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Abstract. We study Hecke operators on vector-valued modular forms for the Weil repre-
sentation ρL of a lattice L. We first construct Hecke operators Tr that map vector-valued
modular forms of type ρL into vector-valued modular forms of type ρL(r), where L(r) is the
lattice L with rescaled bilinear form (·, ·)r = r(·, ·), by lifting standard Hecke operators for
scalar-valued modular forms using Siegel theta functions. The components of the vector-
valued Hecke operators Tr have appeared in [Comm. Math. Phys. 350 (2017), 1069–1121]
as generating functions for D4-D2-D0 bound states on K3-fibered Calabi–Yau threefolds.
We study algebraic relations satisfied by the Hecke operators Tr. In the particular case
when r = n2 for some positive integer n, we compose Tn2 with a projection operator to
construct new Hecke operators Hn2 that map vector-valued modular forms of type ρL into
vector-valued modular forms of the same type. We study algebraic relations satisfied by the
operators Hn2 , and compare our operators with the alternative construction of Bruinier–
Stein [Math. Z. 264 (2010), 249–270] and Stein [Funct. Approx. Comment. Math. 52 (2015),
229–252].
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1 Introduction

The intricate mathematical consistency required of physical theories often yields new, unex-
pected structures in mathematics. For example, it is frequently the case that observables in
string theory and gauge theory must have strong invariance properties, which may be far from
obvious mathematically. In many instances these invariance properties can be formulated math-
ematically in terms of modularity statements.

For instance, BPS degeneracies for a particular type of bound states in type IIA string
theory were studied in [5], namely vertical D4-D2-D0 bound states in K3-fibered Calabi–Yau
threefolds. This problem is closely related to black hole entropy [23, 31] and BPS algebras
[16, 17]. Mathematically, these D4-D2-D0 bound states can be formulated in terms of generalized
Donaldson–Thomas invariants [5, 15]. Physics says that the generating function for such bound
states must have strong modularity properties. More precisely, it must be a vector-valued
modular form for the Weil representation of a rescaled version of the lattice polarization of the
underlying threefold. In [5], a formula for this generating function was obtained, and modularity
was proved through explicit (but rather tedious) calculations. Indeed, the proof of modularity
was rather technical, while the appearance of modularity hints at a deeper theory. The original
motivation for the current paper is to develop a mathematical theory underlying modularity of
these generating functions.

This paper is a contribution to the Special Issue on Moonshine and String Theory. The full collection is
available at https://www.emis.de/journals/SIGMA/moonshine.html
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It turns out that the modularity properties of these generating functions can be understood
in terms of Hecke operators on vector-valued modular forms for the Weil representation. In this
paper, we construct these Hecke operators and study their algebraic properties.

A key ingredient in our construction is the Weil representation [32], which is a representation
of the metaplectic cover of the modular group on the group algebra of the discriminant form of an
even integral lattice L. The Weil representation appears naturally in [5], but it also plays a role
in various other contexts, for instance in the construction of generalized Kac–Moody algebras
whose denominator identity is an automorphic product (see for example [9, 19, 26, 27, 28]).
A well known example of vector-valued modular forms for the Weil representation consists of
theta functions for the positive definite rank 1 lattice Z/2mZ. The fundamental idea behind our
construction is to use Siegel theta functions to lift Hecke operators on scalar-valued modular
forms to Hecke operators on vector-valued modular forms for the Weil representation. We remark
that in the case of positive definite lattices, Martin Raum has already studied Hecke operators
between vector-valued modular forms for different Weil representations using Jacobi forms [24].
We generalize this to the indefinite case, and, notably, we also construct Hecke operators that
map vector-valued modular forms for a given Weil representation to vector-valued modular
forms of the same Weil representation. In addition, Hecke operators on rank 1 Jacobi forms
were studied by Eichler and Zagier in [13]. Our operators are a generalization of these in view of
the bijective correspondence between Jacobi forms of weight k and index m (k,m ∈ N) to vector-
valued modular forms of weight k− 1

2 for the Weil representation of the lattice
(
Z, q(x) = −mx2

)
(see [13, Chapter 2]).

We note that alternative constructions of Hecke operators on vector-valued modular forms
already exist in the literature [1, 8, 18, 24, 25, 29, 33, 34], but our construction is more general
and, arguably, rather straightforward. It may also be possible to generalize our construction
beyond the Weil representation as we will outline in Section 1.2.2.

In any case, for completeness, in this work we also compare our construction to the alternative
framework proposed by Bruinier and Stein in [8, 29].

Let us now summarize the main results of this paper.

1.1 Summary of results

Let L be an even non-degenerate integral lattice of signature (b+, b−) with bilinear form (·, ·),
and A = L′/L be the associated discriminant form with Q/Z-valued quadratic form q(·) =
1
2(·, ·). We denote by L(r) the lattice L with the rescaled bilinear form (·, ·)r = r(·, ·), and by
A(r) = L′(r)/L(r) its associated discriminant form, with Q/Z-valued rescaled quadratic form
qr(·) = 1

2(·, ·)r.

1.1.1 Hecke operators between Weil representations

Let {eλ}λ∈A be the standard basis for the vector space C[A], and ψ(τ) =
∑
λ∈A

ψλ(τ) eλ be vector-

valued modular of weight (v, v̄) for the Weil representation ρL associated to L. Our first result
is the construction of Hecke operators Tr that map vector-valued modular forms1 of type ρL to

1By vector-valued modular forms here and in the rest of the introduction we simply mean C[A]-valued real an-
alytic functions that transform as vector-valued modular forms under the Weil representation – see Definition 2.1.
As explained in Remark 2.2, we do not impose a growth condition, or holomorphicity (meromorphicity) at the
cusps, or some condition involving the Laplacian. We also include “Jacobi-like” variables in the definition – see
Remark 2.3.
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vector-valued modular forms of type ρL(r). These Hecke operators are defined by (Definition 3.8)

Tr[ψ](τ) = rw+w̄−1
∑

µ∈A(r)

( ∑
k,l>0
kl=r

1

lw+w̄

l−1∑
s=0

∆r(µ, k)e
(
− s
k
qr(µ)

)
ψlµ

(
kτ + s

l

))
eµ,

where (w, w̄) =
(
v + b+

2 , v̄ + b−

2

)
, e(x) = exp(2πix), and

∆r(µ, k) =

{
1 if µ ∈ A(l) ⊆ A(r),

0 otherwise.

The idea behind the construction is to pair the components of the vector-valued modular
form ψ(τ) with the components of Siegel theta functions to construct a scalar-valued modular
form, and then apply the standard Hecke operators for scalar-valued modular forms to define
our Hecke operators on vector-valued modular forms appropriately. More precisely, let us define
an inner product on C[A] by〈∑

λ∈A
fλeλ,

∑
δ∈A

gδeδ

〉
=
∑
λ∈A

fλḡλ.

We then prove that (Theorem 3.9)

Tr [〈ψ,ΘL〉] (τ, α, β) =
〈
Tr[ψ],ΘL(r)

〉
(τ, α, β),

where ΘL(τ, α, β) is the Siegel theta function of the lattice L, and Tr are the usual Hecke
operators for scalar-valued modular forms. From this relation it follows that, indeed, Tr[ψ](τ)
is vector-valued modular of type ρL(r) and weight (v, v̄). We note that this theorem is a gene-
ralization to lattices of indefinite signature of a result by Martin Raum [24, Proposition 5.3].

Let us remark that the components of Tr[ψ](τ) are precisely the generating functions Zr,δ
of D4-D2-D0 bound states (mathematically, generalized Donaldson–Thomas invariants) on K3-
fibered Calabi–Yau threefolds studied in [5]. Therefore, an immediate corollary of our con-
struction is vector-valued modularity of these generating functions, which was proved by direct
calculations in [5].

Our next step is to study algebraic relations satisfied by the operators Tr. To this end we
define scaling operators Un2 on vector-valued modular forms of type ρL (Definition 3.13):

Un2 [ψ](τ) =
∑

ν∈A(n2)

∆n2(ν, n)ψnν(τ)eν .

These are appropriate scaling operators since (Lemma 3.15):

Un2 [〈ψ,ΘL〉] (τ, α, β) =
〈
Un2 [ψ],ΘL(n2)

〉
(τ, α, β),

where Un2 [f ](τ, α, β) = f(τ, nα, nβ) are the standard scaling operators for scalar-valued modular
forms. Then we show that (Theorem 3.18):

• for m and n such that gcd(m,n) = 1,

Tm ◦ Tn = Tmn;

• for l ≥ 2 and p prime,

Tpl = Tp ◦ Tpl−1 − pw+w̄−1Up2 ◦ Tpl−2 .

Those properties are analogous to the algebraic relations satisfied by the scalar-valued Hecke
operators Tr.
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1.1.2 Hecke operators on the Weil representation

We then focus on the special case when r = n2 for some integer n. In this case, we show
(Lemma 4.1) that ρL is a sub-representation of the Weil representation ρL(n2) for the rescaled
lattice L(n2). This allows us to define projection operators Pn2 (Definition 4.2), which take
vector-valued modular forms of type ρL(n2) into vector-valued modular forms of type ρL of the
same weight. These projection operators act as left inverses of the scaling operators (Lemma 4.5):

Pn2 ◦ Un2 = I.

These projection operators allow us to define new Hecke operators Hn2 which map vector-
valued modular forms of type ρL into vector-valued modular forms of the same type and weight
(Definition 4.7):

Hn2 = Pn2 ◦ Tn2 .

The explicit expression for Hn2 is given by (Proposition 4.8):

Hn2 [ψ](τ) = n2(v+v̄−1)
∑
λ∈A

( ∑
γ∈A(n2)
nγ=λ

∑
k,l>0
kl=n2

1

lv+v̄+ 1
2

dim(L)

×
l−1∑
s=0

∆n2(γ, n)∆n2(γ, k)e
(
− s
k
qn2(γ)

)
ψlγ

(
kτ + s

l

))
eλ.

As for Tn2 , we study algebraic relations satisfied by the Hn2 . We obtain (Theorem 4.12):

• for m and n such that gcd(m,n) = 1,

Hm2 ◦ Hn2 = Hm2n2 ;

• for l ≥ 2 and p prime,

Hp2l = Pp2l−2 ◦ Hp2 ◦ Hp2l−2 ◦ Up2l−2 − pw+w̄−1Hp2l−2 − p2(w+w̄−1)Hp2l−4 .

The recursion relation is slightly different from the standard one for scalar-valued Hecke ope-
rators. This is due to two reasons: first, Hr is only defined when r = n2, and second, the
projection operators Pn2 and Hecke operators Tm2 only commute when m and n are coprime
(Lemma 4.11).

