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Abstract. Geometric structures on manifolds became popular when Thurston used them
in his work on the geometrization conjecture. They were studied by many people and they
play an important role in higher Teichmüller theory. Geometric structures on a manifold are
closely related with representations of the fundamental group and with flat bundles. Higgs
bundles can be very useful in describing flat bundles explicitly, via solutions of Hitchin’s
equations. Baraglia has shown in his Ph.D. Thesis that Higgs bundles can also be used to
construct geometric structures in some interesting cases. In this paper, we will explain the
main ideas behind this theory and we will survey some recent results in this direction, which
are joint work with Qiongling Li.

Key words: geometric structures; Higgs bundles; higher Teichmüller theory; Anosov repre-
sentations

2010 Mathematics Subject Classification: 57M50; 53C07; 22E40

1 Introduction

The theory of geometric structures on manifolds was introduced by Cartan and Ehresmann in the
1920s, following the ideas given by Klein in his Erlangen program. This theory became popular
in the 1980s, when Thurston used it in the statement of his Geometrization Conjecture. Since
then, many people contributed important results, see for example [7, 8, 10, 11, 12, 17, 20, 21].

Nowadays, geometric structures on manifols are also important in higher Teichmüller theory,
a research area that arose from the work of Goldman [21], Choi–Goldman [11], Hitchin [27],
Labourie [30], Fock–Goncharov [16]. They studied some connected components of the char-
acter varieties of surface groups in higher rank Lie groups which share many properties with
Teichmüller spaces. They are now called Hitchin components or higher Teichmüller spaces.

The first works which related geometric structures and higher Teichmüller theory are Choi–
Goldman [11] and Guichard–Wienhard [23], showing how the low-rank Hitchin components can
be used as parameter spaces of special geometric structures on closed manifolds. These first
results were then generalized by Guichard–Wienhard [24] and Kapovich–Leeb–Porti [29], who
show that Anosov representations can often be used to construct geometric structures on closed
manifolds.

Higgs bundles are an important tool in higher Teichmüller theory because they can be used to
describe the topology of the character varieties (see for example Hitchin [26, 27], Alessandrini–
Collier [1]). Anyway, they were initially believed to give very little information on the geometry
of a single representation. This point of view is changing, since we have now many examples
where the Higgs bundle can be used to give interesting information on the geometric structures
associated with a certain representation of a surface group.

This paper is a contribution to the Special Issue on Geometry and Physics of Hitchin Systems. The full
collection is available at https://www.emis.de/journals/SIGMA/hitchin-systems.html
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The main purpose of this survey paper is to explain these constructions. The first ones
were presented by Baraglia in his Ph.D. Thesis [9], more recent ones are in Alessandrini–Li
[2, 3, 5], and Collier–Tholozan–Toulisse [14]. The main idea behind these constructions is that a
geometric structure corresponds to a section of a flat bundle which is transverse to the parallel
foliation. The holomorphic structure of the Higgs bundle helps to construct sections, and the
parallel foliation can be described by solving Hitchin’s equations.

I will initially describe the fundamental notions of the theory of geometric structures on
manifolds: the notion of geometry in the sense of Klein, geometric manifolds, the relationship
with the theory of domains of discontinuity for Anosov representations, the relationship with
representations of fundamental groups of manifolds, and the deformation spaces of geometric
structures on a fixed topological manifold, see Section 2.

Then I will give an introduction to character varieties and their relationship with the moduli
space of flat bundles. I will also introduce the subspaces of the character varieties that are most
important in higher Teichmüller theory, see Section 3.

After this, everything is ready to explain the relationship between geometric structures and
flat bundles, via a tool called the graph of a geometric structure, see Section 4.

We will then enter in the main topic of the mini-course, using Higgs bundles and solutions
of Hitchin’s equations to describe flat bundles explicitly and construct geometric structures. In
Section 5 three simple examples are given where this method works and allows us to construct
hyperbolic structures, complex projective structures and convex real projective structures on
surfaces.

Higgs bundles can only describe flat bundles on surfaces, but we also want to describe flat
bundles on higher-dimensional manifolds. See Section 6 for an explanation on how flat bundles on
manifolds of different dimension can be related, and an exposition of interesting open problems
in the theory of geometric manifolds that are related with this issue.

We will finally see how geometric structures on higher-dimensional manifolds can be con-
structed. As a warm-up, in Section 7 we consider the case of 3-dimensional manifolds, and
we see how to construct the convex foliated real projective structures and the anti-de Sitter
structures on circle bundles over surfaces.

In the last part, in Section 8, we will see how the technique works in the case of manifolds of
higher dimension. In this final case, the technical details are more involved and will be mainly left
out. We will see how to construct real and complex projective structures on higher-dimensional
manifolds, and how this result has applications to the theory of domains of discontinuity for
Anosov representations.

This survey paper is based on the lecture notes for the mini-course “Higgs bundles and
geometric structures on manifolds” that I gave at the University of Illinois at Chicago during
the program “Workshop on the Geometry and Physics of Higgs bundles II”, November 11–12,
2017. The mini-course was targeted at graduate students and young post-docs with an interest
in Gauge Theory and Higgs bundles and this survey paper addresses the same public.

2 Geometric structures on manifolds

This section will be an introduction to the theory of geometric structures on manifolds, their de-
veloping maps and holonomy representations. For more details about this theory, see Thurston’s
book [39] or Goldman’s notes [19].

2.1 Geometries

The theory of geometric structures on manifolds traces its origins back to Felix Klein who,
in his Erlangen program (1872) discussed what is geometry. Klein’s idea is that geometry is
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the study of the properties of a space that are invariant under the action of a certain group
of symmetries. The main examples he had in mind were the Euclidean geometry, where the
space is Rn and the group is Isom

(
Rn
)
, and the affine geometry, where the space is Rn and

the group is Aff
(
Rn
)
. These geometries study exactly the same space, but they focus on very

different properties. Euclidean geometry deals with lengths, angles, and circles, the notions that
are invariant under the group of isometries. These notions make no sense in affine geometry,
because they are not preserved by the affine group. Affine geometry, instead, deals with ratios of
lengths, parallelism and ellipses. Klein emphasizes that when studying geometry, the symmetry
group is as important as the space. Let’s now give a definition in modern terms.

Definition 2.1. A geometry is a pair (X,G), where G, the symmetry group is a Lie group and X,
the model space, is a manifold endowed with a transitive and effective action of G. Recall that
an action is effective if every g ∈ G\{e} acts non-trivially on X.

If U ⊂ X is an open subset, we will say that a map f : U → X is locally in G if for every
connected component C of U , there exists g ∈ G such that f |C = g|C .

For x ∈ X, the isotropy group of x in G is the subgroup

H = StabG(x) = {h ∈ G |h(x) = x}.

The isotropy group H is a closed subgroup of G. Since the action is transitive, the conjugacy
class of the isotropy group does not depend on the choice of the point x.

As an equivalent definition, a geometry can be defined as a pair (G,H), where G is a Lie group
and H is a closed subgroup of G, up to conjugation. The model space can then be reconstructed
as the quotient X = G/H. From this description, we see that X inherits from G a structure of
real analytic manifold such that the action of G on X is real analytic.

Example 2.2. Classical examples of geometries are the Euclidean geometry
(
Rn, Isom

(
Rn
))

,
the affine geometry

(
Rn,Aff

(
Rn
))

and the real projective geometry
(
RPn,PGL(n+1,R)

)
. There

are many other examples which we will organize in families.

1. A geometry is said to be of Riemannian type if G acts on X preserving a Riemannian
metric. This happens if and only if the isotropy group is compact. Examples are the
isotropic geometries (the Euclidean geometry

(
Rn, Isom

(
Rn
))

, the hyperbolic geometry(
Hn,PO(1, n)

)
and the spherical geometry

(
Sn,PO(n + 1)

)
), the geometries of symmet-

ric spaces and the geometries of Lie groups ((G,G), where G acts on itself on the left).
Thurston’s eight 3-dimensional geometries [39] are in this family.

2. A geometry is said to be of of pseudo-Riemannian type if G acts on X preserving a pseudo-
Riemannian metric. Examples are many geometries coming from the theory of relativity,
such as the geometry of Minkowski space

(
Rn,O(1, n−1)nRn

)
, of the anti-de Sitter space(

AdSn,PO(2, n− 1)
)
, and of the de Sitter space

(
dSn,PO(1, n)

)
.

3. A geometry is said to be of parabolic type if the isotropy group H is a parabolic subgroup of
G. Examples are the real projective geometry

(
RPn,PGL(n+1,R)

)
, the complex projective

geometry
(
CPn,PGL(n+ 1,C)

)
, the conformal geometry

(
Sn,PO(1, n+ 1)

)
, the geometry

of Grassmannians and of Flag manifolds.

Remark 2.3. The notation (X,G) for a geometry is, in most practical cases, too cumbersome,
hence we will usually denote the geometry just by X, when this does not result in ambiguities.
For example, we will often denote the real projective geometry by RPn, instead of

(
RPn,PGL(n+

1,R)
)
. Similarly for CPn, Hn, AdSn, these symbols will denote both the model space and the

geometry.
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2.2 Geometric manifolds

Every geometry can be used as a local model for geometric structures on manifolds. This idea
was introduced by Cartan and Ehresmann in the 1920s, and it was made popular by Thurston
around 1980, when he used it in the statement of his geometrization conjecture (now Perelman’s
theorem).

Definition 2.4. Given a geometry (X,G) and a manifold M with dim(M) = dim(X), an
(X,G)-structure on M is a maximal atlas U = {(Ui, ϕi)} where

1) {Ui} is an open cover of M ,

2) the functions

ϕi : Ui → X

are homeomorphisms with the image, which is an open subset of X,

3) the transition functions

ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj)

are locally in G.

An (X,G)-manifold is a manifold endowed with an (X,G)-structure.

An (X,G)-manifold is a real analytic manifold, because the transition functions of the atlas
are real analytic. Moreover, on an (X,G)-manifold M , all the local properties of X that are
preserved by G are given to M by the atlas. For example, if (X,G) is of (pseudo-)Riemannian
type, every (X,G)-manifold inherits a (pseudo-)Riemannian metric from X. Similarly, every
manifold with a real or complex projective structure has a well defined notion of projective
line: some real or complex 1-dimensional submanifold that is mapped to a projective line by
any chart. Moreover, given 4 points on such a projective line, it is possible to compute their
cross-ratio.

Example 2.5.

