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Abstract. We prove that a polynomial map is invertible if and only if some associated
differential ring homomorphism is bijective. To this end, we use a theorem of Crespo and
Hajto linking the invertibility of polynomial maps with Picard–Vessiot extensions of partial
differential fields, the theory of strongly normal extensions as presented by Kovacic and the
characterization of Picard–Vessiot extensions in terms of tensor products given by Levelt.
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1 Introduction

The Jacobian conjecture originates from the problem posed by Keller in [9]. It is the 16th
problem in Stephen Smale’s list of mathematical problems for the twenty-first century (cf. [13]).
Let us recall the precise statement of the Jacobian conjecture.

Let C denote an algebraically closed field of characteristic zero. Let n > 0 be a fixed integer
and let F = (F1, . . . , Fn) : Cn → Cn be a polynomial map, i.e., Fi ∈ C[X], for i = 1, . . . , n,
where X = (X1, . . . , Xn). We consider the Jacobian matrix JF =

[
∂Fi
∂Xj

]
1≤i,j≤n. The Jacobian

conjecture states that if det(JF ) is a non-zero constant, then F has an inverse map, which is
also polynomial.

In spite of many different approaches involving various mathematical tools the question is still
open. In 1980 S.S.-S. Wang [16] proved the Jacobian conjecture for quadratic maps. The same
year H. Bass, E. Connell and D. Wright in [4] and A.V. Yagzhev in [17] independently reduced
the Jacobian problem to maps of degree 3 at cost of enlarging the number of variables. In [4] an
interesting differential approach to the Jacobian problem due to Wright is also presented. An
account of the research on the Jacobian conjecture may be found in [15] and in the survey [14].
In the recent years some new achievements have been reached such as the negative answer to
the long standing dependence problem given by M. de Bondt [7] and results by several authors
on classification of special types of Keller maps. Recently, in [1] and [2] we have considered
the class of Pascal finite automorphisms. On the other hand the conjecture holds under strong
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additional assumptions. As an example let us recall the result of L.A. Campbell (see [5]), which
states that the thesis holds if C(X)/C(F ) is a Galois extension.

In a previous paper using Picard–Vessiot theory of partial differential fields Crespo and
Hajto obtained a differential version of the classical theorem of Campbell. Let us consider the
field C(X) with the differential structure given by the Nambu derivations (see Section 3). Then
Crespo and Hajto proved that if the differential extension C(X)/C is Picard–Vessiot, then F is
invertible (cf. [6, Theorem 2]). A computational approach to this result using wronskians has
been given in [3]. The use of wronskians makes the calculations longer but allows application to
the more general context of dominant polynomial maps without the assumption of the Jacobian
determinant beeing a non-zero constant to check the Galois character of the associated field
extension.

In [12, Theorem 1], Levelt proved a necessary condition for a differential field extension K/k
to be Picard–Vessiot in terms of tensor products.

In this paper, we prove a partial converse of Levelt’s theorem. To this end, we use the theory
of strongly normal extensions as presented by Kovacic in [10] and [11]. By using the converse of
Levelt’s theorem together with the above mentioned result by Crespo and Hajto we obtain that
a polynomial map is invertible if and only if some associated differential ring homomorphism is
bijective. This provides a criterion to check the invertibility of polynomial maps.

2 Inverting a theorem of A.H.M. Levelt

In this section we prove that Levelt’s necessary condition for a differential field extension K/k to
be Picard–Vessiot is sufficient for K/k to be strongly normal in the case in which the base field
is a field of constants. In the next section we shall apply this result to the extension C(X)/C
endowed with the Nambu derivations associated to a polynomial map F in order to obtain an
equivalent condition to the invertibility of F .

Let C be an algebraically closed field of characteristic zero. Let R be an integral domain
containing C with the differential ring structure given by a finite set ∆ of commuting derivations.
Let K be the field of fractions of R with the differential structure given by extending the
derivations in ∆ in the standard way. Let us assume that C is the field of constants of K and
that K is differentially finitely generated over C. Any derivation δ ∈ ∆ extends to K ⊗C R by
the formula δ(x⊗ y) = δ(x)⊗ y + x⊗ δ(y) on elementary tensors and by linearity to the whole
tensor product. Let E denote the differential subring of constants in K ⊗C R. We consider the
differential ring homomorphism

φ : K ⊗C E → K ⊗C R, φ(a⊗ d) = (a⊗ 1)d.

Our aim is to prove that if φ is an isomorphism, then the extension K/C is strongly normal.
We shall prove first that under the above hypothesis, φ is injective. To this end, we need the
following lemma.

Lemma 2.1. The map

h : E → K ⊗C E, h(d) = 1⊗ d,

induces a bijection between the set I(E) of ideals of E and the set I(K ⊗C E) of differential
ideals of K ⊗C E.