1.2 Comparison to other constructions

1.2.1 Comment on the relation to the work of Eichler–Zagier

Eichler and Zagier study the space of rank 1 Jacobi forms of weight k and index m denoted
by Jk,m in [13]. In particular, they construct Hecke operators Ul, Vl, Tl that map the space Jk,m
to Jk,ml2 , Jk,ml and Jk,m respectively for k, l,m ∈ N. These parallel the Hecke operators dis-
cussed in this paper and we will point out some of these connections in Sections 3 and 4. Our
Hecke operators Tr and Hn2 are maps between vector-valued modular forms for the Weil repre-
sentation of lattices related by a rescaling or between vector-valued modular forms for the Weil
representation of the same lattice. In the rank 1 case, these behave like operators that multiply
and preserve the index respectively. In addition, several of the algebraic relations between Hecke
operators in this article have analogues in the work of Eichler–Zagier.
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1.2.2 Comparison to the work of Bruinier and Stein [8, 29]

Hecke operators that map vector-valued modular forms of type ρL into vector-valued modular
forms of the same type and weight were also constructed by Bruinier and Stein in [8, 29]. The

approach however is quite different. In [8] the authors first construct Hecke operators T
(BS)
m2

where m is a positive integer that is coprime with the level N of the lattice L. They do so by

extending the Weil representation of Mp2(Z) to some appropriate subgroup of G̃L
+

2 (Q). They

then extend their construction to Hecke operators T
(BS)
m2 for all positive integers m. However,

explicit formulae are only given when m is coprime with the level of the lattice. Stein generalizes

this in [29] by providing the explicit action of their Hecke operators T
(BS)

p2l
for any odd prime p

and positive number l.

Given that the construction of Bruinier and Stein is a priori quite different from ours, it

is interesting to compare the two and investigate whether the resulting Hecke operators T
(BS)

p2l

and Hp2l are the same. In Section 5, we prove a precise match between our Hecke operators and
the Bruinier–Stein Hecke operators. More precisely, we get an exact match only after fixing a
calculational mistake in [29]. We believe that there is a mistake in the statement and proof of
Theorem 5.2 of [29] that provides explicit formulae for their extension of the Weil representation.
We redid the calculation and obtained slightly different formulae. For completeness, we present
our derivation in Appendix A. We get an exact match with the Bruinier–Stein Hecke operators
only when we use the alternative formulae for their extension of the Weil representation that we
derive in Appendix A.

While our Hecke operators match with the Bruinier–Stein Hecke operators, we note how-
ever that our construction is fairly straightforward and more general. For instance, our Hecke
operators are constructed for any r. But perhaps more interestingly, our construction should
generalize beyond the Weil representation: it should apply whenever one has a pairing of two
vector-valued modular forms that yield a scalar-valued modular form, to which one can apply
standard Hecke operators. The key is to choose one of the two vector-valued modular forms
carefully so that we know how it transforms under the action of GL+

2 (Q). In the case of the
Weil representation, this was accomplished by using Siegel theta functions for the pairing.

In particular this could also be done for representations ρ whose kernel contains a principal
congruence subgroup (called congruence representations in literature). In this case, it is possible
to embed ρ in a Weil representation ρL associated to a lattice L (see [12]) and apply the
construction in this paper by pairing it with ‘dual objects’ written in terms of Siegel theta
functions of L. However, the details remain to be worked out.

But pairings of vector-valued modular forms are standard in rational conformal field theory.
For example, the Hilbert space of a full rational conformal field theory is a module for two com-
muting rational vertex algebras and its character is given by the pairing of the character vectors
of the two vertex algebras. It may then be possible to apply our construction in these cases as
well, which might actually be an interesting connection to recent results of Harvey and Wu.

1.2.3 Comment on the recent work of Harvey and Wu [18]

Very recently Harvey and Wu proposed a construction of Hecke operators for vector-valued
modular forms of the type that appear as characters of rational conformal field theories. A ra-
tional conformal field theory corresponds to a strongly rational vertex operator algebra, that is
a vertex algebra whose category of grading restricted weak modules is a modular tensor catego-
ry [20]. The linear span of one-point functions of these modules is then a vector-valued modular
form [35]. Harvey and Wu’s Hecke operators act on such vector-valued modular forms; in the ex-
amples that they consider, they map character vectors of a given vertex algebra to character vec-
tors of another vertex algebra. The involved tensor categories are Galois conjugates of each other.
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We do not compare our results to these recent findings. But we would like to make a brief
comment. Our strategy is to first pair a vector-valued modular form with a dual one to get
a scalar-valued one, then apply standard Hecke operators to this object, and then somehow go
back to vector-valued modular forms. This procedure also has a nice vertex algebra perspective.
Assume that you have two strongly rational vertex algebras V and W with modular tensor
categories C and D, such that these categories are braid-reversed equivalent. Then the canonical
algebra object (see [14, Section 7.9]) extends V ⊗W to a larger vertex algebra A [10, 21] that
is self-dual, i.e., A has only one simple module, A itself, and its character is modular. Apply-
ing a standard Hecke operator to this scalar-valued modular form gives another scalar-valued
modular form. A natural question is wether this resulting modular form also corresponds to the
character of a self-dual vertex algebra and if this vertex algebra is an extension of interesting
subalgebras. To give a concrete example: let V be the affine vertex algebra of g2 at level one
and W the affine vertex algebra of f4 at level one. Then both V and W have only two inequiv-
alent simple objects and their modular tensor categories are braid-reversed equivalent [2]. The
corresponding extension is nothing but the vertex algebra of the self-dual lattice E8, so that its
character is θE8/η

8, where θE8 is the theta function of E8 and η the Dedekind’s eta-function.
Harvey and Wu’s Hecke operators relate the character vectors of these two vertex algebras to
the ones of other vertex algebras, for example the Yang–Lee Virasoro minimal model. We aim
to investigate if one can recover their findings from our perspective.

1.3 Outline

In Section 2 we review basic facts pertaining to vector-valued modularity, lattices and Siegel
theta functions. In Section 3 we construct the Hecke operators Tr, the scaling operators Un2 , and
study their algebraic relations. In Section 4 we focus on the particular case when r = n2. We
prove the existence of a sub-representation ρL of ρL(n2), and construct projection operators Pn2 .
We then define the Hecke operatorsHn2 and study the corresponding algebraic relations. Finally,
in Section 5 we compare our Hecke operators Hn2 with those of Bruinier and Stein from [8, 29].
To this end, we provide an alternative calculation of the extension of the Weil representation
studied in [8, 29] in Appendix A. The resulting formulae should replace those in the statement
of Theorem 5.2 of [29].

2 Preliminaries

2.1 Vector-valued modularity

Let us start by introducing functions that are vector-valued modular. We follow the approach
of Borcherds [3, 4].

Let τ = x + iy ∈ H = {τ ∈ C | Im(τ) > 0}, and M =
(
a b
c d

)
∈ SL2(Z). We define the action

of M on τ by

M : τ 7→Mτ =
aτ + b

cτ + d
.

The double cover of SL2(Z) is called the metaplectic group, and is denoted by Mp2(Z). It
consists of pairs (M,φM (τ)), where M =

(
a b
c d

)
∈ SL2(Z) and φM (τ) is a holomorphic function

on the upper half-plane H such that φM (τ)2 = cτ + d. The group multiplication law is given by

(M1, φM1(τ)) · (M2, φM2(τ)) = (M1M2, φM1(M2τ)φM2(τ)).

Mp2(Z) is generated by

T =

((
1 1
0 1

)
, 1

)
and S =

((
0 −1
1 0

)
,
√
τ

)
.
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Let ρ be a representation of Mp2(Z) on some vector space V , and let W be a R-vector space.

Definition 2.1. For v, v̄ ∈ 1
2Z, we say that a V -valued real analytic function ψ(τ, α, β) on

H×W ×W is vector-valued modular of weight (v, v̄) and type ρ if

ψ(Mτ, aα+ bβ, cα+ dβ) = φM (τ)2vφM (τ)
2v̄
ρ(M,φ)ψ(τ, α, β),

for all (M,φM ) ∈ Mp2(Z). We say that it is scalar-valued modular if V is one-dimensional,
v, v̄ ∈ Z and ρ is trivial. We denote by Mv,v̄,ρ the space of V -valued real analytic functions on
H×W ×W that are vector-valued modular of weight (v, v̄) and type ρ.

Remark 2.2. In Definition 2.1 we do not impose a growth condition, or holomorphicity (mero-
morphicity) at the cusps, or that the functions satisfy a condition involving the Laplacian. All
that we impose in this paper is the vector-valued modular transformation property as this is
all that is required for our construction. However, our construction could potentially restrict
to various classes of modular objects, such as holomorphic modular forms, weakly holomorphic
modular forms, Maass forms, etc., after checking that the Hecke operators preserve the imposed
condition.

Remark 2.3. Note that in Definition 2.1 we include “Jacobi-like” variables; these are needed
for our construction. But for α = β = 0 we recover the standard transformation property of
vector-valued modular forms. For clarity we will drop the dependence on α and β when we
consider objects that transform as vector-valued modular forms.

2.2 Lattices, discriminant forms and Weil representation

In this paper we will focus on vector-valued modularity when ρ is chosen to be the Weil repre-
sentation of an even integral lattice L.

Let L be an even, non-degenerate, integral lattice of signature (b+, b−), with sgn(L) = b+−b−
and dim(L) = b+ + b−. We denote by (·, ·) : L× L→ Z the symmetric bilinear form on L.

Let L′ := HomZ(L,Z) be the dual lattice of L,

L′ = {x ∈ L⊗Q | (x, y) ∈ Z for all y ∈ L}.

Since L is integral we have L ⊆ L′. The discriminant group of L is the finite abelian group
A = L′/L. When L is even we define the discriminant form (A, q(·)) as A equipped with the
Q/Z-valued quadratic form

q : A→ Q/Z,
x+ L 7→ 1

2(x, x) mod Z.

The associated bilinear form A×A→ Q/Z is (x+ L, y + L) 7→ (x, y) mod Z.
Let {eγ}γ∈A be the standard basis for the vector space C[A] with eγeλ = eγ+λ. We define an

inner product on C[A] by〈∑
λ∈A

fλeλ,
∑
δ∈A

gδeδ

〉
=
∑
λ∈A

fλḡλ.