1. For every geometry (X,G), take M = X. The identity map is a global chart for the
tautological (X,G)-structure on M . Slightly more generally, if M ⊂ X is an open subset,
again the identity map is a global chart for an (X,G)-structure on M .

2. Consider the Euclidean geometry:
(
Rn, Isom

(
Rn
))

. Let M be the torus

M = Tn = Rn/Zn.

We can construct an atlas using the covering Rn →M : every well covered open set is one
of the Uis, and every section of the covering over such a Ui is one of the ϕis.

3. Consider the hyperbolic geometry:
(
H2,PO(1, 2)

)
. Let M be a closed surface of genus

g ≥ 2. Recall that such a surface can be obtained by gluing the sides of a (4g)-gon along
the standard pattern a, b, a−1, b−1, c, d, c−1, d−1, . . . , obtaining a cell complex with 1 vertex,
2g edges and 1 face. To put an H2-structure on M , we first need to construct a regular
(4g)-gon in H2 such that the sum of the internal angles of the polygon is 2π

4g . When the
edges of the polygon are glued with the standard pattern, they give a surface of genus g
with an H2-structure.
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4. Consider the real projective geometry:
(
RP2,PGL(3,R)

)
. The subgroup PO(1, 2) <

PGL(3,R) acts on RP2 preserving a disc, this is the Klein model of the hyperbolic plane:
there is a PO(1, 2)-equivariant map K : H2 → RP2 with image this disc. The H2-structure
on M constructed in point (3) induces an RP2-structure by composing the charts with the
map K.

5. Consider the complex projective geometry:
(
CP1,PGL(2,C)

)
. The subgroup PSL(2,R) <

PGL(2,C) acts on CP1 preserving the upper half plane, this is the Poincaré model of
the hyperbolic plane: the connected component PO0(2, 1) of PO(2, 1) is isomorphic to
PSL(2,R) in such a way that there is a PO0(2, 1)-equivariant map P : H2 → CP1 with
image the upper half plane. The H2-structure on M constructed in point (3) induces
a CP1-structure by composing the charts with the map P .b

2.3 Morphisms

Definition 2.6. Given two (X,G)-manifolds M , N , a map f : M → N is an (X,G)-map if for
every m ∈ M , there exist charts (U,ϕ) for M around m and (V, ψ) for N around f(m) such
that f(U) ⊂ V and the composition

ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V )

is locally in G.

The (X,G)-maps are always real analytic local diffeomorphisms. Composition of (X,G)-maps
is an (X,G)-map, hence we can form a category having the (X,G)-manifolds as objects and the
(X,G)-maps as arrows.

Definition 2.7. An (X,G)-isomorphism is a diffeomorhism which is also an (X,G)-map. An
(X,G)-automorphism is an isomorphism between an (X,G)-manifold and itself.

Notice that the inverse of an (X,G)-isomorphism is automatically an (X,G)-map. If M is an
(X,G)-manifold, we will denote its group of automorphisms by

Aut(X,G)(M) = {f : M →M | f is an (X,G)-isomorphism}.

These groups can sometimes be understood:

Proposition 2.8.

Aut(X,G)(X) = G.

More generally, if U ⊂ X is open, then

Aut(X,G)(U) = {g ∈ G | g(U) = U}.

2.4 Kleinian geometric structures

The following proposition gives a tool that can be used to construct many interesting manifolds
carrying geometric structures.

Proposition 2.9. Let M be an (X,G)-manifold, and Γ < Aut(X,G)(M) be a subgroup acting
properly discontinuously and freely on M . Then M/Γ is a manifold, and there exists a unique
(X,G)-structure on M/Γ such that the quotient M →M/Γ is an (X,G)-map.

Conversely, let M be an (X,G)-manifold, and let π : M̄ →M be a covering map. Then there
exists a unique (X,G)-structure on M̄ such that π is an (X,G)-map.
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Definition 2.10. Let Γ < G be a discrete subgroup. A domain of discontinuity for Γ is an open
subset Ω ⊂ X that is Γ-invariant and such that Γ acts properly discontinuously on Ω.

By applying Proposition 2.9, if Ω is a domain of discontinuity for Γ and Γ acts freely on Ω
(which is always true if Γ is torsion-free), then the quotient Ω/Γ is a manifold with an (X,G)-
structure.

Definition 2.11. The geometric structures of the form Ω/Γ described above are called Kleinian
(X,G)-structures.

The theory of Anosov representations, introduced by Labourie [30] and Guichard–Wien-
hard [24], gives methods for constructing interesting Kleinian geometric structures. We will not
give here the complete definition of Anosov representations, we will only recall some of their
properties. Let G be a semi-simple Lie group and Γ be a Gromov-hyperbolic group. Anosov
representations ρ : Γ→ G are defined with reference to a parabolic subgroup P ⊂ G, they will be
called P-Anosov representations. One property of a P-Anosov representation ρ is the existence
of a ρ-equivariant map

ξ : ∂∞Γ→ G/P

which must, by definition, satisfy some special properties. Here with ∂∞Γ we denote the bound-
ary at infinity of Γ, defined by Gromov [22] for hyperbolic groups. The P-Anosov representations
form an open subset of the character variety (see Section 3):

P- Anosov(π1(S),G) ⊂ X (π1(S),G).

When (X,G) is a geometry of parabolic type, whose isotropy group might be different from P,
there is a very rich theory giving sufficient conditions for a P-Anosov representation to admit
a domain of discontinuity Ω ⊂ X, which is, in the best cases, co-compact. The domain Ω is
defined using the map ξ. This theory was founded by Guichard–Wienhard [24], and was improved
and extended by Kapovich–Leeb–Porti [29]. For an example of how this works, see Section 8.2.
In this way, it is possible to construct many examples of Kleinian geometric structures on closed
manifolds for geometries of parabolic type.

One limitation of this method is that even if we construct an (X,G)-manifold M = Ω/ρ(Γ), we
have no idea what the topology ofM is. Other techniques are needed to get a good understanding
of these geometric manifolds, see for example Theorem 8.5.

2.5 Developing maps and holonomies

The Kleinian geometric structures are the easiest to understand, but not all geometric struc-
tures are Kleinian. To work with general geometric structures, we introduce here the tools of
developing maps and holonomy representations.

Lemma 2.12. Let N be a simply-connected manifold (X,G)-manifold. Then N admits a global
(X,G)-map

D : N → X

unique up to post-composition by an element of G.

Proof. Choose a point n0 ∈ N , and a chart (U0, ϕ0) around N . We will extend ϕ0 : U0 → X
to a map D defined on N such that D|U0 = ϕ. For every point n ∈ N , we will define the value
D(n) ∈ X in the following way. Choose a path γ : [0, 1] → N such that γ(0) = n0, γ(1) = n.
We can find charts (U1, ϕ1), . . . , (Uk, ϕk) and points t0, . . . , tk, s0, . . . , sk ∈ [0, 1] such that
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1) 0 = t0 < t1 < s0 < t2 < s1 < t3 < · · · < sk−2 < tk < sk−1 < sk = 1,

2) γ([t0, s0)) = U0 ∩ γ([0, 1]),

3) γ((ti, si)) = Ui ∩ γ([0, 1]),

4) γ((tk, sk]) = Uk ∩ γ([0, 1]).

The path γ((ti, si−1)) is contained in a connected component Ci of Ui−1 ∩ Ui. There exists
a gi ∈ G such that ϕi−1 ◦ ϕ−1

i |ϕi(Ci) = gi|ϕi(Ci). We define

D(n) = g1 ◦ g2 ◦ · · · ◦ gk ◦ ϕk(n).

Now it is necessary to show that the valueD(n) is independent on the choice of the charts (Ui, ϕi),
with i ≥ 1. This is an application of the principle of unique analytic continuation. Then, we
need to show that D(n) does not depend on the choice of the curve γ. This comes from the fact
that M is simply-connected, hence every other curve γ′ is homotopic to γ relatively to the end-
points. This defines a global (X,G)-map D, which depends only on the choice of (U0, ϕ0). The
principle of unique analytic continuation gives the uniqueness of D up to an element of G. �

Given an (X,G)-manifold M , we denote its universal covering by M̃ . By Proposition 2.9,

M̃ inherits an (X,G)-structure from M . Since M̃ is simply-connected, there is a global (X,G)-
map

D : M̃ → X

unique up to post-composition by an element of G.

Definition 2.13. The map D is called the developing map of the (X,G)-manifold M .

The fundamental group π1(M) acts on M̃ by deck transformations. This action preserves the

(X,G)-structure on M̃ , hence we have the inclusion π1(M) < Aut(X,G)(M̃). The composition of
an element γ ∈ π1(M) with the developing map D is again a developing map, hence there exists
an element h(γ) ∈ G such that

D ◦ γ = h(γ) ◦D.

The map h : π1(M) → G is a group homomorphism, and the formula above tells us that the
developing map is h-equivariant.

Definition 2.14. The group homomorphism h is called the holonomy representation of the
(X,G)-manifold M . The pair (D,h) is called the developing pair of the (X,G)-manifold M .

Example 2.15. In the case of a Kleinian geometric structure M = Ω/Γ, for some Ω ⊂ X and
Γ < G, the developing map is a covering

D : M̃ → Ω

and the holonomy representation is a homomorphism

h : π1(M)→ Γ

such that ker(h) = π1(Ω).
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If we change the developing map by post-composing it with an element g ∈ G, the holonomy
representation changes by conjugation by g. In other words, the group G acts on the developing
pairs in the following way:

g · (D,h) =
(
g ◦D, ghg−1

)
.

The developing pair (D,h) of the (X,G)-manifold M is well defined up to this action of G. The
developing pair completely determines the (X,G)-structure on M , as we will now see.

Definition 2.16. Let M be a manifold without a specified (X,G)-structure. We will say that
a pair (D,h) is an (X,G)-developing pair for M if

1) h is a representation h : π1(M)→ G,

2) D is an h-equivariant local diffeomorphism.

Given an (X,G)-developing pair (D,h) for M , we can construct an (X,G)-structure in the

following way: let U be a simply-connected open subset of M , and let s : U → M̃ be a section of
the universal covering. Assume that U is small enough, so that s(U) is an open subset where D
is a diffeomorphism. Then (U,D ◦ s) is a chart, and the collection of all the charts of this type
forms an atlas for a (X,G)-structure on M . This is the unique (X,G)-structure on M with
developing pair (D,h).

2.6 Parameter spaces

Given a fixed manifold M , we want to define a parameter space of all (X,G)-structures on M .

Definition 2.17. We will say that two (X,G)-structures on M are isotopic if there exists
a diffeomorphism f : M → M isotopic to the identity, which is an (X,G)-isomorphism between
the first structure and the second.