Proof. To an ideal a of E we associate its extension ae = K ⊗C a and to an ideal b of K ⊗C E
its contraction bc = h−1(b).
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The inclusion aec ⊃ a is well known. Let us prove aec ⊂ a. We take a basis Λ of the C-vector
space a and extend it to a basis M of the C-vector space E. Then 1 ⊗M is a basis of the
K-vector space K ⊗C E. Let d be any element in aec. Then 1⊗ d ∈ aece = ae, so

1⊗ d =
∑
λ∈Λ

rλ ⊗ λ, rλ ∈ K.

On the other hand d =
∑
µ∈M

cµµ, cµ ∈ C, so

1⊗ d =
∑
µ∈M

1⊗ cµµ =
∑
µ∈M

cµ ⊗ µ.

Comparing the coefficients in both expressions, we get that cµ = 0 for µ ∈ M\Λ and rλ = cλ,
for λ ∈ Λ. Hence d ∈ a.

The inclusion bce ⊂ b is well known. Suppose now b\bce 6= ∅. We take a C-vector space
basis Λ of bc and extend it to a basis M of the C-vector space E. Let us choose an element
a ∈ b\bce such that its representation in the form

a =
∑
µ∈M

rµ ⊗ µ, rµ ∈ K

has the smallest number of nonzero terms.
First let us consider the case when a is an elementary tensor, i.e., a = r ⊗ µ, for a ∈ K,

µ ∈ M . If µ ∈ Λ, then a ∈ bce and we have a contradiction. So let us assume that µ ∈ M\Λ.
Then we multiply a by r−1 ∈ K and obtain that 1⊗µ ∈ b and consequently µ ∈ bc, hence again
a ∈ bce and we have a contradiction.

Let us assume now that the representation a =
∑
µ∈M

rµ⊗ µ, rµ ∈ K, has at least two nonzero

terms. Since b is a differential ideal, then for any differential operator δ ∈ ∆ we have

δa =
∑
µ∈M

δrµ ⊗ µ ∈ b.

Since a 6= 0, we can choose µ0 such that rµ0 6= 0. Then δrµ0a− rµ0δa ∈ b and

δrµ0a− rµ0δa = δrµ0

( ∑
µ∈M

rµ ⊗ µ
)
− rµ0

( ∑
µ∈M

δrµ ⊗ µ
)

=
∑

µ∈M,µ6=µ0

(δrµ0rµ − rµ0δrµ)⊗ µ.

since the coefficient of µ0 is equal to (δrµ0)rµ0 − rµ0(δrµ0) = 0. By the minimality assumption
on a ∈ b\bce, we have δrµ0a− rµ0δa ∈ bce, hence

δrµ0a− rµ0δa =
∑

µ∈Λ, µ 6=µ0

(δrµ0rµ − rµ0δrµ)⊗ µ.

We have then δrµ0rµ − rµ0δrµ = 0 for µ ∈ M\Λ. Hence δ
( rµ
rµ0

)
= 0 for µ ∈ M\Λ. This means

rµ
rµ0

is a constant in K. Hence there exists cµ ∈ C such that rµ = cµrµ0 for µ ∈M\Λ. We obtain

a =
∑

µ∈M\Λ

cµrµ0 ⊗ µ+
∑
µ∈Λ

rµ ⊗ µ.
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Observe that
∑
µ∈Λ

rµ ⊗ µ ∈ bce ⊂ b. Hence

b 3
∑

µ∈M\Λ

cµrµ0 ⊗ µ = (rµ0 ⊗ 1)

(
1⊗

∑
µ∈M\Λ

cµµ

)
.

SinceK is a field, we get that 1⊗d0 ∈ b, for d0 =
∑

µ∈M\Λ
cµµ. So d0 ∈ bc and (rµ0⊗1)(1⊗d0) ∈ bce.

And we have a contradiction with the minimality assumption on a ∈ b\bce. �

Proposition 2.2. The map

φ : K ⊗C E → K ⊗C R, φ(a⊗ d) = (a⊗ 1)d

is injective.

Proof. Denote b = kerφ. Using Lemma 2.1 we can assume that b = K ⊗ c, where c ∈ I(E).
Take c ∈ c. Then

0 = φ(1⊗ c) = (1⊗ 1)c = c.

So c = 0 and b = (0). �

We recall the notion of almost constant differential ring which will be used in the sequel.

Definition 2.3 ([10, Definition 5.1]). Let A be a differential ring and CA its ring of constants.
We say that A is almost constant if the inclusion CA ⊂ A induces a bijection between the set of
radical ideals of CA and the set of radical differential ideals of A.

Proposition 2.4. Let C be an algebraically closed field of characteristic zero. Let R be an
integral differential ring containing C and let K be the field of fractions of R. We assume
that C is the field of constants of K and that K is differentially finitely generated over C. If the
differential morphism

φ : K ⊗C E → K ⊗C R, φ(a⊗ d) = (a⊗ 1)d

is an isomorphism, then the differential ring K ⊗C R is almost constant.