This can be used to define a Petersson inner product (see [8, equation (2.15)]) on the space
of holomorphic vector-valued modular forms of weight (k, 0) that converges when 〈f(τ), g(τ)〉 is
a cusp form,

(f, g) =

∫
Mp2(Z)\H

〈f(τ), g(τ)〉yk dxdy

y2
, (2.1)

where τ = x+ iy.
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Every discriminant form (A, q(·)) defines a unitary representation of the metaplectic group
Mp2(Z) on C[A]:

Definition 2.4. The Weil representation ρL of Mp2(Z) on C[A] is defined by

ρL(T )eλ = e(q(λ)) eλ,

ρL(S)eλ =
e(−sgn(L)/8)√

|A|

∑
µ∈A

e(−(λ, µ)) eµ,

where S and T are the generators of Mp2(Z). Here, we introduced the abbreviation e(x) =
exp(2πix), which will be used throughout the paper.

It is easy to see that the Weil representation is unitary with respect to the inner product:

〈ρL(M,φM )eλ, ρL(M,φM )eβ〉 = 〈eλ, eβ〉 = δλβ, (2.2)

for all (M,φM ) ∈ Mp2(Z) and λ, β ∈ A. Here, δλβ is the Kronecker delta, which is 1 if λ = β
and 0 otherwise.

Given an even non-degenerate lattice L, and its discriminant form A, we can thus consider real
analytic functions that are vector-valued modular of type ρL, with ρL the Weil representation
of L. We denote by Mv,v̄,L := Mv,v̄,ρL the space of C[A]-valued real analytic functions on
H×W ×W , where W = L⊗ R, that are vector-valued modular of weight (v, v̄) and type ρL.

In this paper we will also consider lattice rescalings. Let r be a positive integer. We denote
by L(r) the lattice L but with rescaled bilinear form (·, ·)r := r(·, ·). Let L(r)′ be its dual lattice,
which is defined as usual by

L(r)′ = {x ∈ L⊗Q | (x, y)r ∈ Z for all y ∈ L}.

By definition, L(r)′ = 1
rL
′, and thus L′ ⊆ L(r)′. We denote the rescaled discriminant form by

A(r) = L(r)′/L(r) ∼= 1
rL
′/L. Hence A ⊆ A(r). The induced quadratic form is:

qr : A(r)→ Q/Z,
x+ L 7→ 1

2(x, x)r mod Z.

We also introduce the following notation, which will be useful later on:

Definition 2.5. For any µ ∈ A(r), and positive integers k and l such that kl = r, we define
∆r(µ, k) by

∆r(µ, k) =

{
1 if µ ∈ A(l) ⊆ A(r),

0 otherwise.

2.3 Siegel theta functions

Let Gr(L) be the Grassmannian of L, which is the set of positive definite b+-dimensional sub-
spaces of L ⊗ R. Let v+ ∈ Gr(L), and v− be its orthogonal complement in L ⊗ R. For any
λ ∈ L⊗ R, we denote its projection onto the subspaces v± by λ±.

Following Borcherds [3], we introduce the following definition.

Definition 2.6. Let α, β ∈ L⊗R. The Siegel theta function of a coset L+ γ of L in L′ is given
by2

θL+γ(τ, α, β) =
∑

λ∈L+γ

e

(
τq((λ+ β)+) + τ̄ q((λ+ β)−)−

(
λ+

β

2
, α

))
.

2For simplicity we suppress the dependence on the choice of subspace v+ ∈ Gr(L).
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We also define the C[A]-valued function

ΘL(τ, α, β) =
∑
γ∈A

θL+γ(τ, α, β)eγ .

Remark 2.7. The Siegel theta functions of Borcherds are similar to the Jacobi theta functions
of a lattice L with elliptic variable z given by the realification βτ + α. In particular when L is
positive definite we have

θL+γ(τ, α, β) = e(τq(β)− (β/2, α))θ̃L+γ(τ, βτ + α),

where

θ̃L+γ(τ, z) =
∑

λ∈L+γ

e (τq(λ) + (λ, z))

is the usual definition of Jacobi theta functions.

In [3] Borcherds proved the following theorem.

Theorem 2.8 ([3, Theorem 4.1]).

ΘL(Mτ, aα+ bβ, cα+ dβ) = φ(τ)b
+
φ(τ)

b−
ρL(M,φ)ΘL(τ, α, β),

for all (M,φ) ∈ Mp2(Z). In other words, ΘL(τ, α, β) is vector-valued modular of weight(
1
2b

+, 1
2b
−) and type ρL, where ρL is the Weil representation of L.

Given two functions
∑
λ∈A

fλ(τ)eλ and
∑
λ∈A

gλ(τ)eλ that are vector-valued of type ρL and weight

(v, v̄) and (w, w̄) respectively, it is clear that〈∑
λ∈A

fλ(τ)eλ,
∑
λ∈A

gλ(τ)eλ

〉
=
∑
λ∈A

fλ(τ)ḡλ(τ)

is scalar-valued of weight (v + w, v̄ + w̄), since the Weil representation is unitary with respect
to the inner product, see (2.2). But using Siegel theta functions we can also get a converse
statement, which turns out to be very useful due to the linear independence of the Siegel theta
functions :

Lemma 2.9. ψ(τ) is vector-valued modular of type ρL and weight (v, v̄) if and only if

〈ψ,ΘL〉 (τ, α, β) =
∑
λ∈A

ψλ(τ)θ̄L+λ(τ, α, β)

is scalar-valued modular of weight (w, w̄) =
(
v + 1

2b
+, v̄ + 1

2b
−).

Proof. On the one hand, if ψ(τ) is vector-valued of type ρL and weight (v, v̄), then it follows
directly that 〈ψ,ΘL〉 (τ, α, β) is scalar-valued of weight

(
v + 1

2b
+, v̄ + 1

2b
−), since ΘL(τ, α, β)

is vector-valued of type ρL and weight
(

1
2b

+, 1
2b
−) and the Weil representation is unitary with

respect to the inner product (see (2.2)).
On the other hand, if 〈ψ,ΘL〉 (τ, α, β) is scalar-valued of weight (w, w̄), then ψ(τ) must be

vector-valued of type ρL and weight (v, v̄) =
(
w− 1

2b
+, w̄− 1

2b
−). This follows again from unitary

of the Weil representation, but also from the fact that the components θ̄L+λ(τ, α, β) of the Siegel
theta functions are non-zero and linearly independent, which is crucial. This is why we need to
include Jacobi-like variables α and β; otherwise the components of the Siegel theta functions
would not be linearly independent in general, and we would not be able to deduce vector-valued
modularity for ψ(τ) directly. �
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Remark 2.10. A proof of the linear independence of Jacobi theta functions by Boylan appears
in [6, Proposition 3.33]. The linear independence of Siegel theta functions (in the α variable)
can be proved using a similar approach to Boylan’s proof. For completeness, we redo the proof
below in the case of Siegel theta functions.

Lemma 2.11. The Siegel theta functions {θL+γ(τ, α, β)}γ∈L′/L are linearly independent in the α
variable (that is for fixed values of τ and β).

Proof. Fix τ ∈ H and β ∈ L⊗ R and consider the linear combination

φ(α) =
∑

γ∈L′/L

φγθL+γ(τ, α, β)

for some constants φγ in C. From Definition 2.6 of the Siegel theta functions we have the
property that for any γ ∈ L′/L

θL+λ(τ, α+ γ, β) = e

(
−
(
λ+

β

2
, γ

))
θL+λ(τ, α, β).

Now for any λ0 ∈ L′/L we can do the following computation∑
γ∈L′/L

φ(α+ γ)e

(
−
(
γ, λ0 −

β

2

))

=
∑

γ∈L′/L

∑
λ∈L′/L

φλθL+λ(τ, α+ γ, β)e

(
−
(
γ, λ0 −

β

2

))
=

∑
γ∈L′/L

∑
λ∈L′/L

φλθL+λ(τ, α, β)e ((γ, λ− λ0)) = φλ0 |L′/L|θL+λ0(τ, α, β),

where in the last step we have used the property that the sum over λ disappears unless λ = λ0.
The last equation above implies that if φ(α) vanishes identically then φλ = 0 for all λ ∈ L′/L
and thus the lemma is proved. �

We now prove a lemma relating Siegel theta functions of L and L(r). This lemma will be
essential in the next section for constructing our Hecke operators.

Lemma 2.12. Let k, l, r be positive integers such that kl = r, and let s ∈ {0, 1, . . . , l− 1}. Let
L+ γ be a coset of L in L′, with γ ∈ A. Then

θL+γ

(
kτ + s

l
, kα+ sβ, lβ

)
=

∑
ν∈A(r)
lν=γ

∆r(ν, k)e
( s
k
qr(ν)

)
θL(r)+ν(τ, α, β),

where ν+L(r) is a coset of L(r) in L(r)′, with ν ∈ A(r), and ∆r(µ, k) defined in Definition 2.5.

Proof. Let λ ∈ L+ γ, with γ ∈ A. First we compute that

θL+γ

(
kτ + s

l
, kα+ sβ, lβ

)
=

∑
λ∈L+γ

e

(
kτ + s

l
q ((λ+ lβ)+) +

kτ̄ + s

l
q ((λ+ lβ)−)−

(
λ+

lβ

2
, kα+ sβ

))

=
∑

λ∈L+γ

e

(
kτ

l
q
(
(λ+ lβ)+

)
+
kτ̄

l
q
(
(λ+ lβ)−

)
− k

(
λ+

lβ

2
, α

))
e
(s
l
q(λ)

)
.
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Now there is a bijection between elements λ of the coset L + γ and elements δ of the cosets
L + ν, with ν ∈ A(l) and such that lν = γ. The bijection is given by lattice rescaling, that is,
λ 7→ δ = 1

l λ. We use this to rewrite the sum as follows

θL+γ

(
kτ + s

l
, kα+ sβ, lβ

)
=
∑
ν∈A(l)
lν=γ

∑
δ∈L+ν

e

(
τqr ((δ + β)+) + τ̄ qr ((δ + β)−)−

(
δ +

β

2
, α

)
r

)
e (sql (δ))

=
∑
ν∈A(l)
lν=γ

e (sql(ν))
∑
δ∈L+ν

e

(
τqr ((δ + β)+) + τ̄ qr ((δ + β)−)−

(
δ +

β

2
, α

)
r

)
,

where in the last line we used the fact that ql(δ) = ql(ν) modZ, since ν ∈ A(l).
We now extend the sum over ν ∈ A(l) ⊆ A(r) to a sum over all elements ν ∈ A(r), using the

Delta function from Definition 2.5. We get

θL+γ

(
kτ + s

l
, kα+ sβ, lβ

)
=

∑
ν∈A(r)
lν=γ

∆r(ν, k)e
( s
k
qr(ν)

)
θL(r)+ν(τ, α, β),

where we introduced the Siegel theta functions of the rescaled lattice L(r)

θL(r)+ν(τ, α, β) =
∑
δ∈L+ν

e

(
τqr((δ + β)+) + τ̄ qr((δ + β)−)−

(
δ +

β

2
, α

)
r

)
. �

3 Hecke operators

In this section, we define Hecke operators on Mv,v̄,L and study their algebraic properties.