We will denote by D(X,G)(M) the set of all the (X,G)-structures on M up to isotopy. The
topology on D(X,G)(M) is given by the C∞-topology on the corresponding developing maps.
Let’s see this in more detail.

Consider the space Dev(X,G)(M) of all (X,G)-developing pairs (D,h) for M . This space is
endowed with the C∞-topology on the developing maps. Given a sequence of developing pairs
(Dk, hk), it is easy to check that if the sequence (Dk) converges to D0 in the C∞-topology, then
the sequence (hk) converges point-wise to h0.

Choose a point m ∈ M , and consider the group Diffeo0(M,m) of all diffeomorphisms of M
that fix the point m and are isotopic to the identity. Every element of this group can be lifted in
a unique way to a diffeomorphism of M̃ that fixes the fiber over m. In this way, Diffeo0(M,m)

acts on M̃ . The group Diffeo0(M,m)×G acts on Dev(X,G)(M) in the following way:

(f, g) · (D,h) =
(
g ◦D ◦ f, ghg−1

)
.

We have that

D(X,G)(M) = Dev(X,G)(M)/Diffeo0(M,m)×G.

In this way, the parameter space of (X,G)-structures on M inherits the quotient topology.

3 Representations and flat bundles

In this section, we review the correspondence between conjugacy classes of representations of
the fundamental group of a manifold and isomorphism classes of flat bundles. We tried to keep
the required Lie theory to a minimum, anyway, for all the Lie-theoretical notions, the reader
can refer to [25, 28, 36].
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3.1 Character varieties

Let Γ be a finitely generated group. Here, the most interesting case is when Γ is the fundamental
group of a closed manifold, but for the moment it can be arbitrary. Let G be a reductive Lie
group with Lie algebra g. We will denote by Hom(Γ,G) the set of all representations (i.e.,
group homomorphisms) of Γ in G, endowed with the topology of point-wise convergence of
representations.

Definition 3.1. A reductive representation of Γ in G is a representation ρ : Γ → G such that
the induced action on g given by the adjoint representation is completely reducible.

Example 3.2. If G is a linear group, then ρ is reductive if and only if it is completely reducible.

We will denote by Hom∗(Γ,G) the subspace of all reductive representations of Γ in G. The
group G acts on Hom∗(Γ,G) by conjugation, and the action is proper. We will denote the
quotient by this action by

X (Γ,G) = Hom∗(Γ,G)/G.

Definition 3.3. The space X (Γ,G) is called the character variety of Γ in G.

Character varieties are Hausdorff topological spaces. They are in general not manifolds since
they can have singularities, but they are always locally contractible.

When Γ = π1(S), for a closed orientable surface S of genus g ≥ 2 and G is a real Lie
group, there are results describing the topology of some connected components of the character
varieties.

Example 3.4.

1. When G = PSL(2,R), Goldman [18] used a topological invariant, the Euler number, to
classify the connected components of the character variety: it has 4g − 3 connected com-
ponents corresponding to the values of the Euler number from 2− 2g to 2g− 2. Moreover
Goldman proved that a representation in PSL(2,R) is discrete and faithful if and only if
it has Euler number ±(2g − 2). Such representations are called Fuchsian representations,
and they form two connected components of the character variety, each of whom is a copy
of the Teichmüller space T (S) of the surface. Hitchin [26] described the topology of all
the connected components with non-zero Euler number.

2. Similarly, when G = PGL(2,R), the set of discrete and faithful representations, again
called Fuchsian representations, forms a connected component of the character variety
which is a copy of the Teichmüller space T (S) of the surface. This component is then
homeomorphic to R6g−6, and it is also denoted by Hit(S, 2), see below.

3. Consider now the case when G = PGL(n,R). A Fuchsian representation in PGL(n,R) is
defined as the composition of a Fuchsian representation in PGL(2,R) with the irreducible
representation PGL(2,R) → PGL(n,R). This construction gives an embedding of the Te-
ichmüller space T (S) in X (π1(S),PGL(n,R)), whose image is called the Fuchsian locus.
Hitchin [27] proved that the connected component of the character variety containing the
Fuchsian locus is homeomorphic to R(n2−1)(2g−2). This component is called the Hitchin
component, and denoted by Hit(S, n). Labourie [30] described the geometry of the rep-
resentations in this component. The Hitchin components share many properties with the
Teichmüller spaces, hence they are sometimes called higher Teichmüller spaces, and they
give the name to higher Teichmüller theory.

4. Hitchin [27] defined special components in the character varieties of all split real simple
Lie groups G. They are homeomorphic to Rdim(G)(2g−2).
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5. The Euler number can be generalized to representations into all Lie groups of Hermitian
type, in this case it is called the Toledo number, see Toledo [40]. Representations with
maximal value of the Toledo number are called maximal representations, and they form
a union of connected components in the corresponding character varieties. This is another
way to generalize Fuchsian representations to higher rank Lie groups. For G = Sp(4,R)
and PSp(4,R), an explicit description of the topology of the maximal components was
determined in a joint work with Brian Collier [1].

When G is a complex Lie group, we don’t have explicit descriptions of connected components
of character varieties. But there are at least some special open subsets that are particularly
interesting. For example, in the character variety of X (π1(S),PGL(2,C)) we have the open subset
of quasi-Fuchsian representations, denoted by QFuch(S). Quasi-Fuchsian representations can
be defined as those representations whose action on CP1 is topologically conjugate to the action
of a Fuchsian representation on CP1. The open subset QFuch(S) is homeomorphic to R12g−12.

Hitchin components generalize Teichmüller spaces to higher rank Lie groups. In a similar
way, there are some special open subsets of the character varieties of a simple complex Lie
group G that generalize the space of quasi-Fuchsian representations. We will call it the space of
quasi-Hitchin representations. To define them, consider the open subset

B- Anosov(π1(S),G) ⊂ X (π1(S),G)

consisting of all B-Anosov representations, where B is the Borel subgroup of G. The space of
quasi-Hitchin representations is then defined as the connected component of B- Anosov(π1(S),G)
containing the Hitchin component of the split real form of G. For the group PGL(n,C), we will
denote the space of quasi-Hitchin representations by QHit(S, n).

3.2 Flat bundles

Let M be a manifold, and let X be a manifold endowed with an effective action of G.

Definition 3.5. A fiber bundle on M with structure group G and fiber X (also called a G-bundle
with fiber X) is a manifold B with a smooth map π : B → M and a maximal G-atlas for π.
Recall that a G-atlas is a set of charts {(Ui, ϕi)} where the Uis are open subsets of M which
cover M , and

ϕi : π−1(Ui)→ Ui ×X

is a diffeomorphism that intertwines π|Ui and the projection on the first factor. The ϕis must
be G-compatible in the following sense: the maps

ϕi ◦ ϕ−1
j : (Ui ∩ Uj)×X → (Ui ∩ Uj)×X

are of the form ϕi ◦ ϕ−1
j (m,x) = (m, tij(m)x), where tij(m) ∈ G. The functions

tij : Ui ∩ Uj → G

are called the transition functions of the atlas.

It is interesting to remark that the bundle is determined up to isomorphism by the transition
functions, and that the transition functions don’t depend at all on the space X. This has the
following consequence: if X,Y are manifolds with effective actions of G, then a bundle B with
structure group G and fiber X, determines a bundle B(Y ) with the same structure group and
fiber Y . The bundle B(Y ) is defined as the bundle with fiber Y having the same transition
functions as the bundle B.
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More generally, given a group homomorphism q : G→ H, assume that X is a manifold with an
effective G-action, Y is a manifold with an effective H-action, and B is a G-bundle with fiber X.
We can apply the construction given above by composing the transition functions of B with the
homomorphism q. This produces an H-bundle B(Y ) with fiber Y .

Definition 3.6. The bundle B(Y ) is called the associated bundle to B with fiber Y .

Example 3.7.

1. The most important example is the special case when X = G, acting on itself on the left.
A bundle with structure group and fiber G is called a principal G-bundle.

2. Another fundamental example is the case when the Lie group G is a linear group, i.e., when
it can be embedded as a Lie subgroup of GL(n,R) or GL(n,C). In this case it admits an
effective linear action on V = Rn or Cn, and a G-bundle with fiber V is called a vector
bundle. Starting from every bundle B with structure group G and some fiber, we can
construct the associated vector bundle B(V ).

3. Similarly, a projective group is a Lie group G that can be embedded as a Lie subgroup of
PGL(n + 1,R) or PGL(n + 1,C). In this case it admits an effective projective action on
P = RPn or CPn, and a G-bundle with fiber P is called a projective bundle. Starting from
every bundle B with structure group G and some fiber, we can construct the associated
projective bundle B(P ).

There is a close relationship between vector bundles and projective bundles. Assume that G
is a linear group, X = Rn+1 or Cn+1, H is the corresponding projectivized group and Y = RPn
or CPn. From every vector bundle E with structure group G, we can construct the associated
projective bundle E(Y ). We will denote E(Y ) by P(E), the projectivized bundle of E.

Definition 3.8. A flat structure on a G-bundle B is an atlas of B satisfying the additional
condition that all transition functions are locally constant, and maximal among all atlases sa-
tisfying this additional condition. A bundle with a flat structure is called a flat bundle, or a local
system.

The flat structure is just a special atlas, hence, as explained above, it does not depend on
the fiber. It is thus possible to construct associated bundles and to replace a flat bundle B with
fiber X by a flat bundle B(Y ) with fiber Y .

If G is a linear group acting on a vector space V = Rn or Cn, starting from every flat bundle B
with fiber X, we can change fiber and construct the vector bundle B(V ), with a flat structure.
A flat structure on a vector bundle can be described by a flat connection, i.e., a connection with
vanishing curvature form. This description is useful for doing computations.

A flat bundle B with fiber X has a well defined foliation, called the parallel foliation, that
can be described in local charts: in π−1(Ui), for every x ∈ X there is a local leaf given by
ϕ−1
i (Ui × {x}). The local foliations defined by the different charts all match up, giving rise to

a global foliation.
A local parallel section of a flat bundle is a section s : U → B defined on an open subset U ,

which is locally constant when restricted to every chart of the flat structure. In other words, it
is a section whose image is contained in a leaf of the parallel foliation. Similarly, given a curve
γ : [0, 1] → M , a parallel section along γ is a section along γ which is locally constant in the
charts.

