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Abstract. We derive series representations for the tau functions of the g-Painlevé V| 111,
115, and III3 equations, as degenerations of the tau functions of the g-Painlevé VI equation
in [Jimbo M., Nagoya H., Sakai H., J. Integrable Syst. 2 (2017), xyx009, 27 pages]. Our tau
functions are expressed in terms of g-Nekrasov functions. Thus, our series representations
for the tau functions have explicit combinatorial structures. We show that general solutions
to the g-Painlevé V, III;, IIl,, and III3 equations are written by our tau functions. We
also prove that our tau functions for the g-Painlevé I11;, 1115, and III3 equations satisfy the
three-term bilinear equations for them.
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1 Introduction

The ¢-Painlevé equations [17, 24] are ¢-difference analogs of the Painlevé equations, which were
introduced as new special functions beyond elliptic functions and the hypergeometric functions
more than one hundred years ago [12, 22, 23], and are now considered as important special
functions with many applications both in mathematics and physics.

Similarly, as for other integrable systems, tau functions play a crucial role in the studies of
the Painelvé equations. The recent discovery by [10] states that the tau function of the sixth
Painlevé equation is a Fourier transform of Virasoro conformal blocks with ¢ = 1, which admit
explicit combinatorial formulas by AGT correspondence [1]. Series representations of the tau
functions of other types are also studied in [8, 11, 20, 21] for differential cases, [5, 6, 15] for
g-difference cases.

In [15], a general solution (y, z) to the g-Painlevé VI equation [16] was expressed by the tau
functions having g-Nekrasov type expressions, and it was conjectured that the tau functions
satisfy the bilinear equations for the ¢-Painlevé VI equation. In this paper, we give explicit
expressions for general solutions to the g-Painlevé V| 111y, I1ls, and III5 equations using degen-
erations of the tau functions of the g-Painlevé VI equation. We also give conjectures on the
bilinear equations satisfied by the tau functions of the ¢g-Painlevé V equation and prove that the
tau functions of the g-Painlevé II1;, IIls, and III3 equations satisfy the bilinear equations.

Our g-difference equations are as follows.

(i) the ¢-Painlevé VI equation:

vy (Z — b1t)(Z — bat) Z (y — a1t)(y — aaot)
azas  (Z—03)(Z b)) b3bs  (y—a3)(y—as)

(ii) the ¢g-Painlevé V equation:
vy (2 —bit)(Z — bat) 22 (y—at)(y —ast)

a3ay Z— b3 ’ b3 a4(y — a3)
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(iii) the g-Painlevé I1I; equation:

yy _ Z(z—bot) 22 yly—ait)

as3ay z — b3 ’ b3 o a4(y — ag) ’

(iv) the g-Painlevé III5 equation:
v o7 2z yly —ast)
asay z— bg’ b3 a4(y — a3)

(v-1) the ¢-Painlevé III3 equation of surface type A(71)’;
—aot

— =z, Zz = —M

3 y —as

(v-2) the g-Painlevé 1113 equation of surface type A(71):

vy _ 7 __ yly —ast)
Z= 2z =20—22
as z — bg ag
Here, y, z are functions of t, ¥ = y(qt), Z = 2(qt), and a;, b; (i = 1,2, 3,4) are parameters.
From the point of view of Sakai’s classification for the discrete Painlevé equations [25], the
g-Painlevé VI, V, 111y, IIIy and 1113 equations are derived from the symmetries/surfaces of type
Dél)/Agl), Afll)/Ail), Eél)/Aél), Eél)/Aél) and Agl)/Agl), respectively.
The degeneration scheme of Painlevé equations is as follows

Pvi - ~ P, ~ P, —— P

\\\

- Ppp

The degeneration pattern of the ¢g-Painlevé equations we use is similar to the one in [19] but
not exactly the same. Rather, our limiting procedure is a g-version for the one used in [11] in
order to derive combinatorial expressions of tau functions of Py, P, , Py, and Pryp, from the
Nekrasov type expression of the tau function of Py [10].

For the case of the g-Painlevé III5 equation of surface type A(71),, a series representation for
the tau function was proposed in [5], which are expressed by ¢-Virasoro Whittaker conformal
blocks which equal Nekrasov partition functions for pure SU(2) 5d theory [3, 28]. A Fredholm
determinant representation of the tau function by topological strings/spectral theory duality is
proposed in [7]. For the g-Painlevé III3 equation of surface type Agl), a series representation
for the tau function was proposed in [4]. Our tau functions for the g-Painlevé III3 equations
obtained by the degeneration are equivalent to them.