3.1 Classical Hecke operators

Let us start by reviewing the standard theory of Hecke operators.

Definition 3.1. Let r be a positive integer and f(τ, α, β) be scalar-valued modular of weight
(w, w̄), as defined in Definition 2.1. We define the following Hecke operators on f(τ, α, β)

Tr[f ](τ, α, β) = rw+w̄−1
∑
k,l>0
kl=r

l−w−w̄
l−1∑
s=0

f

(
kτ + s

l
, kα+ sβ, lβ

)
. (3.1)

Lemma 3.2. Tr[f ](τ, α, β) is scalar-valued modular of weight (w, w̄).

Proof. Even with the addition of Jacobi-like variables, the argument is word by word the same
as for standard modular forms (see for example [30, Proposition 2.28]). �

Remark 3.3. The operators Tr defined above are analogous to the Hecke operators Vr of
Eichler–Zagier in [13, Section 1.4] after a certain choice of coset representatives.

Remark 3.4. We note here that there is a different definition of Hecke operators as double
coset operators of the modular or the metaplectic group (see for instance [11]). We will use
this alternative definition in Section 5 in making the comparison to the work of Bruinier–Stein.
More specifically, the decomposition of a double coset of the metaplectic group considered by



12 V. Bouchard, T. Creutzig and A. Joshi

Bruinier–Stein amounts to imposing the condition that the summation variable s and r are
coprime (where s, r are as in (3.1)). This gives a different definition of the Hecke operators, but
it is just a choice, and does not affect modularity or the algebraic results in any way.

To study algebraic relations satisfied by Hecke operators, we define scaling operators:

Definition 3.5. Let r be a positive integer and f(τ, α, β) be scalar-valued modular of weight
(w, w̄). We define the scaling operators Ur2 by

Ur2 [f ](τ, α, β) = f(τ, rα, rβ).

It is clear that:

Lemma 3.6. Ur2 [f ](τ, α, β) is scalar-valued modular of weight (w, w̄).

Hecke operators satisfy algebraic relations summarized in the following lemma.

Lemma 3.7. For m and n such that gcd(m,n) = 1,

Tm ◦ Tn = Tmn, (3.2)

and for l ≥ 2 and p prime,

Tpl = Tp ◦ Tpl−1 − pw+w̄−1Up2 ◦ Tpl−2 . (3.3)

Proof. Relations (3.2) and (3.3) can be proved following the exact same steps as the proof of
the respective relations for standard modular forms presented for instance in Propositions 2.28
and 2.29 of [30]. �

3.2 Hecke operators on Mv,v̄,L

Let us now define Hecke operators on the space Mv,v̄,L of C[A]-valued real analytic functions
that are vector-valued modular of type ρL and weight (v, v̄).

Definition 3.8. Let ψ(τ) =
∑
λ∈A

ψλ(τ)eλ be vector-valued modular of weight (v, v̄) and type ρL.

Let (w, w̄) =
(
v + b+

2 , v̄ + b−

2

)
. We define the operators Tr by

Tr[ψ](τ) = rw+w̄−1
∑

µ∈A(r)

∑
k,l>0
kl=r

1

lw+w̄

l−1∑
s=0

∆r(µ, k)e
(
− s
k
qr(µ)

)
ψlµ

(
kτ + s

l

) eµ,

with ∆r(µ, k) defined in Definition 2.5.

The main result is:

Theorem 3.9. For any positive integer r

Tr [〈ψ,ΘL〉] (τ, α, β) =
〈
Tr[ψ],ΘL(r)

〉
(τ, α, β).

In other words, the standard Hecke transforms of the scalar-valued 〈ψ,ΘL〉 (τ, α, β) are equal
to the scalar-valued

〈
Tr[ψ],ΘL(r)

〉
(τ, α, β) obtained by pairing Tr[ψ](τ) with the Siegel theta

functions of the rescaled lattice L(r).

An immediate corollary, using Lemmas 2.9 and 3.2, is
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Corollary 3.10. If ψ(τ) is vector-valued modular of weight (v, v̄) and type ρL, then Tr[ψ](τ)
is vector-valued modular of type ρL(r) of the same weight. In other words, Definition 3.8 gives
Hecke operators

Tr : Mv,v̄,ρL →Mv,v̄,ρL(r)
.

This is the main reason for Definition 3.8. Let us now prove Theorem 3.9.

Proof of Theorem 3.9. We have

Tr [〈ψ,ΘL〉] (τ, α, β) = Tr

[∑
λ∈A

ψλ(τ)θ̄L+λ(τ, α, β)

]

= rw+w̄−1
∑
k,l>0
kl=r

1

lw+w̄

l−1∑
s=0

∑
λ∈A

ψλ

(
kτ + s

l

)
θ̄L+λ

(
kτ + s

l
, kα+ lβ, lβ

)
.

By Lemma 2.12, we know that

θ̄L+λ

(
kτ + s

l
, kα+ lβ, lβ

)
=

∑
ν∈A(r)
lν=λ

∆r(ν, k)e
(
− s
k
qr(ν)

)
θ̄L(r)+ν(τ, α, β).

Substituting, we get

Tr [〈ψ,ΘL〉] (τ, α, β)

= rw+w̄−1
∑
k,l>0
kl=r

1

lw+w̄

l−1∑
s=0

∑
λ∈A

∑
ν∈A(r)
lν=λ

∆r(ν, k)e
(
− s
k
qr(ν)

)
ψλ

(
kτ + s

l

)
θ̄L(r)+ν(τ, α, β)

= rw+w̄−1
∑

ν∈A(r)

∑
k,l>0
kl=r

1

lw+w̄

l−1∑
s=0

∆r(ν, k)e
(
− s
k
qr(ν)

)
ψlν

(
kτ + s

l

)
θ̄L(r)+ν(τ, α, β)

=
〈
Tr[ψ],ΘL(r)

〉
(τ, α, β),

where we used Definition 3.8. �

Remark 3.11. The components of the vector-valued modular Tr[ψ](τ) are precisely the Zr,δ(τ)
constructed in [5, Section 6]3, which arise naturally from the partition function of generalized
Donaldson–Thomas invariants of K3-fibered Calabi–Yau threefolds. In [5], the relevant lattice L
has rank l and signature (1, l − 1). Thus the Siegel theta function ΘL(τ, α, β) has weight(
b+

2 ,
b−

2

)
=
(

1
2 ,

l−1
2

)
. The construction of [5] starts with a vector-valued modular form ψ(τ) of

type ρL and weight (v, v̄) =
(
−1− l

2 , 0
)
. Then it is proved by direct calculations that the Zr,δ(τ)

are the components of a vector-valued modular form of the same weight and type ρL(r). With
the construction proposed in the current paper, such a modularity statement follows directly
from Corollary 3.10.

3.3 Algebraic relations satisfied by the operators Tr
In this section we study algebraic relations satisfied by the Hecke operators Tr. Those trickle
down from the corresponding relations stated in Lemma 3.7 for the standard Hecke operators Tr.

Firstly, from Theorem 3.9 and the commutativity of the scalar-valued Hecke operators it
immediately follows that the vector-valued Hecke operators Tm commute under the coprime
condition.

3We leave it as an exercise for the reader to translate the notation currently used into the notation of [5].
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Lemma 3.12. For m and n coprime, we have

TmTn = TnTm.

Recall the scaling operators Un2 from Definition 3.5. We now define scaling operators Un2

on Mv,v̄,L.

Definition 3.13. Let ψ(τ) =
∑
λ∈A

ψλ(τ) eλ be vector-valued modular of type ρL. We define the

scaling operators Un2 by

Un2 [ψ](τ) =
∑

ν∈A(n2)

∆n2(ν, n)ψnν(τ)eν .

Remark 3.14. The scaling operator appears previously in [7] and [28] as induction of vector-
valued modular forms from isotropic subgroups H ⊂ A of discriminant forms denoted by g↑AH
and as the Un-operator on rank 1 Jacobi forms in [13].

Then we have:

Lemma 3.15. For any positive integer n,

Un2 [〈ψ,ΘL〉] (τ, α, β) =
〈
Un2 [ψ],ΘL(n2)

〉
(τ, α, β).

Proof. We have

Un2 [〈ψ,ΘL〉] (τ, α, β) = Un2

[∑
λ∈A

ψλ(τ)θ̄L+λ(τ, α, β)

]
=
∑
λ∈A

ψλ(τ)θ̄L+λ(τ, nα, nβ).

But Lemma 2.12, with k = n, l = n and s = 0, states that

θ̄L+λ(τ, nα, nβ) =
∑

ν∈A(n2)
nν=λ

∆n2(ν, n)θ̄L(n2)+ν (τ, α, β) .

Thus

Un2 [〈ψ,ΘL〉] (τ, α, β) =
∑
λ∈A

ψλ(τ)
∑

ν∈A(n2)
nν=λ

∆n2(ν, n)θ̄L(n2)+ν (τ, α, β)

=
∑

ν∈A(n2)

∆n2(ν, n)ψnν(τ)θ̄L(n2)+ν (τ, α, β)

=
〈
Un2 [ψ],ΘL(n2)

〉
(τ, α, β). �

Remark 3.16. The proofs of Theorem 3.9 and Lemma 3.15 are analogous to the respective
computations in [34].

It immediately follows from Lemmas 2.9 and 3.2 that:

Corollary 3.17. Let ψ(τ) be vector-valued modular of type ρL. Then Un2 [ψ](τ) is vector-valued
modular of type ρL(n2) of the same weight. In other words, Definition 3.13 gives scaling operators

Un2 : Mv,v̄,ρL →Mv,v̄,ρL(n2)
.

With this definition, we obtain the following theorem, analogous to Lemma 3.7.
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Theorem 3.18. For m and n such that gcd(m,n) = 1,

Tm ◦ Tn = Tmn,

while for l ≥ 2 and p prime,

Tpl = Tp ◦ Tpl−1 − pw+w̄−1Up2 ◦ Tpl−2 .

Proof. These two statements follow directly by applying the analogous statements from Lem-
ma 3.7 to the scalar-valued 〈ψ,ΘL〉 (τ, α, β) and then using the definition of our operators Tn
and Un2 . �

4 The r = n2 case

We now specialize to Hecke operators Tr with r = n2 for some positive integer n. What is
special in this case is the existence of a sub-representation ρL of the Weil representation ρL(n2)

for the rescaled lattice L(n2). In Lemma 2.12 we wrote a formula relating Siegel theta functions
of a lattice L in terms of theta functions of a rescaled lattice. Using the characterization of the
Weil representation as the transformation law of theta series, we give below an embedding of ρL
into ρL(n2) and give a proof that is independent of the Siegel theta function properties. This
allows us to define projection operators Pn2 , which are left inverses of the scaling operators Un2 .
We can use these projection operators to define new Hecke operators Hn2 = Pn2 ◦Tn2 : Mv,v̄,L →
Mv,v̄,L which take functions that are vector-valued modular of type ρL to functions that are
vector-valued modular of the same type.