Using parallel sections, we can define the parallel transport operator along a curve γ : [0, 1]→
M : it is an operator

Pγ : π−1(γ(0))→ π−1(γ(1))
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defined in the following way: given x0 ∈ π−1(γ(0)), there exists a unique parallel section s
along γ such that s(0) = x0. We define Pγ(x0) = s(1). The parallel transport Pγ only depends
on the homotopy class of γ relative to the end points.

3.3 Monodromy

Let π : B → M be a flat G-bundle with fiber X. Given a base point m0 ∈ M , we can use a
chart to identify the fiber π−1(m0) with X. If we change chart, this identification changes by
the action of an element of G. Now the parallel transport Pγ along a loop γ based at m0 is
a map Pγ : X → X, which agrees with the action of an element of G, hence we can write Pγ ∈ G.
Since Pγ only depends on the homotopy class of γ, we get a map

P : π1(M,m0)→ G.

This map behaves well under composition of loops, hence it is a representation. If we change
the chart around m0, the representation changes by conjugation by an element of G.

Definition 3.9. The representation P is called the monodromy representation of the bundle.
We will say that a flat bundle is reductive if the monodromy representation is reductive.

We will denote by Flat(M,G,X) the space of all reductive flat G-bundles with fiber X
up to isomorphism. If X, Y are manifolds with effective actions of G, the associated bundle
construction gives a natural bijection Flat(M,G,X)→ Flat(M,G, Y ). Hence, we can suppress
the X in the notation, and consider the space Flat(M,G), parametrizing reductive flat G-bundles
with any fixed fiber X.

The monodromy representation gives a map

P : Flat(M,G)→ X (π(M), G).

Proposition 3.10. The map P is a bijection.

Proof. The inverse map is given by the following construction. Let ρ : π1(M) → G be a re-

presentation. This gives an action of π1(M) on M̃ × X, acting on the first factor by deck
transformations and on the second factor via ρ. This action is properly discontinuous and free
because the action on the first factor has these properties. Hence, we can construct the manifold

Xρ =
(
M̃ ×X

)
/π1(M).

The projection on the first factor induces a map p : Xρ → M which turns Xρ into a G-fiber

bundle with fiber X. Moreover, the product M̃ ×X induces a flat structure on the bundle. It is
easy to show that the flat bundle Xρ has monodromy ρ, and that any other flat G-bundle with
fiber X and monodromy ρ is isomorphic to Xρ. �

4 The graph of a geometric structure

In this section, we will see how geometric structures correspond to flat bundles with a transverse
section. The flat bundle encodes the holonomy representation of the geometric structure, and
the transverse section encodes the developing map. This construction is described in detail in
Goldman’s notes [19].
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4.1 Sections and equivariant maps

Let ρ : π1(M) → G be a representation, and consider the space Equiv(ρ,X) of smooth ρ-

equivariant maps from the universal covering M̃ to X, endowed with the C∞-topology. Let B
be the a flat bundle over M with fiber X and holonomy ρ, and consider the space Γ(M,B) of
smooth sections of B, endowed with the C∞-topology.

Proposition 4.1. There is a natural homeomorphism between Γ(M,B) and Equiv(ρ,X).

Proof. Recall first that B is isomorphic to Xρ, the bundle defined in the proof of Proposi-

tion 3.10. From the construction of Xρ, we can see that the pull-back of Xρ to M̃ is isomorphic

to a product M̃ ×X, with the product flat structure.

A section s ∈ Γ(M,Xρ) can be pulled back to a section s̃ of M̃ ×X. A section of a product

bundle is just a map s̃ : M̃ → X. The fact that s̃ is a pull-back tells us that this map is
ρ-equivariant. This gives a map between Γ(M,Xρ) and Equiv(ρ,X).

To find the inverse of this map, just notice that a ρ-equivariant map f : M̃ → X is a section
of the product bundle M̃ × X. The fact that f is ρ-equivariant implies that it passes to the
quotient, giving a section [f ] of Xρ.

To check that the maps are continuous, we can work locally on small open sets of M which
are well covered by the universal covering. �

4.2 Transverse sections

Let ρ : π1(M) → G be a representation, and B be the flat bundle over M with fiber X and
holonomy ρ.

Definition 4.2. A section s ∈ Γ(M,B) is transverse if it is transverse to the parallel foliation
of the bundle.

Proposition 4.3. A section s ∈ Γ(M,B) is transverse if and only if the corresponding ρ-
equivariant map is

1) an immersion if dim(M) ≤ dim(X),

2) a submersion if dim(M) ≥ dim(X).

In particular, if dim(M) = dim(X), then s is transverse if and only if the corresponding ρ-
equivariant map is a local diffeomorphism.

Proof. Let f : M̃ → X be the corresponding ρ-equivariant map, and let π : M̃ →M denote the
universal covering. Let v ∈ TxM̃ , and v′ = dπ[v] ∈ Tπ(x)M . Then the differential of f vanishes
at v if and only if the differential of s at v′ is tangent to the parallel foliation. �

Definition 4.4. If dim(M) = dim(X), a graph of an (X,G)-structure is a pair (B, s) where B
is a flat bundle over M with fiber X and s ∈ Γ(M,B) is a transverse section.

Graphs of (X,G)-structures correspond to (X,G)-developing pairs, which determine (X,G)-
structures on M .

Let’s see this more explicitly in the case of real or complex projective structures. Let K be R
or C, and consider the geometry KPn. Given a representation ρ : π1(M) → PGL(n + 1,K), we
want to construct a KPn-structure on M with holonomy ρ. To do this, we need to consider the
flat bundle B over M with fiber KPn and holonomy ρ, and construct a transverse section of B.

This becomes more concrete when ρ lifts to a representation ρ̄ : π1(M)→ GL(n+1,K). In this
case, there is a flat vector bundle E with holonomy ρ̄ such that the projectivized bundle P(E)
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is isomorphic to B. The flat structure on E is described by a flat connection ∇. A section of B
is the same thing as a line subbundle of E. The next proposition shows how it is possible to
verify whether a section of B is transverse with a computation in local coordinates involving the
derivatives with reference to the flat connection on E.

Proposition 4.5. Let E be a flat vector bundle of rank n + 1 over M , and L ⊂ E be a line
subbundle. Then L is a transverse section of P(E) if and only if for every m ∈ M there exists
a coordinate neighborhood U of m (with coordinates x1, . . . , xk, where k = dim(M)) and a local
non-vanishing section s : U → L such that the local vector fields

s,∇∂
∂x1

s, . . . ,∇ ∂
∂xk

s

satisfy one of the following conditions:

1) are linearly independent on U if dim(M) ≤ n,

2) span every fiber over U if dim(M) ≥ n.

4.3 The holonomy map

If G is reductive, we can consider the subspace

D∗(X,G)(M) ⊂ D(X,G)(M)

of all (X,G)-structures on M with reductive holonomy. This subspace has a natural map to the
character variety, given by the holonomy representation:

Hol : D∗(X,G)(M)→ X (π1(M),G).

Theorem 4.6 (Thurston’s holonomy principle). If M is a closed manifold, the map Hol is open
and it has discrete fiber.

Proof. See Goldman [19]. The openness of the map Hol can be proved easily using graphs of
(X,G)-structures. �

When M is closed, the map Hol is very often a local homeomorphism, but not always (for
a counterexample, see Baues [10]). This issue needs to be better understood:

Question 4.7 (refined Thurston’s holonomy principle).

1. Is it true that the map Hol is always a branched local homeomorphism?

2. What are some sufficient conditions for it to be a local homeomorphism?

Other important questions are raised by the fact that the map Hol is in general neither
injective nor surjective.

Question 4.8. Let ρ : π1(M)→ G be a representation. Is there an (X,G)-structure on M with
holonomy ρ? And in the affirmative case, how many are there?

A complete answer to Question 4.8 is known only in very special cases, for example for CP1-
structures on closed surfaces (see Gallo–Kapovich–Marden [17], Goldman [20], Baba [7, 8]). In
the case of RP2-structures on closed surfaces a partial answer is given in Choi–Goldman [12].
The character varieties are much easier to understand than the parameter spaces D∗(X,G)(M),
hence, if we can obtain a better understanding of Question 4.8, we can use our knowledge about
representations to understand parameter spaces of geometric structures.

A plan to answer these questions can be the following: given a representation ρ, we construct
the corresponding flat bundle, and we then try to understand all the possible transverse sections.
An obstacle is that even for representations that we know very well, we don’t always understand
the corresponding flat bundle well enough to see the transverse sections. This is the point when
Higgs bundles can be very useful: they can give an explicit description of the flat bundle.
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5 How to use Higgs bundles?

We will show in some simple examples how Higgs bundles can be used to construct geometric
structures on manifolds. The flat connection can be expressed in terms of solutions of Hitchin’s
equations and the transverse section can be constructed from the study of the holomorphic
structure of the vector bundle. This idea first appeared in Baraglia’s Ph.D. Thesis [9].

5.1 SL(2,R)-Higgs bundles

In this subsection we will describe all the SL(2,R)-Higgs bundles. We will use this description
in Sections 5.2, 5.3, 7.2, and 8.1. Let Σ be a closed Riemann surface.

Definition 5.1. An SL(2,R)-Higgs bundle on Σ is a tuple (E,Q, ω, ϕ), where

1) E is a holomorphic vector bundle on Σ of rank 2,

2) Q : E → E∗ is a holomorphic symmetric C-bilinear form,

3) ω ∈ H0
(
Σ,Λ2E

)
is a holomorphic C-volume form such that Q has volume 1,

4) ϕ ∈ H0(Σ,End(E)⊗K) is Q-symmetric and satisfies tr(ϕ) = 0 (the Higgs field).

The first three conditions say that (E,Q, ω) is a rank 2 vector bundle with an SO(2,C)-
structure. In particular, Λ2E = O.

The structure of such an SL(2,R)-Higgs bundle can be made more explicit. This description
was done by Hitchin [26], who started from a different definition of SL(2,R)-Higgs bundles.
Consider the set of Q-isotropic vectors:

Iso(Q) = {v ∈ E |Q(v, v) = 0}.

In every fiber, this set is the union of two lines. E has two line subbundles whose total spaces
are given by:

L+ =

{
v ∈ Iso(Q) | ∀w ∈ Iso(Q)\ Span(v), i

ω(v, w)

Q(v, w)
> 0

}
,

L− =

{
v ∈ Iso(Q) | ∀w ∈ Iso(Q)\ Span(v), i

ω(v, w)

Q(v, w)
< 0

}
.

