Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 072, 48 pages      arXiv:1506.07681      https://doi.org/10.3842/SIGMA.2019.072

Spinorially Twisted Spin Structures. II: Twisted Pure Spinors, Special Riemannian Holonomy and Clifford Monopoles

Rafael Herrera a and Noemi Santana b
a) Centro de Investigación en Matemáticas, A.P. 402, Guanajuato, Gto., C.P. 36000, México
b) Universidad Marista Valladolid, José Juan Tablada 1111, Santa Maria de Guido, 58090 Morelia, Mich., México

Received February 12, 2019, in final form September 07, 2019; Published online September 22, 2019

Abstract
We introduce a notion of twisted pure spinor in order to characterize, in a unified way, all the special Riemannian holonomy groups just as a classical pure spinor characterizes the special Kähler holonomy. Motivated by certain curvature identities satisfied by manifolds admitting parallel twisted pure spinors, we also introduce the Clifford monopole equations as a natural geometric generalization of the Seiberg-Witten equations. We show that they restrict to the Seiberg-Witten equations in 4 dimensions, and that they admit non-trivial solutions on manifolds with special Riemannian holonomy.

Key words: twisted spinor; pure spinor; parallel spinor; special Riemannian holonomy; Clifford monopole.

pdf (574 kb)   tex (42 kb)  

References

  1. Arizmendi G., Garcia-Pulido A.L., Herrera R., A note on the geometry and topology of almost even-Clifford Hermitian manifolds, Q. J. Math. 69 (2018), 321-376, arXiv:1606.00774.
  2. Arizmendi G., Herrera R., Centralizers of spin subalgebras, J. Geom. Phys. 97 (2015), 77-92, arXiv:1503.06168.
  3. Arizmendi G., Herrera R., Santana N., Almost even-Clifford hermitian manifolds with a large automorphism group, Proc. Amer. Math. Soc. 144 (2016), 4009-4020, arXiv:1506.03713.
  4. Barberis M.L., Dotti Miatello I.G., Miatello R.J., On certain locally homogeneous Clifford manifolds, Ann. Global Anal. Geom. 13 (1995), 289-301.
  5. Berger M., Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279-330.
  6. Burdujan I., On almost Cliffordian manifolds, Ital. J. Pure Appl. Math. (2003), 129-144.
  7. Burdujan I., Clifford-Kähler manifolds, Balkan J. Geom. Appl. 13 (2008), 12-23.
  8. Cartan E., The theory of spinors, Dover Publications, Inc., New York, 1981.
  9. Console S., Olmos C., Clifford systems, algebraically constant second fundamental form and isoparametric hypersurfaces, Manuscripta Math. 97 (1998), 335-342.
  10. Espinosa M., Herrera R., Spinorially twisted spin structures, I: Curvature identities and eigenvalue estimates, Differential Geom. Appl. 46 (2016), 79-107, arXiv:1409.6246.
  11. Ferus D., Karcher H., Münzner H.F., Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z. 177 (1981), 479-502.
  12. Friedrich T., Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, Vol. 25, Amer. Math. Soc., Providence, RI, 2000.
  13. Friedrich T., Weak Spin(9)-structures on 16-dimensional Riemannian manifolds, Asian J. Math. 5 (2001), 129-160, arXiv:math.DG/9912112.
  14. Garcia-Pulido A.L., Herrera R., Rigidity and vanishing theorems for almost even-Clifford Hermitian manifolds, SIGMA 13 (2017), 027, 28 pages, arXiv:1609.01509.
  15. Hadfield C., Moroianu A., Local geometry of even Clifford structures on conformal manifolds, Ann. Global Anal. Geom. 54 (2018), 301-313, arXiv:1611.01665.
  16. Hitchin N., Harmonic spinors, Adv. Math. 14 (1974), 1-55.
  17. Joyce D.D., Manifolds with many complex structures, Quart. J. Math. Oxford Ser. (2) 46 (1995), 169-184.
  18. Joyce D.D., Riemannian holonomy groups and calibrated geometry, Oxford Graduate Texts in Mathematics, Vol. 12, Oxford University Press, Oxford, 2007.
  19. Kirchberg K.-D., An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Global Anal. Geom. 4 (1986), 291-325.
  20. Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Mathematical Series, Vol. 38, Princeton University Press, Princeton, NJ, 1989.
  21. Lazaroiu C.I., Shahbazi C.S., Real pinor bundles and real Lipschitz structures, arXiv:1606.07894.
  22. Lazaroiu C.I., Shahbazi C.S., Complex Lipschitz structures and bundles of complex Clifford modules, Differential Geom. Appl. 61 (2018), 147-169, arXiv:1711.07765.
  23. Leung N.C., Riemannian geometry over different normed division algebras, J. Differential Geom. 61 (2002), 289-333, arXiv:math.DG/0303153.
  24. Morgan J.W., The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, Vol. 44, Princeton University Press, Princeton, NJ, 1996.
  25. Moroianu A., Parallel and Killing spinors on ${\rm Spin}^c$ manifolds, Comm. Math. Phys. 187 (1997), 417-427.
  26. Moroianu A., Pilca M., Higher rank homogeneous Clifford structures, J. Lond. Math. Soc. 87 (2013), 384-400, arXiv:1110.4260.
  27. Moroianu A., Semmelmann U., Clifford structure on Riemannian manifolds, Adv. Math. 228 (2011), 940-967, arXiv:0912.4207.
  28. Nagase M., ${\rm Spin}^q$ structures, J. Math. Soc. Japan 47 (1195), 93-119.
  29. Nicolaescu L.I., Notes on Seiberg-Witten theory, Graduate Studies in Mathematics, Vol. 28, Amer. Math. Soc., Providence, RI, 2000.
  30. Nikolayevsky Y., Osserman manifolds and Clifford structures, Houston J. Math. 29 (2003), 59-75.
  31. Parton M., Piccinni P., $\rm Spin(9)$ and almost complex structures on 16-dimensional manifolds, Ann. Global Anal. Geom. 41 (2012), 321-345, arXiv:1105.5318.
  32. Parton M., Piccinni P., The even Clifford structure of the fourth Severi variety, Complex Manifolds 2 (2015), 89-104, arXiv:1506.04624.
  33. Parton M., Piccinni P., Vuletescu V., Clifford systems in octonionic geometry, Rend. Semin. Mat. Univ. Politec. Torino 74 (2016), 269-290, arXiv:1511.06239.
  34. Piccinni P., On some Grassmannians carrying an even Clifford structure, Differential Geom. Appl. 59 (2018), 122-137, arXiv:1805.01751.
  35. Salamon S., Riemannian geometry and holonomy groups, Pitman Research Notes in Mathematics Series, Vol. 201, Longman Scientific & Technical, Harlow, 1989.
  36. Santana N., Automorfismos de variedades casi-cuaterniónicas hermitianas y holonomía de variedades con spinors puros paralelos, Ph.D. Thesis, CIMAT, Guanajuato, 2011.
  37. Simons J., On the transitivity of holonomy systems, Ann. of Math. 76 (1962), 213-234.
  38. Spindel P., Sevrin A., Troost W., Van Proeyen A., Extended supersymmetric $\sigma$-models on group manifolds. I. The complex structures, Nuclear Phys. B 308 (1988), 662-698.
  39. Wang M.Y., Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989), 59-68.
  40. Witten E., Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), 769-796, arXiv:hep-th/9411102.

Previous article  Next article  Contents of Volume 15 (2019)