4.1 Weil sub-representation

Let us start by proving the existence of a sub-representation ρL of the Weil representation ρL(n2)

for the rescaled lattice L
(
n2
)
. Recall from Definition 2.4 that the Weil representation ρL(n2) of

Mp2(Z) on C
[
A
(
n2
)]

is defined by

ρL(n2)(T )eν = e(qn2(ν))eν ,

ρL(n2)(S)eν =
e(−sgn(L)/8)√
|A(n2)|

∑
µ∈A(n2)

e(−(ν, µ)n2)eµ,

where {eν}ν∈A(n2) is the standard basis for the vector space C[A(n2)], and S and T are the
generators of Mp2(Z).

Consider the subspace C[A] ⊆ C
[
A
(
n2
)]

spanned by the basis vectors {fλ}λ∈A defined by

fλ =
1

ndim(L)

∑
ν∈A(n)⊆A(n2)

nν=λ

eν .

The {fλ}λ∈A form the standard basis for C[A]. Indeed, one sees that fλfδ = fλ+δ:

fλfδ =
1

n2 dim(L)

∑
ν∈A(n)
nν=λ

∑
µ∈A(n)
nµ=δ

eµeν =
1

n2 dim(L)

∑
ν∈A(n)
nν=λ

∑
µ∈A(n)
nµ=δ

eµ+ν

=
1

n2 dim(L)

∑
α∈A(n)
nα=λ+δ

eα

 ∑
µ∈A(n)
nµ=δ

1

 =
1

ndim(L)

∑
α∈A(n)
nα=λ+δ

eα = fλ+δ,
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since ∑
µ∈A(n)
nµ=δ

1 =

∣∣∣∣ 1nL/L
∣∣∣∣ = ndim(L). (4.1)

We prove the following important lemma.

Lemma 4.1. The restriction of ρL(n2) to the subspace C[A] is the Weil representation ρL:

ρL(n2)

∣∣
C[A]

= ρL.

In other words,

ρL(n2)(T )fλ = e(q(λ))fλ = ρL(T )(fλ),

ρL(n2)(S)fλ =
e(−sgn(L)/8)√

|A|

∑
γ∈A

e(−(λ, γ)) fλ = ρL(S)(fλ).

Proof. Let us begin with the T transformation

ρL(n2)(T )fλ =
1

ndim(L)

∑
ν∈A(n)
nν=λ

ρL(n2)(T )(eν) =
1

ndim(L)

∑
ν∈A(n)
nν=λ

e(qn2(ν)) eν

=
1

ndim(L)
e(q(λ))

∑
ν∈A(n)
nν=λ

eν = e(q(λ))fλ.

As for the S transformation,

ρL(n2)(S)fλ =
1

ndim(L)

∑
ν∈A(n)
nν=λ

ρL(n2)(S)(eν)

=
1

ndim(L)

e(−sgn(L)/8)√
|A(n2)|

∑
ν∈A(n)
nν=λ

∑
µ∈A(n2)

e(−(ν, µ)n2) eµ.

Now consider the sum
∑

ν∈A(n)
nν=λ

e(−(ν, µ)n2). We can do a shift ν 7→ ν + β for any β ∈ 1
nL/L. It

should not change the sum, since if nν = λ, then n(ν + β) = λ, and hence it only amounts to
relabeling the summands. Thus for all β ∈ 1

nL/L, we must have:∑
ν∈A(n)
nν=λ

e(−(ν, µ)n2) = e (−(β, µ)n2)
∑

ν∈A(n)
nν=λ

e(−(ν, µ)n2).

This implies that either the summation over ν is zero, or e (−(β, µ)n2) = 1 for all β ∈ 1
nL/L,

which will be the case if µ ∈ A(n) ⊆ A
(
n2
)
. Thus we conclude that the summation over ν is

zero whenever µ /∈ A(n) ⊆ A
(
n2
)
. As a result, we get

ρL(n2)(S)fλ =
1

ndim(L)

e(−sgn(L)/8)√
|A(n2)|

∑
ν∈A(n)
nν=λ

∑
µ∈A(n)

e(−(ν, µ)n2) eµ

=
1

ndim(L)

e(−sgn(L)/8)√
|A(n2)|

∑
ν∈A(n)
nν=λ

∑
µ∈A(n)

e(−(nν, nµ)) eµ
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=
1

ndim(L)

e(−sgn(L)/8)√
|A(n2)|

∣∣∣∣ 1nL/L
∣∣∣∣ ∑
µ∈A(n)

e(−(λ, nµ)) eµ

=
1

ndim(L)

e(−sgn(L)/8)√
|A|

∑
δ∈A

e(−(λ, δ))
∑

µ∈A(n)
nµ=δ

eµ

=
e(−sgn(L)/8)√

|A|

∑
δ∈A

e(−(λ, δ))fδ. �

4.2 Projection operators

The existence of the sub-representation given in Lemma 4.1 allows us to define projection ope-
rators Pn2 : Mv,v̄,L(n2) →Mv,v̄,L.

Definition 4.2. Let ψ(τ) =
∑

ν∈A(n2)

ψν(τ) eν be vector-valued modular of type ρL(n2). We define

the projection operators Pn2 by

Pn2 [ψ](τ) =
1

ndim(L)

∑
λ∈A

( ∑
γ∈A(n)
nγ=λ

ψγ(τ)

)
eλ =

1

ndim(L)

∑
λ∈A

( ∑
γ∈A(n2)
nγ=λ

∆n2(γ, n)ψγ(τ)

)
eλ,

with ∆n2(γ, n) defined in Definition 2.5.

Remark 4.3. The projection operator Pn2 appears in [7, Proposition 3.2] as the ‘arrow-down’
operator f ↓AH and the ‘averaging operator’ A on rank 1 Jacobi forms in [13, p. 51].

As a direct corollary of Lemma 4.1 we get:

Corollary 4.4. Let ψ(τ) =
∑

ν∈A(n2)

ψν(τ) eν be vector-valued modular of type ρL(n2). Then

Pn2 [ψ](τ) is vector-valued modular of type ρL of the same weight. In other words, Definition 4.2
gives projection operators

Pn2 : Mv,v̄,L(n2) →Mv,v̄,L.

We now show that the projection operators Pn2 are left inverses of the scaling operators Un2 .

Lemma 4.5.

Pn2 ◦ Un2 = I,

where I is the identity operator.

Proof. Let ψ(τ) be vector-valued modular of type ρL. We have

Pn2 ◦ Un2 [ψ](τ) = Pn2

( ∑
ν∈A(n2)

∆n2(ν, n)ψnν(τ)eν

)
=

1

ndim(L)

∑
λ∈A

( ∑
γ∈A(n)
nγ=λ

ψnγ(τ)

)
eλ

=
1

ndim(L)

∑
λ∈A

( ∑
γ∈A(n)
nγ=λ

1

)
ψλ(τ)eλ.

The sum in bracket was evaluated in (4.1), and is equal to ndim(L). Thus we get

Pn2 ◦ Un2 [ψ](τ) =
∑
λ∈A

ψλ(τ)eλ. �
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Remark 4.6. In general it is not true that

Un2 ◦ Pn2 = I. (4.2)

However, (4.2) holds for vector-valued modular forms ψ(τ) =
∑

λ∈A(n2)

ψλ(τ)eλ that are not

supported on 1
nL/L ⊂ A

(
n2
)

(so that ψλ(τ) = 0 for λ ∈ 1
nL/L). In particular if ψ(τ) =∑

λ∈A(n2)

ψλ(τ)eλ is a vector-valued modular form supported on A(n) so that ψλ(τ) = 0 whenever

λ /∈ A(n), then Un2 ◦ Pn2 = I. This is analogous to Proposition 3.33 in [7].

4.3 Hecke operators Hn2

We can now compose our Hecke operators Tn2 with the projection operators Pn2 to get Hecke
operators Hn2 : Mv,v̄,L →Mv,v̄,L. These mirror the Hecke operators Tn : Jk,m → Jk,m of Eichler–
Zagier constructed as a sum over right cosets of the Jacobi group. The operators Tn were also
shown to be a composition of the operators Vn2 : Jk,m → Jk,m and the averaging operator A (see
Remark 4.3) after imposing a certain restriction on the sum over cosets. In the following two
sections, one can observe many similarities between the Hecke operators of this paper and the
ones considered by Eichler–Zagier.

Definition 4.7. We define the Hecke operators

Hn2 := Pn2 ◦ Tn2 : Mv,v̄,L →Mv,v̄,L.

We can give an explicit formula for the components of Hn2 [ψ](τ).

Proposition 4.8. Let ψ(τ) =
∑
λ∈A

ψλ(τ)eλ be vector-valued modular of type ρL and weight (v, v̄).

Then Hn2 [ψ](τ) is also vector-valued modular of type ρL and weight (v, v̄), and can be written
as

Hn2 [ψ](τ) = n2(v+v̄−1) ×
∑
λ∈A

( ∑
γ∈A(n2)
nγ=λ

∑
k,l>0
kl=n2

1

lv+v̄+ 1
2

dim(L)

×
l−1∑
s=0

∆n2(γ, n)∆n2(γ, k)e
(
− s
k
qn2(γ)

)
ψlγ

(
kτ + s

l

))
eλ.

Proof. This follows directly from Definitions 3.8 and 4.2. �

4.4 Algebraic relations satisfied by the Hecke operators Hn2

In the previous section, we proved Theorem 3.18 for the Hecke operators Tr. We now study
similiar recursion relations for the operators Hn2 . The statements and their proofs in this
section mirror analogous results obtained by Eichler–Zagier on Jacobi forms in [13, Section I.4].

We first need the following lemmas.

Lemma 4.9. For any positive integers m and n,

Un2 ◦ Tm2 = Tm2 ◦ Un2 .

Proof. This follows directly by applying the analogous statement for Un2 and Tm2 on the
scalar-valued 〈ψ,ΘL〉 (τ, α, β) and then using the definition of our operators Tm2 and Un2 . �
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Lemma 4.10. For any positive integers m and n,

Pm2 ◦ Pn2 = Pm2n2 .