Hence, we have E = L+⊕L−. The condition Λ2E = O now says that L+ = L−1
− . To simplify

the notation, we write L = L+, L−1 = L−. The Higgs bundle can be written as

E = L⊕ L−1, Q =

(
0 1
1 0

)
, ω =

i√
2

(
0 1
−1 0

)
, ϕ =

(
0 a
b 0

)
,

where a ∈ H0
(
Σ, L2K

)
, b ∈ H0

(
Σ, L−2K

)
. The condition for the Higgs bundle to be poly-stable

is that:

1. If deg(L) > 0, then b 6= 0.

2. If deg(L) < 0, then a 6= 0.

3. If deg(L) = 0, then a, b 6= 0 or a = b = 0.

In the case when a = b = 0, the Higgs bundle is strictly poly-stable, in all other cases it is stable.
These conditions impose a restriction to the degree of L for a poly-stable SL(2,R)-Higgs bundle:
| deg(L)| ≤ g − 1 (Milnor–Wood inequality).



16 D. Alessandrini

A poly-stable Higgs bundle where L has maximal possible degree (deg(L) = g − 1) is called
a Fuchsian Higgs bundle, and they correspond to Fuchsian representations. The stability condi-
tion b 6= 0 forces L to be a square root of K (we will write L = K

1
2 ). The section b is a constant,

and, up to gauge transformations we can assume b = 1. The section a is a quadratic differential,
we will write a = q2 ∈ H0

(
Σ,K2

)
.

Let H be the Hermitian metric on E that solves Hitchin’s equations.

Proposition 5.2 ([2, Theorem 3.1]). If an SL(2,R)-Higgs bundle is stable, then

H =

(
h 0
0 h−1

)
,

for some real positive h ∈ Γ(Σ, L̄⊗ L).

Proof. Consider the Higgs field Q−1ϕTQ ∈ H0(Σ,End(E)⊗K). Then the metric Q̄T
(
HT
)−1

Q
is a solution of Hitchin’s equations for the Higgs bundle

(
E,Q−1ϕTQ

)
. The fact that ϕ is

Q-symmetric means that ϕ = Q−1ϕTQ, hence H = Q̄T
(
HT
)−1

Q. This, plus the condition
det(H) = 1 implies the statement. �

Let ` be a local holomorphic frame for L. Denote by `′ the dual holomorphic frame on L−1.
The pair (`, `′) is a local frame for E. In this local frame, we can write the flat connection given
by the solutions of Hitchin’s equations in the following way:

∇ = d+H−1∂H + ϕ+H−1ϕ̄TH = d+

(
−∂ log h a+ h2b̄
b+ h−2ā ∂ log h

)
.

The real structure is given by

τ : E 3
(
v1

v2

)
−→

(
0 h
h−1 0

)(
v̄1

v̄2

)
=

(
hv̄2

h−1v̄1

)
∈ E.

And the real locus is given by

ER = {v ∈ E | τ(v) = v}.

5.2 Hyperbolic structures on surfaces

Now we show the simplest example of how to use Higgs bundles to construct geometric structures
with given holonomy. We start with a Fuchsian representation ρ : π1(S) → PSL(2,R), and we
want to construct an H2-structure with holonomy ρ. We will first construct a CP1-structure
with holonomy ρ, and we will then verify that this CP1-structure is actually an H2-structure.

We choose a complex structure Σ on S and we consider the SL(2,R)-Higgs bundle (E,ϕ)
corresponding to a lift of ρ to SL(2,R). Since ρ is Fuchsian, we know that

E = K
1
2 ⊕K−

1
2 , ϕ =

(
0 q2

1 0

)
, q2 ∈ H0

(
Σ,K2

)
.

To construct a CP1-structure on Σ, we need to choose a line subbundle, and prove that it
gives a transverse section of the projectivized bundle P(E). We can choose K

1
2 as a subbundle.

We will use the transversality condition from Proposition 4.5. Given a local section s of K
1
2 , we

can compute the derivatives:

s =

(
1
0

)
, ∇∂

∂z
s =

(
−∂ log h

1

)
, ∇∂

∂z̄
s =

(
0

h−2q̄2

)
.
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Here we computed the derivatives in the complex directions ∂
∂z and ∂

∂z̄ , but to apply Propo-
sition 4.5 we need to transform into derivatives in the real directions. This gives the following
modified condition: the section K

1
2 is transverse if and only if

∀A,B ∈ C, A∇∂
∂z
s+ Ā∇∂

∂z̄
s+Bs = 0 ⇒ A = B = 0.

Substituting, we see that the section K
1
2 is transverse if and only if

∀A,B ∈ C,

{
−A∂ log h+B = 0,

A+ Āh−2q̄2 = 0
⇒ A = B = 0.

If A 6= 0, the second equation is equivalent to

A

Ā
= −h−2q̄2.

This cannot be satisfied because of the following lemma:

Lemma 5.3 (Hitchin [26]). In the above setup, we have∣∣h−2q̄2

∣∣ < 1.

Proof. If q2 = 0, this is obvious. Otherwise, it was proven by Hitchin [26] applying the
maximum principle. �

We have found a graph of a CP1-structure
(
P(E),K

1
2

)
. We denote by D : Σ̃ → CP1 the

corresponding developing map. We can now check that the image of this map never meets RP1,
this is because we wrote the real structure τ explicitly, and it is easy to check that K

1
2 is never

in the real locus:

τ

(
1
0

)
=

(
0
h−1

)
.

Hence we have a developing map

D : Σ̃→ H2.

The holonomy is in PSL(2,R) and hence this CP1-structure is actually an H2-structure.
The map D actually coincides with the harmonic map to the symmetric space coming from

solving Hitchin’s equations. The fact that D is a local diffeo was proved by Sampson [34],
Wolf [42] and Hitchin [26]. The proof given here is Hitchin’s proof.

The case when q2 = 0 is the easiest, but it is particularly interesting. Fuchsian Higgs bundles
with q2 = 0 are called uniformizing Higgs bundles, because they give an alternative proof of
a version of the uniformization theorem. This was done by Hitchin [26] with essentially the
same proof we give here, but without mentioning geometric structures.

Theorem 5.4 (uniformization theorem). Every complex structure Σ on a closed surface S
admits a conformal Riemannian metric of constant curvature −1.

Proof. Choose a square root K
1
2 of the canonical bundle, and take the uniformizing Higgs

bundle with that square root. The equivariant map D constructed above is now conformal: to
see this, notice that

∇∂
∂z̄
s =

(
0

h−2q̄2

)
= 0.

Hence, the pull-back of the hyperbolic metric on H2 is conformal, and it has curvature −1. �
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5.3 Almost-Fuchsian representations

Given a Fuchsian representation in the character variety X (π1(S),PGL(2,R)), we want to deform
it in QFuch(S) ⊂ X (π1(S),PGL(2,C)), the space of quasi-Fuchsian representations. These
representations have a very interesting geometry, and they are holonomies of some very special
CP1-structures called the quasi-Fuchsian CP1-structures.

Definition 5.5. Consider a homeomorphism f : CP1 → CP1 that topologically conjugates the
action of a Fuchsian representation with the action of a quasi-Fuchsian representation ρ. Then
the open subset f

(
H2
)

is a domain of discontinuity for ρ, and S = f
(
H2
)
/ρ(π1(S)) is a surface

with a CP1-structure which is called a quasi-Fuchsian CP1-structure.

We would like to see the quasi-Fuchsian CP1-structures in terms of Higgs bundles, but we
are not able to do this in full generality. We can see this for a special open subset of the quasi-
Fuchsian representations, which is called the space of almost-Fuchsian representations. The
material in this section is part of a joint work with Qiongling Li [3].

Let’s start with a uniformizing Higgs bundle(
K

1
2 ⊕K−

1
2 ,

(
0 0
1 0

))
.

We can deform this Higgs bundle for SL(2,R) to a Higgs bundle for SL(2,C) by changing the
holomorphic structure of the vector bundle. Consider the vector bundle

E = K
1
2 ⊕K−

1
2

endowed with the following holomorphic structure:

∂̄E = ∂̄ +

(
0 0
β 0

)
,

with β ∈ Ω0,1
(
Σ,K−1

)
. In the formula, ∂̄ is the standard holomorphic structure of the direct

sum, which is modified by adding a correction term. Such a bundle is an extension

0→ K−
1
2 → E → K

1
2 → 0.

These extensions are classified by the Dolbeault cohomology class [β] ∈ H1
(
Σ,K−1

)
a space

isomorphic, by Serre’s duality, to the dual of the space of quadratic differentials on Σ. Diffe-
rent βs in the same cohomology class give rise to isomorphic vector bundles. The choice of the
representative β in the class corresponds to a choice of a non-holomorphic section K

1
2 → E,

whose image is the non-holomorphic subbundle appearing in the direct sum.
We consider now the Higgs bundle (E,ϕ), where

E =
(
K

1
2 ⊕K−

1
2 , ∂̄E

)
, ϕ =

(
0 0
1 0

)
.

The Higgs bundles of this form are parametrized by the pair (Σ, [β]). For every quasi-Fuchsian
representation ρ, there exists a lift ρ̄ : π1(S) → SL(2,C) and a pair (Σ, [β]) such that the flat
connection of the corresponding Higgs bundle has monodromy ρ̄ (see [35]). This pair is not
unique in general. Moreover, not all the pairs (Σ, [β]) give rise to a quasi-Fuchsian monodromy.
It is an open problem to distinguish them:

Question 5.6. Given a complex structure Σ, how can we characterize the classes [β]∈H1
(
Σ,K−1

)
such that the flat connection of the corresponding Higgs bundle has quasi-Fuchsian monodromy?
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Answering this question was our initial motivation for trying to construct the quasi-Fuchsian
CP1-structures using Higgs bundles, but, as explained above, we still cannot construct all of
them.

Let’s fix now a pair (Σ, [β]). To construct a CP1-structure on Σ, we need to choose a line

subbundle. We choose the holomorphic subbundle K−
1
2 , and we then have to verify the transver-

sality conditions.

Denote by H the solutions of Hitchin’s equations for the corresponding Higgs bundle. We
can choose the representative β in the Dolbeault cohomology class in a way such that the non-
holomorphic subbundle K

1
2 is H-orthogonal to the holomorphic subbundle K−

1
2 . With this

choice, we can write H as

H =

(
h−1 0

0 h

)
.

We can now write the flat connection:

∇ = d+

(
−∂ log h h2

(
1̄ + β̄

)
1 + β ∂ log h

)
.

