i=1

(
λti
)2)

= d[λ,∅].

As λ is arbitrary it follows that the same relation holds for partitions µ with λ = ∅. Combining
the two relations we find that

r∑
k=0

n
[λ,µ]
k =

r∑
k=0

(
n

[λ,∅]
k + n

[∅,µ]
k

)
+
r(r + 1)− |λ|(|λ|+ 1)− |µ|(|µ|+ 1)

2

= d[λ,∅] + d[∅,µ] +
r2 − |λ|2 − |µ|2

2
= d[λ,µ],

where we used that r = |λ|+ |µ|. Another way to show (6.8) is to use the relation (E.1).

E Rewritten polynomials

The relation in (6.11) can be shown using the relation

λt = (r, . . . , r︸ ︷︷ ︸
λr

, r − 1, . . . , r − 1︸ ︷︷ ︸
λr−1−λr

, , . . . , 1, . . . , 1︸ ︷︷ ︸
λ1−λ2

). (E.1)

First it follows that Q[λ]
i in (6.6) can be written as

Q[λ]
i (x) =

λi+1∏
k=1

(x− xk)λ
t
k−i =

r∏
l=i+1

λl∏
k=λl+1+1

(x− xk)λ
t
k−i =

r∏
l=i+1

λl∏
k=λl+1+1

(x− xk)l−i, (E.2)

with λr+1 = 0 and using that λtk = l for k = λl+1 +1, . . . , λl. Note that the polynomiality of Q[λ]
i

is now manifest. Further we find

Q[λ]
i (x) =

r∏
l=i+1

λl∏
k=λl+1+1

(x− xk)l−i =
r∏

l=i+1

λl−λl+1∏
k=1

(x− xλl−k+1)l−i.

Identifying ml = λl − λl+1 we recover (6.11). We remark that we can write the polynomial
simply as

Q[λ]
i (x) =

r∏
l=i+1

λl∏
k=λl+1+1

(x− xk)l−i =

r∏
l=i+1

λl∏
k=1

(x− xk),

after rearranging the product.

F Examples

We consider a couple of explicit examples associated to the diagrams as shown on Figs. 9 and 8.
The ranks in the gauged (circled) nodes on the right correspond to the heights of the profile on the
left. The ranks of the framed (boxed) nodes on the right counting the number of fundamentals
correspond to the (minus) change of the slope of the profile on the left in the corresponding
corner (negative second difference), cf. Section 6 and [55].
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j

ir0

m1 m2• •
• • • •

(a)

1 2

1 1

11

(b)

Figure 8. (a) shows the Newton polygon and (b) shows the quiver diagram for µ = (2, 1), λ = ∅
and r = 3. The ranks in the gauged (circle) nodes on the right correspond to the heights of the profile

on the left. The ranks of the framed (boxed) nodes on the right counting the number of fundamentals

correspond to the change of the slope of the profile on the left.

F.1 µ = (2, 1) and λ = ∅

The Lax matrix corresponding to the partitions µ = (2, 1) and λ = ∅ can be obtained from (4.7).
It contains two conjugate pairs of variables and reads

L(2,1)(x; p, q) =

 0 0 −e−q3,3

0 1 −p2,3

eq3,3 q3,2 x− p3,3 − q3,2p2,3

 .

It resembles the structure of the DST and Toda chain. The Hamiltonians can be computed
explicitly. The emerging Newton polygon and quiver diagram are depicted in Fig. 8, cf. Section 6.

F.2 µ = (2, 2) and λ = ∅

The Lax matrix corresponding to the partitions µ = (2, 2) and λ = ∅ can be obtained from (4.2).
They contain four conjugate pairs of variables and can be written as

L(2,2)(x; p, q) =

 0 K(2,2)

K̄(2,2) xI − F(2,2)

 ,

where the 2× 2 block matrices are given by

F(2,2) =

(
p3,3 − q4,3p3,4 p3,4

eq4,4−q3,3p4,3 − q4,3(p4,4 − p3,3 + q4,3p3,4) p4,4 + q4,3p3,4

)
,

K(2,2) =

(
−e−q3,3 − e−q4,4q3,4q4,3 e−q4,4q3,4

e−q4,4q4,3 −e−q4,4

)
,

K̄(2,2) =

(
eq3,3 eq3,3q3,4

eq3,3q4,3 eq4,4 + eq3,3q3,4q4,3

)
.

G Cluster structures

In this section we elaborate on the cluster structure of the fusion procedure in Section 3.3. As
an example we study the GL3 case and introduce the Lax matrices

L1(x) =

x+ p′′12q
′′
21 + p′′13q

′′
31 −p′′12 −p′′13

−q′′21 1 0
−q′′31 0 1

 ,
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j

ir0

m2•
• • •

• • • • •

(a)

1 2 3

1 2 1

2

(b)

Figure 9. (a) shows the Newton polygon and (b) shows the quiver diagram for µ = (2, 2), λ = ∅ and

r = 4.

L2(x) =

 1 −p′12 0
q′21 x− q′21p

′
12 + p′23q

′
32 −p′23

0 −q′32 1

 ,

L3(x) =

 1 0 −p13

0 1 −p23

q31 q32 x− q31p13 − q32p23

 .

Looking at the product

L3(x− x3)L2(x− x2)L1(x− x1)

there are two ways to proceed with the fusion. The standard way used in Section 3.3 first
computes the Lax matrix resulting from the fusion L3(x−x3)L2(x−x2) and then computes the
final result by fusing the result with L1(x− x1) from the right. It yields the matrix

L(32)1(x) = Q(x−X − [PQ]+)Q−1

as introduced in Section 3.3. Alternatively we can first fuse L2(x − x2)L1(x − x1), bring it to
the canonical form, and then multiply by L3(x− x3) from the left. This procedure results in

L3(21) = Q̃−1
(
x−X − [Q̃P̃ ]+

)
Q̃

with

Q̃ =

 1 0 0
−q̃21 1 0
−q̃31 −q̃32 1

 , P̃ =

0 p̃12 p̃13

0 0 p̃23

0 0 0

 .

The formulas are related by the canonical transformation

p̃12 = p12 − p13q32, p̃23 = p23 − q21p13, q̃31 = q31 + q32q21. (G.1)

In other words, the fusion procedure to obtain the Darboux coordinates is not associative,
and the failure of the associativity is described by the symplectomorphism (G.1).
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