Proof. Let ψ(τ) =
∑

ν∈A(m2n2) ψν(τ)eν be vector-valued modular of type ρL(m2n2). Then

Pm2 ◦ Pn2 [ψ](τ) =
1

ndim(L)
Pm2

[ ∑
α∈A(m2)

∑
γ∈A(m2n2)

nγ=α

∆m2n2(γ, n)ψγ(τ)eα

]

=
1

(mn)dim(L)

∑
λ∈A

∑
β∈A(m2)
mβ=λ

∑
γ∈A(m2n2)

nγ=β

∆m2(β,m)∆m2n2(γ, n)ψγ(τ)eλ.

The two delta conditions imply that γ ∈ A(mn). We can then rewrite the sums as

Pm2 ◦ Pn2 [ψ](τ) =
1

(mn)dim(L)

∑
λ∈A

∑
β∈A(m)
mβ=λ

∑
γ∈A(mn)
nγ=β

ψγ(τ)eλ

=
1

(mn)dim(L)

∑
λ∈A

∑
γ∈A(mn)
mnγ=λ

ψγ(τ)eλ = Pm2n2 [ψ](τ). �

However, the projection and Hecke operators only commute when gcd(m,n) = 1:

Lemma 4.11. For m and n such that gcd(m,n) = 1,

Pn2 ◦ Tm2 = Tm2 ◦ Pn2 .

Proof. We start with the left-hand side. Let ψ(τ) be vector-valued modular of weight (v, v̄)
and type ρL(n2). We have

Pn2 ◦ Tm2 [ψ](τ) = m2(w+w̄−1)Pn2

[ ∑
µ∈A(m2n2)

( ∑
k,l>0
kl=m2

1

lw+w̄

×
l−1∑
s=0

∆m2n2(µ, k)e
(
− s
k
qm2n2(µ)

)
ψlµ

(
kτ + s

l

))
eµ

]

=
m2(w+w̄−1)

ndim(L)

∑
λ∈A(m2)

( ∑
k,l>0
kl=m2

1

lw+w̄

l−1∑
s=0

e
(
− s
k
qm2(λ)

)

×
∑

γ∈A(m2n2)
nγ=λ

∆m2n2(γ, n)∆m2n2(γ, k)ψlγ

(
kτ + s

l

))
eλ.

On the right-hand side, we get

Tm2 ◦ Pn2 [ψ](τ) =
1

ndim(L)
Tm2

[∑
λ∈A

( ∑
µ∈A(n2)
nµ=λ

∆n2(µ, n)ψµ(τ)

)
eλ

]

=
m2(w+w̄−1)

ndim(L)

∑
λ∈A(m2)

( ∑
k,l>0
kl=m2

1

lw+w̄

l−1∑
s=0

e
(
− s
k
qm2(λ)

)



20 V. Bouchard, T. Creutzig and A. Joshi

×
∑

µ∈A(n2)
nµ=lλ

∆m2(λ, k)∆n2(µ, n)ψµ

(
kτ + s

l

))
eλ.

To prove equality between the two sides we need to show that∑
γ∈A(m2n2)

nγ=λ

∆m2n2(γ, n)∆m2n2(γ, k)ψlγ

(
kτ + s

l

)

=
∑

µ∈A(n2)
nµ=lλ

∆m2(λ, k)∆n2(µ, n)ψµ

(
kτ + s

l

)
(4.3)

for all k, l > 0 such that kl = m2, s ∈ {0, . . . , l − 1}, and λ ∈ A
(
m2
)
.

On the right-hand side, the two delta functions impose that µ ∈ A(n) and λ ∈ A(l), so we
can write the right-hand side as∑

µ∈A(n)
nµ=lλ

ψµ

(
kτ + s

l

)
,

when λ ∈ A(l) and zero otherwise.
On the left-hand side, the first delta function imposes that γ ∈ A

(
m2n

)
, while the second

imposes that γ ∈ A
(
ln2
)
. Together those impose that γ ∈ A(s), where s = gcd

(
m2n, ln2

)
.

Assuming that gcd(m,n) = 1, we have s = ln, hence γ ∈ A(ln). Since nγ = λ, this imposes
that λ ∈ A(l) ⊆ A

(
m2
)
. So the left-hand side can be written as

∑
γ∈A(ln)
nγ=λ

ψlγ

(
kτ + s

l

)
,

when λ ∈ A(l) and zero otherwise. We note that knowing nγ and lγ completely fixes γ ∈ A(ln)
by the Euclidean algorithm. Thus if we define µ = lγ, we can rewrite the sum as∑

µ∈A(n)
nµ=lλ

ψµ

(
kτ + s

l

)
,

and (4.3) is satisfied. �

We then prove the following algebraic relations.

Theorem 4.12. For m and n such that gcd(m,n) = 1,

Hm2 ◦ Hn2 = Hm2n2 ,

while for l ≥ 2 and p prime,

Hp2l = Pp2l−2 ◦ Hp2 ◦ Hp2l−2 ◦ Up2l−2 − pw+w̄−1Hp2l−2 − p2(w+w̄−1)Hp2l−4 .

Proof. To prove the first statement, we start with

Tm2 ◦ Tn2 = Tm2n2 ,
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and apply the projection operator Pm2n2 = Pm2 ◦ Pn2 (using Lemma 4.10) on both sides of the
equation. The right-hand side becomes Hm2n2 , while the left-hand side becomes Hm2 ◦Hn2 after
using Lemma 4.11.

For the second statement, we start with

Tpm = Tp ◦ Tpm−1 − pw+w̄−1Up2 ◦ Tpm−2 ,

for m ≥ 2 and p prime. Consider the three cases m = 2l, m = 2l− 1 and m = 2l− 2, with l ≥ 2:

Tp2l = Tp ◦ Tp2l−1 − pw+w̄−1Up2 ◦ Tp2l−2 ,

Tp2l−1 = Tp ◦ Tp2l−2 − pw+w̄−1Up2 ◦ Tp2l−3 ,

Tp2l−2 = Tp ◦ Tp2l−3 − pw+w̄−1Up2 ◦ Tp2l−4 .

Inserting the second equation into the first, and using Lemma 4.9, we get

Tp2l = Tp ◦ Tp ◦ Tp2l−2 − pw+w̄−1Up2 ◦ Tp ◦ Tp2l−3 − pw+w̄−1Up2 ◦ Tp2l−2 .

Then inserting the third equation, using Lemma 4.9 again, we get

Tp2l = Tp ◦ Tp ◦ Tp2l−2 − pw+w̄−1Up2 ◦ Tp2l−2

− p2(w+w̄−1)Up2 ◦ Up2 ◦ Tp2l−4 − pw+w̄−1Up2 ◦ Tp2l−2 .

But

Tp ◦ Tp = Tp2 + pw+w̄−1Up2 ,

hence we get

Tp2l = Tp2 ◦ Tp2l−2 − pw+w̄−1Up2 ◦ Tp2l−2 − p2(w+w̄−1)Up2 ◦ Up2 ◦ Tp2l−4 .

We now apply the projection operator Pp2l on both sides of the equation. The left-hand side
becomes Hp2l , and the last two terms on the right-hand side become

−pw+w̄−1Hp2l−2 − p2(w+w̄−1)Hp2l−4 ,

using Lemma 4.5. For the first term on the right-hand side, we get

Pp2l ◦ Tp2 ◦ Tp2l−2 = Pp2l−2 ◦ Hp2 ◦
(
Pp2l−2 ◦ Up2l−2

)
◦ Tp2l−2

= Pp2l−2 ◦ Hp2 ◦ Hp2l−2 ◦ Up2l−2 ,

where we used Lemmas 4.5 and 4.9. �

5 Comparison to the construction of Bruinier and Stein

In [8, 29] Bruinier and Stein also construct Hecke operators on vector-valued modular forms of
type ρL using a different approach. In this section we compare our Hecke operators to theirs.
We find an exact match between our Hecke operators and the Bruinier–Stein operators, for the
case r = p2l, where p is an odd prime and l a positive integer.
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5.1 The construction of Bruinier and Stein

Let us now summarize the construction of Bruinier and Stein in [8, 29]. We refer the reader
to [22] and [8, 29] for further details.

In [8], Bruinier and Stein first construct Hecke operators T
(BS)
m2 , where m is a positive integer

that is coprime with the level N of the lattice L, by extending the Weil representation of Mp2(Z)

on C[A] to some appropriate subgroup of G̃L
+

2 (Q), where G̃L
+

2 (Q) denotes the metaplectic

twofold cover of GL+
2 (Q). They then extend their construction of the Hecke operators T

(BS)
m2 to all

positive integers m, not necessarily coprime to N , by somehow extending the Weil representation

to a suitable double coset. They prove that their Hecke operators T
(BS)
m2 satisfy the relation

T
(BS)
m2 ◦ T

(BS)
n2 = T

(BS)
m2n2 , gcd(m,n) = 1.

However, they only describe the action of T
(BS)
m2 on the Fourier coefficients of vector-valued

modular forms in the first case.

In [29] Stein presents a formula (Theorem 5.4) for the action of their Hecke operators T
(BS)

p2l

on the Fourier coefficients of vector-valued modular forms, for any odd prime p and positive
integer l. To this end, Stein provides an explicit calculation of the action of their extension
of the Weil representation on the standard basis {eλ}λ∈A of C[A] – see Proposition 5.1 and
Theorem 5.2 of [29].

Let α =
((

p2l 0
0 1

)
, 1
)
∈ G̃L

+

2 (Q). Start by defining an extension of the Weil representation

to α by

ρ−1
L (α)eλ = eplλ.

Then consider the double coset Γ̃(1)αΓ̃(1), where Γ̃(1) = Mp2(Z). The action above can be
extended to an action on this double coset by

ρ−1
L (β)eλ = ρ−1

L (γ′)ρ−1
L (α)ρ−1

L (γ)eλ,

where β = γαγ′ and γ, γ′ ∈ Γ̃(1).

Definition 5.1 ([8, 29]). Let ψ(τ) be a holomorphic vector-valued modular form4 of weight k
and type ρL. Denote by

Γ̃(1)αΓ̃(1) =
⋃
i

Γ̃(1)δi (5.1)

the left coset decomposition. Then the Bruinier–Stein Hecke operator Tp2l is defined by

T
(BS)

p2l
[ψ](τ) = p2l(k−1)

∑
i

∑
λ∈A

φδi(τ)−2kψλ(δiτ)ρ−1
L (δi)eλ, (5.2)

where the first sum is over the left coset representatives δi in (5.1). It can be shown that

T
(BS)

p2l
[ψ](τ) is a holomorphic vector-valued modular form of weight k and type ρL.