Given a local section s of K−
1
2 , we can compute the derivatives:

s =

(
0
1

)
, ∇∂

∂z
s =

(
h2β̄
∂ log h

)
, ∇∂

∂z̄
s =

(
h2

0

)
.

As in the previous subsection, the transversality condition from Proposition 4.5 is equivalent
to the following condition: the section K−

1
2 is transverse if and only if

∀A,B ∈ C, A∇∂
∂z
s+ Ā∇∂

∂z̄
s+Bs = 0 ⇒ A = B = 0.

Substituting, we see that the section K−
1
2 is transverse if and only if

∀A,B ∈ C,

{
Ah2β̄ + Āh2 = 0,

A ∂ log h+B = 0
⇒ A = B = 0.

If A 6= 0, the first equation is equivalent to

Ā

A
= β̄.

If |β| < 1, this cannot be satisfied, hence the section is transverse. The condition |β| < 1 is well
known, see Uhlenbeck [41]:

Definition 5.7. A representation ρ : π1(S) → PGL(2,C) is called almost-Fuchsian if it is the
projectivization of the monodromy of the flat connection of a Higgs bundle associated with a pair
(Σ, [β]), with |β| < 1.

Almost-Fuchsian representations are a special type of quasi-Fuchsian representations having
very good analytic properties. Summarizing, we find the following:

Theorem 5.8 (Alessandrini–Li [3]). Let ρ : π1(S) → PGL(2,C) be an almost-Fuchsian rep-
resentation corresponding to the Higgs bundle (E,ϕ) defined by the pair (Σ, [β]). Then the

holomorphic line subbundle K−
1
2 ⊂ E induces a quasi-Fuchsian CP1-structure with holonomy ρ.
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5.4 Convex real projective structures

Definition 5.9. An RP2-structure on a closed surface S is said to be a convex RP2-structure if
the developing map

D : S̃ → RP2

is a diffeomorphism with an open convex subset of RP2.

Examples of convex RP2-structures were given in Example 2.5, where we have seen that every
H2-structure on S produces such an RP2-structure via the Klein model.

The subset of DRP2(S) consisting of convex real projective structures will be denoted by
Dconv

RP2 (S). The holonomy of these structures is always reductive, hence we have

Hol : Dconv
RP2 (S)→ X (π1(S),PGL(3,R))).

Goldman [21] proved that Dconv
RP2 (S) is connected, hence the image of Hol lies in the Hitchin

component Hit(S, 3). Choi–Goldman [11] proved that Hol gives a homeomorphism between
Dconv

RP2 (S) and Hit(S, 3). This gives a nice geometric interpretation of the Hitchin component as

the parameter space of convex RP2-structures on the surface.

In Baraglia’s thesis [9], he shows how to see these convex RP2-structures using Higgs bundles.
Every ρ ∈ Hit(S, 3) admits a lift to a representation ρ̄ : π1(S) → SL(3,R). By a theorem
of Loftin [33] and Labourie [31], there exists a complex structure Σ and a cubic differential
q3 ∈ H0

(
Σ,K3

)
such that the representation ρ̄ is the monodromy of the flat connection of the

Higgs bundle (E,ϕ), where

E = K ⊕O ⊕K−1, ϕ =

0 0 q3

1 0 0
0 1 0

 .

Baraglia [9] proved that the solutionH of Hitchin’s equations for this Higgs bundle is diagonal:

H =

h−1 0 0
0 1 0
0 0 h

 .

To construct an RP2-structure on Σ, we can choose the section given by the line subbundle O.
We can verify in the usual way that this section is transverse, hence it gives an RP2-structure,
which can be checked to be convex.

When q3 = 0, the representation takes values in SO(1, 2), and the convex set is precisely an
ellipsoid, the Klein model of the hyperbolic plane.

6 Higher-dimensional manifolds

One limitation of the method described in the previous section is that Higgs bundles can only
describe flat bundles on surfaces. We would like to apply similar methods to construct geometric
structures on higher-dimensional manifolds, but we need to find a good way to describe the flat
bundle. This is possible in some special cases, when the representation factors through a surface
group.
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6.1 Sections of the holonomy map

Let N be a closed manifold and G be a reductive Lie group. Consider the character variety

X (π1(N),G).

Sometimes, it is possible to find special open subsets U ⊂ X (π1(N),G) which parametrize
geometric structures on N . To give a meaning to this, we first need to find a manifold X with
a transitive and effective action of G and dim(X) = dim(N). Consider then the holonomy map

Hol : D∗(X,G)(N)→ X (π1(N),G).

We want to find an open subset U ⊂ X (π1(N),G) and a map

T : U → D∗(X,G)(N)

such that Hol ◦ T = IdU . Such a map T is a section of the holonomy map on U . Finding such
a T gives a geometric interpretation to the open subset U : it becomes a parameter space for
a special subset of (X,G)-structures on N .

Example 6.1. In the previous section, we have seen some very interesting examples of this
construction:

X (π1(S),PGL(2,R)) ⊃ Hit(S, 2)→ DH2(S) = T (S),

X (π1(S),PGL(2,C)) ⊃ QFuch(S)→ DCP1(S),

X (π1(S),PGL(3,R)) ⊃ Hit(S, 3)→ Dconv
RP2 (S) ⊂ DRP2(S).

If we want to find more examples like these, the hypothesis that dim(X) = dim(N) becomes
a serious problem: for some groups G we don’t have homogeneous spaces of the correct dimension.
To relax this condition, we will look for geometric structures on another closed manifold M . At
this point, we don’t even need that N is a manifold: the role of π1(N) will be played by a finitely
generated group Γ. Consider the character variety

X (Γ,G).

We want to use an open subset of it to parametrize (X,G)-structures on a closed manifold M
(with dim(M) = dim(X)) which is related with Γ by a group homomorphism α : π1(M) → Γ.
This group homomorphism induces a map

α∗ : X (Γ,G) 3 ρ→ ρ ◦ α ∈ X (π1(M),G).

We want to find an open subset U ⊂ X (Γ,G) and a map

T : U → D∗(X,G)(M)

such that Hol ◦ T = α∗|U . Finding such a map T gives a geometric interpretation to the open
subset U as a parameter space for a special subset of (X,G)-structures on M .

Many examples of this scenario come from the theory of domains of discontinuity for Anosov
representation in geometries of parabolic type (see the discussion at the end of Section 2.3,
Guichard and Wienhard [24] and Kapovich, Leeb and Porti [29]). Assume that G is semi-simple,
P ⊂ G is a parabolic subgroup, Γ is Gromov-hyperbolic and torsion-free, U is a connected
component of P- Anosov(π1(S),G). Then, we need to choose a geometry (X,G) of parabolic
type which is in a special relation with P, in a way that the theory of domains of discontinuity
guarantees the existence of a co-compact domain of discontinuity Ωρ ⊂ X for all the P-Anosov
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representations. Under these hypotheses, the topology of the manifold M = Ωρ/ρ(Γ) does not
depend on ρ, and the map

T : U 3 ρ→ Ωρ/ρ(Γ) ∈ D∗(X,G)(M)

has all the properties listed above. In this way, we give a geometric interpretation to many open
connected subsets of Anosov representations as parametrizing (X,G)-structures on a closed
manifold M . For an example where these hypotheses are satisfied, see Section 8.2.

Even if we know the group Γ, we usually have no idea what the topology of M is:

Question 6.2. For some connected component U of P- Anosov(π1(S),G), understand the map

T : U → D∗(X,G)(M).

The first step is to determine the topology of M .

6.2 Transverse maps and transverse submanifolds

Let Γ be a finitely generated group, and ρ : Γ→ G a representation.

Definition 6.3. Let M be a manifold. A representation ρ̄ : π1(M) → G factors through ρ if
there exists a group homomorphism α : π1(M)→ Γ such that ρ̄ = ρ ◦ α.

Assume now that Γ = π1(N) for some manifold N . If N is aspherical (for example, if N is
a surface), then every group homomorphism α : π1(M) → π1(N) is induced by a smooth map
f : M → N , i.e., α = f∗. If N is not aspherical, this is not automatic.

Definition 6.4. Let ρ : π1(N) → G be a representation. A representation ρ̄ : π1(M) → G
strongly factors through ρ if there exists a smooth map f : M → N such that ρ̄ = ρ ◦ f∗.

In this case, the representation ρ̄ is the monodromy of a flat bundle p̄ : B̄ →M , with fiber X,
and ρ is the monodromy of a flat bundle p : B → N , with fiber X, where (X,G) is a geometry.
The former bundle is isomorphic to the pull-back of the latter by the map f :

B̄ = f∗B.

Consider the following commutative diagram:

B̄
f+−→ B

p̄

y p

y
M

f−→ N.

Proposition 6.5. There is a homeomorphism between Γ(M, B̄), the space of smooth sections
of B̄, and the space of smooth functions s : M → B satisfying p ◦ s = f , endowed with the C∞

topology. The homeomorphism is given by

Γ(M, B̄) 3 s̄→ s = s̄ ◦ f+ ∈ C∞(M,B),

where f+ : B̄ → B is the map given by the pull-back.

Now let’s change perspective and think that we don’t know the map f : M → N in advance.
Let’s just start from a map s : M → B. From s, we can construct a map f = p ◦ s : M → N ,
a representation ρ̄ = ρ ◦ f∗, a flat bundle B̄ = f∗B and a section s̄ ∈ Γ(M,f∗B). We will call
the section s̄ the tautological section, because it is just a reinterpretation of the map s as section
of a bundle.
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Definition 6.6. We will say that a smooth map M → B is a transverse map if it is transverse
to the parallel foliation of the flat bundle B.

Proposition 6.7. The map s is a transverse map if and only if the tautological section s̄ ∈
Γ(M,f∗B) is a transverse section.

We can summarize the constructions in this subsection with the following proposition.

Proposition 6.8. Let ρ : π1(N) → G, and B be a flat bundle with holonomy ρ and fiber X,
where (X,G) is a geometry. Every (X,G)-structure on some manifold M with holonomy that
strongly factors through ρ comes from a transverse map M → B.

From this proposition we see that we can construct geometric structures on a manifold of
higher dimension than N , by only understanding the parallel foliation of a flat bundle over N .

Recall that, when dim(M) = dim(X), transverse maps are always immersions. An interesting
special case is when the transverse map is an embedding. In that case we can confuse the map
with its image, a submanifold of B. Even more interesting is the case when the submanifold is
a subbundle of B (not necessarily with structure group G).

Definition 6.9. A transverse submanifold of B is a submanifold that is transverse to the parallel
foliation of B. A transverse subbundle is a subbundle that is a transverse submanifold.