Our plan is as follows. In Section 2, we recall the result on ¢g-Painlevé VI equation in [15]. In
Sections 3—6, we compute limits of tau functions and derive combinatorial expressions of general
solutions and bilinear equations for ¢g-Painlevé V, 111, 11l and III3 equations.

Notations. Throughout the paper we fix ¢ € C* such that |¢| < 1. We set

[u] = (1—¢")/(1—q), H 1—ag’)

k 00

(ala'°'aak;q)OO:H(aj;q)oov CL q,q ]-_aq]+k
j=1 k=0
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We use the ¢-Gamma function and g-Barnes function defined by

w) = (4 9)oo _ N\l-u u :(qu;Q7Q)oo Coyu—lp1 N —(u—1)(u—2)/2

which satisfy I'y(1) = G4¢(1) =1 and
Fg(u+1) = [u]ly(u), Gy(u+1) =Ty(u)Gq(u). (1.1)

A partition is a finite sequence of positive integers A = (A, ..., ;) such that A\; > --- > A\; > 0.
Denote the length of the partition by ¢(\) = l. The conjugate partition X' = (X{,...,\},) is
defined by X; = #{i[A\i > j}, I’ = A\1. We regard a partition as a Young diagram. Namely,
we regard a partition A also as the subset {(i,j) € Z?|1 < j < \;, i > 1} of Z?, and denote
its cardinality by |A|. We denote the set of all partitions by Y. For O = (i,j) € Z2, we set
ax(d) = A; — j (the arm length of O0) and £5(0) = A} — i (the leg length of 0J). In the last
formulas we set \; = 0 if 7 > £(\) (vesp. A} = 0 if j > £(\’)). For a pair of partitions (A, ) and
u € C we set

Nau(u) = J] (1= ¢ 2O7a@=1y) TT (1 = g OF a1y,
Oex Oep

which we call a Nekrasov factor.

2 Results on g-Pvyj from [15]

In this section, we recall the results of [15] on the ¢g-Painlevé VI equation. Define the tau function
by

0, 0
VI 1 t
T [aoo 0o

_ n(o+n)2—02-02 | 01 Qt‘ 61 Qt‘
S,O’,t:| %st ¢ OC[GOO 000+n Z 0. 900+n,t,

with the definition

[I Gi(1+ebo—01+E0)Gy(1+e0—0,+€'6))

91 9,5 _ggl==%
C[eoo GOH -

Gq(1+20)G,(1 - 20) ’
H NZ,)\E/ (qsem—ol —E’U)N/\E’g (qsa—et—slﬁo)

01 Gt A &g'=%
Z[ )a, t} - (AL ;
boo o A=(/\+Z,>\:_)6Y2 [T N (q=77)

e,e/=%
Put
vi_ | th 0y vi_ | th 0y
T =T S,O’,t 5 T =T S)G7t ’
! _000+% 90 :| 2 _‘900_% 90
[0 0 [0 0
VI vi | 01 t 1 VI vi | V1 t 1
= = t = —_ = t
T3 T _900 004_;8,0—1-2,}, Ty T _Hoo 90_5’3,0 2,],
r 1 r 1
vi_ vi|ti—35 0 vi_ vi|hi+35 O
T =T 9002 90 S,O',t:|, Te =T 0002 00 s,0,t|,
(6, 6, — 1 (6, 6, + 1%
vi_ _vi|%1 t— 3 1 VI _ _VvI| V1 t Tt 3 1
T, =T _600 0o )s,a—i— Q,t] , TRT=T _Hoo 0o ‘s,a — 5t

Here and after we write f(t) = f(qt), f(t) = f(t/q).
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Theorem 2.1 ([15]). The functions y and z defined by

VI_VI VI VI VI VI
y=gq 2 2 2= L (2.1)
VI VI ’ q1/2+000 7-VITVI 1/2 900 7.VITVI

are solutions to the q-Painlevé VI equation

vy (Z = b1t)(Z — bat) 2z (y — ait)(y — aat) (2.2)
azas  (Z—b3)(Z—bs) " bsba  (y—as)(y—as)’
with the parameters
ay = ¢ 201, ag = ¢ 202011, az = q L, ay = g~ 201,
by = q—00—9t—917 by = q90—0t—91’ by = q@oo—l/Q7 by = q—eoo—l/Q.

The formula for y above can be regarded as an extension of Mano’s asymptotic expansion
to all orders for the solution of ¢-Pyr [18]. Theorem 2.1 was obtained by constructing the
fundamental solution of the Lax-pair for ¢-Pyr in [16], in terms of g-conformal blocks in [2].
The method of construction of the fundamental solution is a g-analogue of the CFT approach
used in [14]. In the derivation of Theorem 2.1 convergence of the fundamental solution was
assumed and it has not been proved. Recently, analyticity of K-theoretic Nekrasov functions in
cases different from our case was discussed in [9]. We remark that the convergence of the pure
g-Nekrasov partition function with ¢;go = 1 on C is proved in [5].