To get an explicit formula for the Hecke transform T
(BS)

p2l
[ψ](τ), one needs to calculate

ρ−1
L (δi)eλ for all left coset representatives δi. This is what is done in Proposition 5.1 and

4Note that the Hecke operators in [8, 29] are defined for holomorphic vector-valued modular forms, so in this
section we will restrict our construction to holomorphic vector-valued modular forms as well.
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Theorem 5.2 of [29]. First, we notice that the left coset decomposition (5.1) can be written
explicitly as

Γ̃(1)αΓ̃(1) = Γ̃(1)α ∪
2l−1⋃
a=1

⋃
b∈(Z/paZ)∗

Γ̃(1)βb,a ∪
⋃

b∈Z/p2lZ

Γ̃(1)γb,

where

βb,a =

((
p2l−a b

0 pa

)
,
√
pa
)
, γb =

((
1 b
0 p2l

)
, pl
)
.

The extension of the Weil representation to these representatives goes as follows.
First, we get the following result for the α and γb cosets:

Proposition 5.2 ([29, Proposition 5.1]). Let p be an odd prime, a, l positive integers with a < 2l
and b ∈ (Z/paZ)∗. Then

ρ−1
L (α)eλ = eplλ,

ρ−1
L (γb)eλ =

∑
ν∈A
plν=λ

e(−bq(ν))eν .

We also need the extension of the Weil representation for the βb,a cosets. Theorem 5.2 of [29]
presents explicit formulae for the cases l ≥ a and l < a separately. However, we claim that
there is a mistake in the calculation leading to the formula for the case l < a presented in
Theorem 5.2 of [29]. As such, we provide here new formulae for the extension of the Weil
representation studied in [8, 29]. The formula for the case l ≥ a that we obtain is equivalent
to the one presented in Theorem 5.2 of [29], but our formula for the case l < a is not. For
completeness, we provide a derivation of these formulae in Appendix A.

Proposition 5.3. Let p be an odd prime, a, l positive integers with a < 2l and b ∈ (Z/paZ)∗.
Then

ρ−1
L (βb,a)eλ =



p−
a
2

dim(L)
∑

δ∈A(pa)
paδ=λ

e (−bqpa(δ)) epl−aλ if l ≥ a,

p−
a
2

dim(L)
∑
µ∈A

pa−lµ=λ

∑
δ∈A(pl)

plδ=µ

e
(
−bpa−lqpl(δ)

)
eµ if l < a.

Substituting these two Propositions in (5.2) and simplifying, we can write

T
(BS)

p2l
[ψ](τ) = C(BS)

α (τ) +
2l−1∑
a=1

∑
b∈(Z/paZ)∗

C
(BS)
βb,a

(τ) +

p2l−1∑
b=0

C(BS)
γb

(τ),

with

C(BS)
α (τ) = p2l(k−1)

∑
λ∈A

ψλ
(
p2lτ

)
eplλ, (5.3)

C
(BS)
βb,a

(τ) =



p(2l−a)k−2l−a
2

dim(L)
∑
λ∈A

∑
δ∈A(pa)
paδ=λ

e (−bqpa(δ))

× ψλ
(
p2l−aτ+b

pa

)
epl−aλ if l ≥ a,

p(2l−a)k−2l−a
2

dim(L)
∑
ρ∈A

∑
δ∈A(pl)

plδ=ρ

e
(
−bpa−lqpl(δ)

)
× ψpa−lρ

(
p2l−aτ+b

pa

)
eρ if l < a,

(5.4)
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C(BS)
γb

(τ) = p−2l
∑
λ∈A

e(−bq(λ))ψplλ

(
τ + b

p2l

)
eλ. (5.5)

5.2 Comparison

Let us now compare the Bruinier–Stein construction with our Hecke operators Hp2l . Since
the Bruinier–Stein operators are defined for holomorphic vector-valued modular forms, we also
restrict our construction to holomorphic vector-valued modular forms. In particular, we only
consider weights of the form (v, v̄) = (k, 0).

From Proposition 4.8, we can write

Hp2l [ψ](τ) = p2l(k−1)
∑
λ∈A

( ∑
γ∈A(p2l)

plγ=λ

2l∑
a=0

1

pa(k+ 1
2

dim(L))

×
pa−1∑
b=0

∆p2l
(
γ, pl

)
∆p2l

(
γ, p2l−a)e(− b

p2l−a qp2l(γ)

)
ψpaγ

(
p2l−aτ + b

pa

))
eλ.

In fact, as mentioned in Remark 3.4, we will consider a slightly different definition of the Hecke
transform in this section. We use a double coset definition as in Bruinier and Stein, which simply
amounts to restricting the sum over b to those that are in (Z/paZ)∗.

To compare with the Hecke operator of Bruinier and Stein, we define

Hp2l [ψ](τ) = Cα(τ) +
2l−1∑
a=1

∑
b∈(Z/paZ)∗

Cβb,a(τ) +

p2l−1∑
b=0

Cγb(τ),

with

Cα(τ) = p2l(k−1)
∑
λ∈A

∑
γ∈A(p2l)

plγ=λ

∆p2l
(
γ, pl

)
∆p2l

(
γ, p2l

)
ψγ
(
p2lτ

)
eλ,

Cβb,a(τ) = p(2l−a)k−2l−a
2

dim(L)

×
∑
λ∈A

∑
γ∈A(p2l)

plγ=λ

∆p2l
(
γ, pl

)
∆p2l

(
γ, p2l−a)e(− b

p2l−a qp2l(γ)

)
ψpaγ

(
p2l−aτ + b

pa

)
eλ,

Cγb(τ) = p−2l−l dim(L)
∑
λ∈A

∑
γ∈A(p2l)

plγ=λ

∆p2l
(
γ, pl

)
∆p2l(γ, 1)e

(
−bqp2l(γ)

)
ψp2lγ

(
τ + b

p2l

)
eλ.

We need to compare these three expressions with the corresponding expressions obtained by
Bruinier and Stein in equations (5.3), (5.4) and (5.5).

5.2.1 The α coset

We have

Cα(τ) = p2l(k−1)
∑
λ∈A

∑
γ∈A(p2l)

plγ=λ

∆p2l
(
γ, pl

)
∆p2l

(
γ, p2l

)
ψγ
(
p2lτ

)
eλ.
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The ∆p2l
(
γ, p2l

)
implies that γ ∈ A, in which case the condition ∆p2l

(
γ, pl

)
becomes trivial. So

we can rewrite this expression as

Cα(τ) = p2l(k−1)
∑
λ∈A

ψλ
(
p2lτ

)
eplλ,

which is precisely C
(BS)
α (τ) in (5.3).

5.2.2 The γb cosets

Let us move on to the γb cosets. We have

Cγb(τ) = p−2l−l dim(L)
∑
λ∈A

∑
γ∈A(p2l)

plγ=λ

∆p2l
(
γ, pl

)
∆p2l(γ, 1)e

(
−bqp2l(γ)

)
ψp2lγ

(
τ + b

p2l

)
eλ.

The ∆p2l(γ, 1) condition is trivial, while the ∆p2l(γ, p
l) condition imposes that γ ∈ A

(
pl
)
⊆

A
(
p2l
)
. So we can write

Cγb(τ) = p−2l−l dim(L)
∑
λ∈A

∑
γ∈A(pl)

plγ=λ

e
(
−bq

(
plγ
))
ψp2lγ

(
τ + b

p2l

)
eplγ

= p−2l−l dim(L)
∑
λ∈A

e(−bq(λ))ψplλ

(
τ + b

p2l

)
eλ

( ∑
γ∈A(pl)

plγ=λ

1

)

= p−2l
∑
λ∈A

e(−bq(λ))ψplλ

(
τ + b

p2l

)
eλ,

where we evaluated the summation as in (4.1). This is precisely C
(BS)
γb (τ) in (5.5).

5.2.3 The βb,a cosets

The remaining cases correspond to the βb,a cosets. We have

Cβb,a(τ) = p(2l−a)k−2l−a
2

dim(L))

×
∑
λ∈A

∑
γ∈A(p2l)

plγ=λ

∆p2l
(
γ, pl

)
∆p2l

(
γ, p2l−a)e(− b

p2l−a qp2l(γ)

)
ψpaγ

(
p2l−aτ + b

pa

)
eλ.

The ∆p2l
(
γ, pl

)
condition imposes that γ ∈ A(pl) ⊆ A

(
p2l
)
. We rewrite

Cβb,a(τ) = p(2l−a)k−2l−a
2

dim(L)
∑
λ∈A

∑
γ∈A(pl)

plγ=λ

∆p2l
(
γ, p2l−a)

× e
(
− b

p2l−a qp2l(γ)

)
ψpaγ

(
p2l−aτ + b

pa

)
eλ

= p(2l−a)k−2l−a
2

dim(L)
∑

γ∈A(pl)

∆p2l
(
γ, p2l−a)

× e
(
− b

p2l−a qp2l(γ)

)
ψpaγ

(
p2l−aτ + b

pa

)
eplγ .
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l ≥ a. Let us consider first the case when l ≥ a. The ∆p2l
(
γ, p2l−a) condition then imposes

that γ ∈ A(pa). Since l ≥ a, A(pa) ⊆ A
(
pl
)
, hence we can write

Cβb,a(τ) = p(2l−a)k−2l−a
2

dim(L)
∑

γ∈A(pa)

e(−bqpa(γ))ψpaγ

(
p2l−aτ + b

pa

)
eplγ

= p(2l−a)k−2l−a
2

dim(L)
∑
λ∈A

( ∑
γ∈A(pa)
paγ=λ

e(−bqpa(γ))

)
ψλ

(
p2l−aτ + b

pa

)
epl−aλ.

This is precisely C
(BS)
βb,a

(τ) with l ≥ a in (5.4).

l < a. We start with

Cβb,a(τ) = p(2l−a)k−2l−a
2

dim(L)
∑
λ∈A

∑
γ∈A(pl)

plγ=λ

∆p2l
(
γ, p2l−a)

× e
(
− b

p2l−a qp2l(γ)

)
ψpaγ

(
p2l−aτ + b

pa

)
eλ.

The ∆p2l
(
γ, p2l−a) condition imposes that γ ∈ A(pa), but since l < a, A

(
pl
)
⊆ A(pa), hence this

condition is vacuous. Thus we get

Cβb,a(τ) = p(2l−a)k−2l−a
2

dim(L)
∑
λ∈A

( ∑
γ∈A(pl)

plγ=λ

e
(
−bpa−lqpl(γ)

))
ψpa−lλ

(
p2l−aτ + b

pa

)
eλ.

This is precisely C
(BS)
βb,a

(τ) with l < a in (5.4).