Transverse submanifolds and transverse subbundles of B can be constructed without any
a priori knowledge of M , for example as zero loci of systems of equations defined on B. In the
case of a transverse subbundle, we can hope to get an explicit description of its topology.

This discussion suggests a reformulation of Question 6.2:

Question 6.10. With the notation of Question 6.2, add the hypothesis that Γ = π1(N) is the
fundamental group of a closed aspherical manifold N . Is it true that M is homeomorphic to
a fiber bundle over N?

This question generalizes a conjecture by Dumas and Sanders:

Conjecture 6.11 (Dumas–Sanders [15]). Let G be a simple complex Lie group and ρ : π1(S)→ G
be a quasi-Hitchin representation. Consider a geometry (X,G) of parabolic type, and assume
that ρ has a co-compact domain of discontinuity Ω ∈ X coming from the construction of
Kapovich, Leeb and Porti [29]. Then the manifold Ω/ρ(π1(S)) admits a continuous fiber bundle
map to the surface S.

We can prove this conjecture in some special cases, see Section 8.2.

In the following we will assume that N is a closed surface. In this case we can use Higgs
bundles to describe the bundle B and construct geometric structures on higher-dimensional
manifolds by finding transverse subbundles of B.

7 Geometric structures on circle bundles over surfaces

We will now show examples where we can construct transverse subbundles which are 3-dimen-
sional manifolds. In this case they are circle bundles over surfaces. The case of manifolds of
dimension higher than 3 is more complicated, and it will be treated in the next section.
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7.1 Convex-foliated real projective structures

Let’s consider the Hitchin component

Hit(S, 4) ⊂ X (π1(S),PGL(4,R)).

We can here see an example of the ideas explained in Section 6.1 about how to interpret this
component as parameter space for a special subset of RP3-structures on T 1S, the unit tangent
bundle of the surface.

Guichard–Wienhard [23] proved that every ρ ∈ Hit(S, 4) has a co-compact domain of dis-
continuity Ωρ ⊂ RP3 which has two connected components Ωρ = Ω+

ρ ∪ Ω−ρ . One of the two
(say Ω+

ρ ) has the property that the quotient Ω+
ρ /ρ(π1(S)) is homeomorphic to T 1S, and that its

RP3-structure is of a special type, called a convex foliated RP3-structure.
This gives a map

Hit(S, 4)→ D(X,G)

(
T 1S

)
that they prove to be a homeomorphism onto a connected component of D(X,G)

(
T 1S

)
containing

exactly all convex foliated RP3-structures on T 1S ([23]).
We can construct some of these structures using Higgs bundles. In this way we can see some

properties of these structures that where not known before.
Every ρ ∈ Hit(S, 4) admits a lift to a representation ρ̄ : π1(S) → SL(4,R). By a theorem of

Labourie [32], there exists a complex structure Σ, a square root K
1
2 of the canonical bundle and

differentials q3, q4 with q3 ∈ H0
(
Σ,K3

)
and q4 ∈ H0

(
Σ,K4

)
such that the representation ρ̄ is

the monodromy of the flat connection of the following Higgs bundle:

E = K
3
2 ⊕K

1
2 ⊕K−

1
2 ⊕K−

3
2 , ϕ =


0 0 q3 q4

1 0 0 q3

0 1 0 0
0 0 1 0

 .

In Baraglia’s thesis [9], he considered the special case when the image of ρ is contained in
PSp(4,R). In terms of Higgs bundles, this corresponds to the case when q3 = 0. This belongs
to a special type of Higgs bundles called cyclic Higgs bundles, and Baraglia proved that, in this
case, the solution H of Hitchin’s equations is diagonal

H =


h1 0 0 0
0 h2 0 0
0 0 h3 0
0 0 0 h4

 .

We can then write the real structure

τ : E 3


v1

v2

v3

v4

→

h4v̄4

h3v̄3

h2v̄2

h1v̄1

 ∈ E.
The real locus of E is the real vector bundle

Re(E) = {v ∈ E | τ(v) = v}.

We want to construct RP3-structures, hence we set X = RP3. The flat bundle B with
monodromy ρ and fiber X is B = P(Re(E)).
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We now want to find a transverse subbundle. Consider

M = P





0
v2

v3

0

 ∈ B ∣∣∣ v2 = h3v̄3


 .

This is a circle bundle over Σ, isomorphic to the unit tangent bundle. To check that it is
transverse, we will put local coordinates on M , using a local holomorphic coordinate z on Σ,
and a real coordinate θ on the circle fiber. For every s local section, we compute the derivatives

∇∂
∂z
s, ∇∂

∂z̄
s, ∇∂

∂θ
s.

We can then check the transversality condition:

∀A ∈ C, ∀B,C ∈ R, A∇∂
∂z
s+ Ā∇∂

∂z̄
s+B∇∂

∂θ
s+ Cs = 0 ⇒ A = B = C = 0.

After the transversality condition has been verified, Baraglia also proves that these RP3-struc-
tures are convex foliated. In this way, he obtains the following new result:

Theorem 7.1 (Baraglia [9]). For every convex foliated RP3-structure on T 1S with holonomy in
PSp(4,R), there exists a map T 1S → S which is a circle bundle and has the property that every
circle fiber is a projective line for the RP3-structure.

This statement is completely geometric, but there is no known geometric proof of it, the
only proof is the one with Higgs bundles. We conjecture that the same statement is true in
general, for all convex foliated RP3-structures also when the holonomy is not restricted to be
in PSp(4,R).

Working with Qiongling Li, we explored and modified this construction. With the same Higgs
field as before, we noticed that the other choice of subbundle

M ′ = P




v1

0
0
v4

 ∈ B ∣∣∣ v1 = h4v̄4




is also a transverse subbundle, and gives the other RP3-structure we discussed before, the one
given by Ω−ρ /ρ(π1(S)). This is a circle bundle over S with Euler class 6g − 6.

We then changed the Higgs field, considering the case when q4 = 0, but q3 6= 0. For this kind
of Higgs bundles, the solution of Hitchin’s equations are again diagonal (see Collier–Li [13]), and
the construction can be applied in a similar way.

Moreover, since the transversality condition is an open condition, we can also understand the
cases when at least one of q3, q4 is small enough:

Theorem 7.2 (Alessandrini–Li, work in progress). Let ρ ∈ Hit(S, 4) be a representation such
that the corresponding Higgs bundle has the form given above, with the additional hypothesis that
at least one between q3 and q4 is small enough. Then the two RP3-structures M = Ω+/ρ(π1(S))
and M ′ = Ω−/ρ(π1(S)) have the property that there exist maps M → S and M ′ → S which are
circle bundles with the property that every circle fiber is a projective line for the RP3-structure.
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7.2 Closed anti-de Sitter 3-manifolds

Consider a symmetric bilinear form Q on R4 of signature (2, 2). This form is preserved by the
group O(2, 2) which has four connected components. The connected component of the identity
is called SO0(2, 2).

On RP3, this form defines the open subset

AdS3 =
{

[v] ∈ RP3 |Q(v, v) > 0
}
.

Let PO(2, 2) be the projectivization of O(2, 2), and PO0(2, 2) the connected component of the
identity. The geometry

(
AdS3,PO(2, 2)

)
is called the 3-dimensional anti-de Sitter geometry, and

it is a geometry of pseudo-Riemannian type, carrying an invariant pseudo-Riemannian metric
of signature (2, 1).

We can construct the bilinear form Q in the following special way. Consider the vector
space R2 with a volume form ω. This volume form is preserved by the group SL(2,R). On
the tensor product R4 = R2 ⊗ R2 we have a bilinear form Q = ω ⊗ ω. This bilinear form is
symmetric and it has signature (2, 2). This construction shows us how SL(2,R)× SL(2,R) acts
on R4 preserving Q. This gives a homomorphism

SL(2,R)× SL(2,R)→ SO0(2, 2),

which induces an isomorphism

PSL(2,R)× PSL(2,R)→ PO0(2, 2).

We will consider a representation ρ : π1(S)→ PO0(2, 2) which can be lifted to a representation
ρ̄ : π1(S) → SL(2,R) × SL(2,R). The corresponding Higgs bundle can be written as the tensor
product of two Higgs bundles for SL(2,R): given two Higgs bundles for SL(2,R)

E1 = L1 ⊕ L−1
1 , Q1 =

(
0 1
1 0

)
, ω1 =

i√
2

(
0 1
−1 0

)
,

ϕ1 =

(
0 a1

b1 0

)
, H1 =

(
h−1

1 0
0 h1

)
,

E2 = L2 ⊕ L−1
2 , Q2 =

(
0 1
1 0

)
, ω2 =

i√
2

(
0 1
−1 0

)
,

ϕ2 =

(
0 a2

b2 0

)
, H2 =

(
h−1

2 0
0 h2

)
,

we can form their tensor product

E = E1 ⊗ E2 = L1L2 ⊕ L1L
−1
2 ⊕ L

−1
1 L2 ⊕ L−1

1 L−1
2 , ϕ =


0 a2 a1 0
b2 0 0 a1

b1 0 0 a2

0 b1 b2 0

 .

The solutions of Hitchin’s equations for this Higgs bundle are given by

H =


h−1

1 h−2
2

h−1
1 h2

h1h
−1
2

h1h2

 .

We now want to construct an AdS3-structure on a 3-manifold with this holonomy. To do so,
we will first construct an RP3-structure, then we verify that the image of the developing map
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lies inside AdS3 by writing the bilinear form Q = ω ⊗ ω explicitly. Since the developing map
goes to AdS3 and the holonomy is in PO(2, 2), the structure we are constructing is actually an
AdS3-structure.

We consider the following subbundle:

M = P
(

Re
(
L1L2 ⊕ L−1

1 L−1
2

))
.

We then start to verify the transversality condition in the usual way. But we notice that the
condition is not always verified.

To state the result we need to recall that the solutions of Hitchin’s equations for an SL(2,R)-
Higgs bundle describe an equivariant harmonic map to the hyperbolic plane. So we have the
two harmonic maps

f1, f2 : Σ̃→ H2.

We will denote by g̃1, g̃2 the two pull-backs of the hyperbolic metric to Σ̃. These tensors
are π1(Σ)-invariant, hence they define two tensors g1, g2 on Σ. These symmetric tensors are
called the pull-back metrics, even though they are not always Riemannian metrics, they can be
degenerate at some points.

Definition 7.3. The SL(2,R)-Higgs bundle (E1, Q1, ω1, ϕ1) dominates (E2, Q2, ω2, ϕ2) if

g1 − g2 > 0,

i.e., if the symmetric tensor g1 − g2 is positive definite.