Proof. If φ is a differential isomorphism, there is a bijection between the set of radical differ-
ential ideals of K ⊗C R and the set of radical differential ideals of K ⊗C E. By Lemma 2.1
and [10, Proposition 3.4], this last set is in bijection with the set of radical ideals of the ring of
constants E of K ⊗C R. �

Theorem 2.5. Let C be an algebraically closed field of characteristic zero. Let R be an integral
differential ring containing C and let K be the field of fractions of R. We assume that C is the
field of constants of K and that K is differentially finitely generated over C. If the differential
morphism

φ : K ⊗C E → K ⊗C R, φ(a⊗ d) = (a⊗ 1)d

is an isomorphism, then K/C is a strongly normal extension.
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Proof. To prove that K/C is strongly normal, we shall apply [10, Proposition 12.5]. Let σ be
an arbitrary ∆-isomorphism of K over C. We put σ : K →M , where M is any differential field
extension of K and denote by Dσ the field of constants of M . Define σ : K ⊗C R → M by the
formula σ(a⊗ b) = aσ(b). Set ψ = σ ◦ φ : K ⊗C E →M .

Observe that ψ(K ⊗ 1) ⊂ K. Indeed for a ∈ K we have

ψ(a⊗ 1) = (σ ◦ φ)(a⊗ 1) = σ(a⊗ 1) = a.

Because E consists of constants, then ψ(1⊗E) ⊂ Dσ (regardless of the choice of the differential
isomorphism σ). So

ψ(K ⊗C E) = ψ
(
(K ⊗ 1)(1⊗ E)

)
⊂ KDσ.

We have then the commutative diagram

K ⊗C E
φ //

ψ

$$

K ⊗C R

σ

��
KDσ.

Because φ is surjective, σ(K ⊗C R) ⊂ KDσ, which implies that σK ⊂ KDσ. We can then use
[10, Proposition 12.5] and conclude that K/C is a strongly normal extension. �

Remark 2.6. Let us observe that in order to prove that K/C is a Picard–Vessiot extension it
would be sufficient to know that R is a differentially simple ring. In this case, the fact that K/C
is strongly normal and K ⊗C R is almost constant imply that K/C is Picard–Vessiot.

3 Application to polynomial automorphisms

Let C be a field of characteristic zero and let F = (F1, . . . , Fn) : Cn → Cn be a polynomial map
such that det(JF ) ∈ C\{0}. We can equip C(X1, . . . , Xn) with the Nambu derivations, i.e.,
derivations δ1, . . . , δn given byδ1

...
δn

 =
(
J−1
F

)T 
∂

∂X1
...
∂

∂Xn

 .

Observe that both the field C(F1, . . . , Fn) and the polynomial ring C[X1, . . . , Xn] are stable
under δ1, . . . , δn.

Theorem 3.1. Let C be an algebraically closed field of characteristic zero and let F = (F1, . . . ,
Fn) : Cn → Cn be a polynomial map such that det(JF ) ∈ C\{0}. Let R (respectively K) denote
the polynomial ring C[X] (respectively the rational function field C(X)) with the partial differen-
tial structure given by the Nambu derivations. We extend these derivations to the tensor product
K⊗CR and denote by E the ring of constants of K⊗CR. If the differential ring homomorphism

φ : K ⊗C E → K ⊗C R, φ(a⊗ d) = (a⊗ 1)d

is an isomorphism, then F is invertible and its inverse is a polynomial map.
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Proof. By Theorem 2.5, the differential field extension K/C is a strongly normal extension.
If we consider the intermediate differential field k = C(F1, . . . , Fn), then K/k is again strongly
normal. Now, since det(JF ) ∈ C\{0} and the field C has characteristic zero, the image of F is
a Zariski open subset of the affine space Cn. Hence the fields K = C(X) and k = C(F ) have
the same transcendence degree over C. This implies that K/k is an algebraic extension, and
so it is a Galois extension. Then by Campbell’s theorem [5], F is invertible and its inverse is
a polynomial map. �

Remark 3.2. By Proposition 2.2, the map φ is injective. In order to prove that it is also
surjective, it is enough to prove that the elements 1 ⊗ Xi, 1 ≤ i ≤ n lie in the image of φ.
Hence Theorem 3.1 provides an effective criterion to check the invertibility of polynomial maps.
Finally when we know that F has a polynomial inverse, the ring C[X] is the same as C[F ] and
therefore it is the Picard–Vessiot ring over C.

Remark 3.3. The criterion given in [15, Proposition 3.1.4(i)] establishes the equivalence of the
invertibility of a polynomial map and the nilpotency of the derivation D = Y1δ1 + · · · + Ynδn,
where Y1, . . . , Yn are additional variables and δ1, . . . , δn are the Nambu derivations. We have
compared this criterion to our criterion in [1] by applying both to the polynomial map associated
to g1 in [8, Example 5.6.8]. We have observed that with our criterion the computation of the
inverse took less than one second whereas with the other criterion the computation was not ended
after one hour of running the program. To implement the criterion in [15, Proposition 3.1.4]
both the computation of the Nambu derivations and the powers of the derivation D implies a big
number of products and is therefore rather time consuming. This criterion is quite useful for
more general rings of coefficients whereas our criterion works very well in positive characteristic.
For more details on it see our recent paper [2].
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