Remark 5.4. It was proved in [8, Theorem 5.6] that the operators T
(BS)
n2 preserve cusp forms

and are self-adjoint with respect to the Petersson inner product defined in (2.1). From the
equivalence of the two constructions it follows that the operators Hn2 are self-adjoint as well.

Remark 5.5. The action of the operators T
(BS)

p2l
for l ∈ N on Fourier coefficients of a holomorphic

vector-valued modular form was computed in [29]. A similar computation could be done for the
operators Tpl by applying the explicit Definition 3.8 on holomorphic vector-valued modular forms
with a given q-expansion and simplifying the series expansion.

A Derivation of Proposition 5.3

In this appendix we derive explicit formulae for the extension of the Weil representation studied
in [8, 29] for the βb,a cosets. More precisely, we prove:

Proposition 5.3. Let p be an odd prime, a, l positive integers with a < 2l and b ∈ (Z/paZ)∗.
Then

ρ−1
L (βb,a)eλ =



p−
a
2

dim(L)
∑

δ∈A(pa)
paδ=λ

e (−bqpa(δ)) epl−aλ if l ≥ a,

p−
a
2

dim(L)
∑
µ∈A

pa−lµ=λ

∑
δ∈A(pl)

plδ=µ

e
(
−bpa−lqpl(δ)

)
eµ if l < a.
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As noted in the main text, the formula above for the l ≥ a case is equivalent to the formula
presented in Theorem 5.2 of [29]. However, the formula for l < a is not. We believe that there
is a mistake in the calculation of [29] for the case l < a.

Proof. We follow the beginning of the proof of Theorem 5.2 in [29]. Note that h and s in [29]
are denoted by b and a respectively in the current paper. Our starting point is equation (5.9)
in [29], which in our notation reads

ρ−1
L (βb,a)eλ =

1√
|A|3

√
|A(pa)|

∑
ν,ρ,µ∈A

e
(
brq(λ)− p2l−atq(ν)− (ν, ρ)− b(µ, λ) + pl(µ, ν)

)
eρ

×
∑

δ∈A(pa)

e
(
tqpa(δ)− r(δ, λ)pa + (µ, δ)pa

)
.

Since √
|A|√
|A(pa)|

= p−
a
2

dim(L),

we can rewrite this equation as

ρ−1
L (βb,a)eλ =

p−
a
2

dim(L)

|A|2
∑

ν,ρ,µ∈A
e
(
brq(λ)− p2l−atq(ν)− (ν, ρ)− b(µ, λ) + pl(µ, ν)

)
eρ

×
∑

δ∈A(pa)

e
(
tqpa(δ)− r(δ, λ)pa + (µ, δ)pa

)
.

Note that the integers r, pa, b and t are related by

rpa − bt = 1.

In particular, b and pa are coprime.

l ≥ a. We first consider the case l ≥ a. Let us do a shift δ 7→ δ − pl−aν. Since pl−aν ∈ A ⊆
A(pa), the shift does not change the sum over δ since it is just relabeling. We get

ρ−1
L (βb,a)eλ =

p−
a
2

dim(L)

|A|2
∑

ν,ρ,µ∈A
e
(
brq(λ)− (ν, ρ)− b(µ, λ) + rpl(ν, λ)

)
eρ

×
∑

δ∈A(pa)

e
(
tqpa(δ)− (paδ, tpl−aν + rλ− µ)

)
.

Let us do a further shift µ 7→ µ+ rλ+ tpl−aν, which also does not change the sum

ρ−1
L (βb,a)eλ =

p−
a
2

dim(L)

|A|2
∑

ν,ρ,µ∈A
e
(
−brq(λ)− (ν, ρ)− b(µ, λ) + pl−a(ν, λ)

)
eρ

×
∑

δ∈A(pa)

e
(
tqpa(δ) + (paδ, µ)

)
.

The sum over ν ∈ A is non-zero and equal to |A| if and only if ρ = pl−aλ mod L. Thus we get

ρ−1
L (βb,a)eλ =

p−
a
2

dim(L)

|A|
∑
µ∈A

e(−brq(λ)− b(µ, λ))epl−aλ

∑
δ∈A(pa)

e
(
tqpa(δ) + (paδ, µ)

)
.
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The sum over µ is then non-zero and equal to |A| if and only if bλ = paδ mod L. Thus we get

ρ−1
L (βb,a)eλ = p−

a
2

dim(L)e(−brq(λ))epl−aλ

∑
δ∈A(pa)
paδ=bλ

e(tqpa(δ)). (A.1)

Now let S be the set of δ ∈ A(pa) such that paδ = bλ for some fixed λ ∈ A, and S′ be the
set of δ′ ∈ A(pa) such that paδ′ = λ. We claim that there is a bijection f : S′ → S given by
f : δ′ 7→ δ = bδ′.

First, let us show that it is injective. Any two δ′1, δ
′
2 ∈ S′ must differ by an element of

1
paL/L ⊆ A(pa), that is, δ′1 = δ′2 + µ for some µ ∈ 1

paL/L. But then, bδ′1 = bδ′2 + bµ, and bµ = 0

mod L if and only if µ = 0 mod L, since b and pa are coprime. Therefore bδ′1 = bδ′2 if and only
if δ′1 = δ′2 mod L.

Second, we show that f is surjective. We need to show that any δ ∈ S can be written as
δ = bδ′ for some δ′ ∈ S′. Pick a δ′ ∈ S′. δ can be written as δ = bδ′ + µ for some µ ∈ A(pa).
But then

bλ = paδ = bpaδ′ + paµ = bλ+ paµ,

and hence paµ = 0 mod L, that is, µ ∈ 1
paL/L ⊆ A(pa). Now, since b is coprime with pa, we

can always write µ = bν for some ν ∈ 1
paL/L. Thus we get

δ = bδ′ + bν = b(δ′ + ν) = bδ′′,

where δ′′ = δ′ + ν ∈ A(pa), and paδ′′ = paδ′ + paν = paδ′ = λ. Thus we conclude that δ = hδ′′,
with δ′′ ∈ S′.

As a result, the bijection f : S′ → S allows us to substitute δ = bδ′ in (A.1) and replace the
sum over δ ∈ A(pa) such that paδ = bλ by a sum over δ′ ∈ A(pa) such that paδ′ = λ. We get

ρ−1
L (βb,a)eλ = p−

a
2

dim(L)e(−brq(λ))epl−aλ

∑
δ′∈A(pa)
paδ′=λ

e
(
tb2qpa(δ′)

)
.

Now using bt = rpa − 1,

ρ−1
L (βb,a)eλ = p−

a
2

dim(L)e(−brq(λ))epl−aλ

∑
δ′∈A(pa)
paδ′=λ

e(−bqpa(δ′))e(brq(paδ′))

= p−
a
2

dim(L)
∑

δ′∈A(pa)
paδ′=λ

e(−bqpa(δ′))epl−aλ.

l < a. Let us start again with

ρ−1
L (βb,a)eλ =

p−
a
2

dim(L)

|A|2
∑

ν,ρ,µ∈A
e
(
brq(λ)− p2l−atq(ν)− (ν, ρ)− b(µ, λ) + pl(µ, ν)

)
eρ

×
∑

δ∈A(pa)

e
(
tqpa(δ)− r(δ, λ)pa + (µ, δ)pa

)
.

Let us rewrite the sum over ν ∈ A as a sum over γ ∈ A(pa), with paγ = ν. This map is not
one-to-one; its kernel is given by 1

paL/L ⊆ A(pa). Thus we need to divide by
∣∣ 1
paL/L

∣∣ = pa dim(L).
We get

ρ−1
L (βb,a)eλ =

p−
3a
2

dim(L)

|A|2
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×
∑
ρ,µ∈A

∑
γ∈A(pa)

e
(
brq(λ)− p2ltqpa(γ)− (paγ, ρ)− b(µ, λ) + pl(µ, paγ)

)
eρ

×
∑

δ∈A(pa)

e
(
tqpa(δ)− (paδ, rλ− µ)

)
.

We then do a shift δ 7→ δ − plγ. Since plγ ∈ A
(
pa−l

)
⊆ A(pa), the shift does not change the

sum. We get

ρ−1
L (βb,a)eλ =

p−
3a
2

dim(L)

|A|2
∑
ρ,µ∈A

∑
γ∈A(pa)

e
(
brq(λ)− (paγ, ρ)− b(µ, λ) + rpl(paγ, λ)

)
eρ

×
∑

δ∈A(pa)

e
(
tqpa(δ)− (paδ, rλ− µ)− tpl(δ, γ)pa

)
.

We now do a shift µ 7→ µ+ rλ to get

ρ−1
L (βb,a)eλ =

p−
3a
2

dim(L)

|A|2
∑
ρ,µ∈A

∑
γ∈A(pa)

e
(
−brq(λ)− (γ, ρ)pa − b(µ, λ) + rpl(γ, λ)pa

)
eρ

×
∑

δ∈A(pa)

e
(
tqpa(δ) + (paδ, µ)− tpl(δ, γ)pa

)
.

The sum over µ ∈ A is non-zero and equal to |A| if and only if paδ = bλ mod L. Moreover, as
we have seen in the calculation for the l ≥ a case, we can substitute δ = bδ′ and replace the sum
over δ ∈ A(pa) such that paδ = bλ by a sum over δ′ ∈ A(pa) such that paδ′ = λ. Thus we can
write

ρ−1
L (βb,a)eλ =

p−
3a
2

dim(L)

|A|
∑
ρ∈A

∑
γ∈A(pa)

e
(
−brq(λ)− (γ, ρ)pa + rpl(γ, λ)pa

)
eρ

×
∑

δ′∈A(pa)
paδ′=λ

e
(
tb2qpa(δ′)− btpl(δ′, γ)pa

)
.

Using bt = rpa − 1,

ρ−1
L (βb,a)eλ =

p−
3a
2

dim(L)

|A|
∑
ρ∈A

∑
γ∈A(pa)

e (−(γ, ρ)pa) eρ
∑

δ′∈A(pa)
paδ′=λ

e
(
−bqpa(δ′) + pl(δ′, γ)pa

)
.

The sum over γ ∈ A(pa) is non-zero and equal to |A(pa)| if and only if ρ = plδ′ mod L. In
particular, since ρ ∈ A, this implies that the sum can be non-zero only for δ′ ∈ A

(
pl
)
⊆ A(pa).

Thus we get

ρ−1
L (βb,a)eλ =

p−
3a
2

dim(L)|A(pa)|
|A|

∑
δ′∈A(pl)
paδ′=λ

e
(
−bpa−lqpl(δ′)

)
eplδ′

= p−
a
2

dim(L)
∑
µ∈A

pa−lµ=λ

∑
δ′∈A(pl)

plδ′=µ

e
(
−bpa−lqpl(δ′)

)
eµ. �
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