Conjecture 2.2 ([15]). The tau functions 7't (i = 1,...,8) satisfy the following bilinear equa-
tions

TVITVI - q_291t V1 XI (1 - q_291t)7'5VI7'6VI =0, (2.3)
I eV (1 - q—20tt)TVITg/I =0, (2.4)
iyt — e (1 — ¢ 2t) g 7VI ' =0, (2.5)
TVIYL — YUV 4 (1 — g 20) 20 V1V = (2.6)
T5VIT(¥I+€/_91 —Ooo+0:— 1/2t VIV VIV g, (2.7)
Tg/ng11+q—91+eoo+et—1/2t VI VI_ VLT g, (2.8)
T 4 P20 VIV VLT (2.9)
ﬁ VL 00200 VLVL TVITZI 0. (2.10)
Then, the function y, z
I_VI
y = g2 1{%’;743’ L _qet—el—lt?;:%/ﬂ (2.11)
5 76

solves q-Pvyr1 (2.2).

The function y in Conjecture 2.2 is expressed in the same form in Theorem 2.1, while the
function z in Conjecture 2.2 is not. By the bilinear equations (2.7) and (2.8), we obtain the
expression of z in (2.11) from the expression of z in (2.1).

We note that in [15] we have a Lax pair with respect to the shift ¢ — ¢t, namely, a fundamental
solution of the linear g-difference equations

Y(gr.t) = A, )Y (e.8),  Y(z,qt) = Bla, )Y (2. 1) (2.12)
for certain 2 by 2 matrices A(x,t) and B(x,t) was constructed in terms of ¢-Nekrasov functions.
From (2.12) we obtain the four-term bilinear equation in [15, Remark 3.5]:

!/ 20 g1/2=0s

VI_VI _ _VI_VI ~01-14( VL VI _ _VI_VI
T Ty — T Ty = g () ). (2.13)

g% — g%
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3 From g-Pvi to g-Pvy
In this section, we take a limit of the tau functions of g-Pvyy to ¢-Py. Define the tau function by

7V (00,01, 00| 5,0,t) = Y s" TV IGO0, 04,00 |0 + 0] Zy [0, 00,00 | o + 1, 1],

nez
with
2 Gy(1—0.+¢0)
* - — 1 o 4 1 _ /
Oy [B: 6,00 |01 = (2= )77 [] Gt 20) [] Gu(t +e0— 6, +<6p),
e=* e,e/=%
H:tN@’)\S (q_e*_‘f")f/\8 (qgg) H NAS,Q(qao—Ot—a’GO)
= alfl
ZV [9*, Ot 90 ‘ o t] = Z t|>‘+|+|>\f‘€ £, 7
R =
(s Ao)EY? e,glfli N (g5=)7)
where
f,\(u) — H (_ q@(D)Jrae(D)Jrlufl).

OeX

We remark that the factor fy(u) corresponds to the five-dimensional Chern—Simons term. The
Chern—Simons term in [27] reads as

xp (sz: > Gt eti- i),

where 3, ay, are parameters and Y7, . .., Yy are Young tableaux labelling the fixed points. See [27]
for the details. Since

S oM tax@+1= > N—i—jt+l= > i},

Lex (4,5)€A I

they coincide when N = 2. It is possible to remove fy_(¢°7) from Zy [0, 6:, 6y | 0,t] by change
of variables. Because if we set

H N@)\E(q—G*—sa) H N}\E’Q(qsa—et_sl%)

_ ==+ eel==+
ZgS_O[H*,Ht,QO |0'; t] = t‘A+|+‘)\_|E N , 7 )
(At )\Z_:)EYQ II AeAer (q(€—5 )U)

e,el=%+

then we have
Zy[0x,0¢,00 | 0,t] = \C/'S:U [_0*7 —0,,00 | o, q—O*—Qett]

from the relations Ny \(u) = f,\(u_l)N,\@(u_l), Nyg(u) = f)\(u)_lNg)\(U_l), and N) ,(u) =
Ny (u) [15, Lemma A.2].
We define tau functions for ¢-Py by

A W N PR TN N S R WO AP )
T3Y:TV(G*a0t790+%|SaO’+%’t)’ 7—2’:TV(H*,Ht,HO—%M,U—%,t),
75 =7V (04,0, — 5,00 5,0+ 5.t), 10 =7V (0x 00 + 5,00 5,0 - 5,1).