Theorem 7.4 (Alessandrini–Li [2]). The subbundle M is a transverse subbundle if and only if
the SL(2,R)-Higgs bundle (E1, Q1, ω1, ϕ1) dominates (E2, Q2, ω2, ϕ2).

In the theory of anti-de Sitter 3-manifolds, there exists a necessary and sufficient condition
for the representation ρ to be the holonomy of an anti-de Sitter structure on a closed manifold.
It was shown by Tholozan [37] that this condition is equivalent to the existence of a complex
structure Σ on S such that (E1, Q1, ω1, ϕ1) dominates (E2, Q2, ω2, ϕ2). It follows that with
Higgs bundles we can construct all closed anti-de Sitter 3-manifolds with holonomy that lifts to
SL(2,R)× SL(2,R).

Our main motivation for this work was to use the special parametrization that the Higgs
bundle give to the manifold M to explicitly compute invariants of the anti-de Sitter structure,
such as the volume. The computation of the volume of the closed anti-de Sitter 3-manifolds was
an open problem that was solved shortly before us by Tholozan [38].

Theorem 7.5 (Tholozan [38], Alessandrini–Li [2]). The volume of the anti-de Sitter structure
constructed on M is

Vol(M) = π2 |deg(L1) + deg(L2)| .

8 Projective structures with Hitchin
or quasi-Hitchin holonomies

In the previous section we presented examples of constructions of geometric structures on 3-
dimensional manifolds. Now we will see how to apply the method to higher-dimensional mani-
folds. The general strategy is similar, but the technical details are more complicated.

Hitchin and quasi-Hitchin representations act on odd-dimensional real and complex projec-
tive spaces admitting a co-compact domains of discontinuity (Guichard–Wienhard [24]). The
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quotient of this domain is a closed manifold with a projective structure. The holomorphic
structure of the Higgs bundles and the solutions of Hitchin’s equations help us to construct the
same projective structure using Higgs bundles, in this way we can determine the topology of the
manifold. This is joint work with Qiongling Li [5].

Another construction of geometric structures on higher-dimensional manifolds using Higgs
bundles was done by Collier, Tholozan and Toulisse [14]. They constructed photon structures
whose holonomy factors through maximal representations in O(2, n). This work was not dis-
cussed during the mini-course for lack of time.

8.1 Construction of real and complex projective structures

Consider a representation ρ : π1(S)→ PGL(2n,R) in the Fuchsian locus of the Hitchin component
Hit(S, 2n). Recall from Example 3.4 that such a representation is the composition of a Fuchsian
representation in PGL(2,R) with the irreducible representation PGL(2,R) → PGL(2n,R). We
now want to construct RP2n−1 and CP2n−1-structures with holonomy that factors through ρ.
Let’s start with the corresponding uniformizing Higgs bundle for SL(2,R):

E = K
1
2 ⊕K−

1
2 , Q =

(
0 1
1 0

)
, ω =

i√
2

(
0 1
−1 0

)
,

ϕ =

(
0 0
1 0

)
, H =

(
h−1 0

0 h

)
.

The composition with the irreducible representation corresponds, in terms of Higgs bundles,
to the symmetric tensor product

S(E) = Symm2n−1(E).

To make our formulae more explicit and more readable, we will write them only for n = 3,
but similar formulae work for every n

S(E) = K
5
2 ⊕K

3
2 ⊕K

1
2 ⊕K−

1
2 ⊕K−

3
2 ⊕K−

5
2 , S(ϕ) =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 .

The solution of Hitchin’s equations and the real structure are as usual given by

S(H) =

h1

. . .

h6

 , τ : S(E) 3

v1
...
v6

→
h6v̄6

...
h1v̄1

 ∈ S(E).

We will consider the subbundles defined by the following equations:

UC = P




h
− 1

2
1 t1

...

h
− 1

2
6 t6


∣∣∣∣∣∣∣∣ t1t̄2 + t3t̄4 + t5t̄6 = 0


 , UR = UC ∩ P (Re(E)) .

Similar formulae define these subbundles for every n.
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Theorem 8.1 (Alessandrini–Li [5]). The subbundle UC is a transverse subbundle of P(E), hence
it supports a CP2n−1-structure whose holonomy factors through ρ.

The subbundle UR is a transverse subbundle of P(Re(E)), hence it supports an RP2n−1-
structure whose holonomy factors through ρ.

This method of constructing projective structures has the merit that we can see explicitly
the topology of the manifold that supports the structure. Consider the spaces

FR = T 1RPn−1, FC =
(
T 1S2n−1

)
/U(1),

where U(1) acts on the unit sphere in a complex vector space S2n−1 ⊂ Cn by component-wise
multiplication by a complex number; this action is then lifted to the unit tangent bundle using
the differential. Both spaces carry an action of SO(2): on T 1RPn−1, the action of SO(2) is given
by the geodesic flow, which is periodic. Similarly, SO(2) acts via the geodesic flow on T 1S2n−1,
and this action commutes with the action of U(1), hence it descends to an action on the quotient.

Theorem 8.2 (Alessandrini–Li [5]). Let P be a principal SO(2)-bundle with Euler class 2g− 2.
Then

1) UR ' P
(
FR), for n ≥ 3,

2) UC ' P
(
FC), for n ≥ 2.

Since the Euler number completely determines a principal SO(2)-bundle, this result com-
pletely determines the topology of the manifolds UR and UC.

Remark 8.3. We can apply the same technique to other representations, namely the ones
which are composition of a Fuchsian representation in SL(2,R) with the diagonal representation
SL(2,R) → SL(2n,R). Again we can find transverse subbundles and construct RP2n−1 and
CP2n−1-structures on these manifolds [5]. This part is less interesting though, since the same
construction can be done in a completely geometric way, without using Higgs bundles at all,
thanks to the special geometry of the diagonal representation. The interesting thing about the
result for the irreducible representation of SL(2,R) is that it is very hard to see these transverse
subbundles using only geometry.

8.2 Domains of discontinuity

Let K = R or C, Γ be a Gromov-hyperbolic group and ρ : Γ → PGL(2n,K) be a representation
which is P-Anosov, where P is the stabilizer of an (n − 1)-dimensional projective subspace.
The space G/P can be identified with the Grassmannian Gr

(
n,K2n

)
, which parametrizes the

n-dimensional linear subspaces of K2n. The Anosov property gives us the ρ-equivariant map

ξ : ∂∞Γ→ Gr
(
n,K2n

)
.

Guichard–Wienhard [24] used this map to construct a co-compact domain of discontinuity for
the action of ρ in KP2n−1. We first define the ρ-equivariant compact subset

KK
ρ =

⋃
t∈∂∞Γ

[ξ(t)] ⊂ KP2n−1,

which is the complement of the ρ-equivariant open subset

ΩK
ρ = KP2n−1\K.

Theorem 8.4 (Guichard–Wienhard [24]). If ρ is a P -Anosov representation in PGL(2n,K),
then ρ acts on ΩK

ρ properly discontinuously and co-compactly.



30 D. Alessandrini

If Γ is torsion-free, we can construct the quotient manifold MK = ΩK
ρ /ρ(Γ), a closed manifold

carrying a KP2n−1-structure. The topology of MK is constant when ρ varies in a connected
component U of P-Anosov(Γ,PGL(2n,K)). In this way, we get a map

T : U → D∗KP2n−1

(
MK),

which gives an example of the construction described in Section 6.1.
Now let’s assume that Γ = π1(S) is a surface group, and that the connected component U we

have chosen is the Hitchin component Hit(S, 2n) when K = R, and the space of quasi-Hitchin
representations when K = C. In these cases we can understand the topology of MK, using our
construction with Higgs bundles in the previous section.

Theorem 8.5 (Alessandrini–Li [5]). For n ≤ 63, MK is diffeomorphic to UK.

Proof. For a representation ρ in the Fuchsian locus, we constructed a KP2n−1-structure on the
manifold UK. We can explicitly compute the developing map of this structure, and we can prove
that this structure is isomorphic to the structure ΩK

ρ /ρ(π1(S)) if and only if a certain explicit
n × n matrix is positive definite. We then used the computer to check whether the matrix is
actually positive definite. Unfortunately, since with the computer we could only check finitely
many values of n, we stopped after n = 63. �

We believe the result to be true for every value of n, but we don’t have a general proof yet.
Together with Theorem 8.2, this result completely describes the topology of MK. Moreover,
this result describes some interesting properties of the geometry of the projective structure on
ΩK
ρ /ρ(π1(S)) when ρ is close enough to the Fuchsian locus. In particular, Theorem 8.5 proves

that, for n ≤ 63, the manifold MC, is diffeomorphic to a fiber bundle over the surface: this
result proves Conjecture 6.11 by Dumas and Sanders in this special case.

The topology of the manifold MR was also studied by Guichard and Wienhard (announced in
[24, Remark 11.4(ii)]). They also saw that it is diffeomorphic to a fiber bundle over the surface
with fiber FR.

More recent work about Conjecture 6.11 uses different methods, which don’t involve Higgs
bundles. In a joint work with Qiongling Li [4], we proved the following theorem.

Theorem 8.6 (Alessandrini–Li [4]). Let Ω be the domain of discontinuity described in [24] of a
quasi-Hitchin representation ρ, where:

1) ρ : π1(S)→ PGL(2n,C), and Ω ⊂ CP2n−1, or

2) ρ : π1(S)→ PGL(n,C), and Ω ⊂ F1,n−1, the partial flag manifold parametrizing flags made
of lines and hyperplanes.

Then, for every n, the quotient M = Ω/π1(S) is homeomorphic to the total space of a continuous
fiber bundle over S.

This theorem proves Conjecture 6.11, for infinitely many cases. The method we use for the
proof has broader scope than the method we used to prove Theorem 8.5, but it does not allow us
to completely understand the topology of the fiber, nor it gives information about the geometric
structures.

In a joint work with Maloni and Wienhard [6], we proved Conjecture 6.11 in another case:

Theorem 8.7 (Alessandrini–Maloni–Wienhard). Let ρ : π1(S) → PSp(4,C) be a quasi-Hitchin
representation, and let Ω be the domain of discontinuity described in [24] of ρ in Lag

(
C4
)
, the

Lagrangian Grassmannian of C4. Then the quotient M = Ω/π1(S) is homeomorphic to the total
space of a continuous fiber bundle over S.

The work continues giving an explicit description of the fiber. Conjecture 6.11 is still open
in general, and it is the subject of active research.
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