Let
Cy = Cg = (q—1)"7 ¢ A1/ =07-05) H Ge(3 — A+ 80)_1,
e==%
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Cy=Cs=(qg—1)"7 ¢ A1/ —07-65) HG A—i—sa)_l,

Cs = (q— 1)7(U+1/2)2qu((U+1/2)2702 (00+1/2 H G, 1 _A+€(U+ )) 1’

e==+
Cyi=(q— 1)*(0*1/2)2q*A((Ufl/Q)Q*(’f (60—1/2)? H Gy 1 — A+ g( %))_1’
e==+
Cr = (q — 1)~ (T2 Ao +1/2)?~(0:—1/2)* —67) H Gy(1—=A+e(o+3)7",
e==%
Cs=(q— 1)7(071/2)2in((Ufl/Q)L(gtH/2 )*=05) H Gq 1 — A+ E( %))_1.
e=%
Proposition 3.1. Set
01+ 00 =10, 01 —0=0,  t=q"t,
s=23§(q—1)"2g7 2N H L3 —A+eo)™. (3.1)
e=+
Then we have
Vl(emvelaehao ’ S, 0, t) — Tzv(e*vetaeo ‘ §7 O-vtl)v 1= 17273747
C5T (9007 917 9t7 90 ‘ S, 0, t) — 7—1\/(0*7 9157 90 | §7 ag, qt1)7
CGT (9007 01,04, 6o ‘ s,0, t) — 7—2\/(0*7 0+, 6o | S, U7t1/q)7
M (0o, 01,0,00 | 5,0,8) = 7Y 0(0s,0:,00|5,0,t1), i=T1,8,
1—2

as A — oo. Here, we denote by 7.¥1(0o0, 01,604,060 | 5,0,t) the tau functions of g-Py1 presented in
the previous section.

Proof. First, we verify the limit of the series part. For any partition A we have

N@,\(q_Au)qA‘)" _ H (qA _ QZA(D)—&-ag(D)-i-lu) N f)\(u_l), A = 0o.
ISP

Hence, the series Z O O
O B

Second, we examine the limits of the coefficients of Z. By the identities (1.1) on ¢-Gamma
function and ¢-Barnes function, for n € Z we have

o, t] goes to Zy[0., 0,00 | o,t] as A — oc.

n|—1

H Gl—z+4+¢e(c+n)) = H Gy(1 — x+e0)Ty(—x + o) H [—x " \Z|U]
= e=+ i=0
In|—1 4 [n|—1 4
< [T Il=e+o+a IT ITl-= -0 -l (3.2)
i=0 j=1 i=0 j=1

Using the identity above, we compute the coefficient of Z in 7! multiplied by C; as follows

n 0 0 )2 0202
clsc[emi; eé\ﬁn]gﬂ 0303

en
— —(c2— o+n)2—02—-62 Iq(_A— % —|—€0)
1)0 20nq (02—02— 93)/2( ) oqAn
EHi Iq(_A + % + 5‘7)
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xH{—A—% ]HH 3+o0+7] HH A—3—0—j]
=0 =0 j=1 =0 j=1
[1 Ge(1—0.—F+e(c+n)) [I Gq(l+e(o+mn)—0,+¢eb)
e==+ e,g/=+

X

Gq(1+2(c +n))Gy(1 —2(0 +n))

Then we have as A — oo by the definition of g-number

2|n‘71 |n| |n‘71 % |774‘ 1 4
AT A+ 2o T A 3o TLIT A~ 4o
=0 n i=0 j=1 i=0 j=1
,mi=t In|-1 i In|-1 i
q_ 1 H q71/2+|n|o/n H Hq71/2+a+j H Hq71/2 o—j
=0 j=1 =0 j=1
<q - 1) —n2/2+an

and by the identity (1.1) of ¢-Gamma function

To(-A—L+e0)\ " [([-A-3-o]\" ..
H(Pq(—AJr;Jraa)) _<[—A—§+a]> T

e=+

Therefore we obtain

1 0 (04n)2—62—62
000+2 00‘J+n:|t t 70

= 5 (/) T T g [0, — 164,60 | 0 + 0]

013”0 |:

as A — oo. Similarly, we can compute the coefficients of Z in the other tau functions and obtain
the desired results. [ |

In what follows, we abbreviate 7,7 (6., 0y, 00 | s,0,t) to ;.

Theorem 3.2. The functions

_ 0.1 1/2t7'37'4 U TiT2 — T1T2
y=4a (a—1) T qG*/2+1/27-12
solves the q-Painlevé V equation
Yy _ (2 - blt)(é — bgt) é _ (y — alt)(y — agt) (3 3)
asay Z—bs ’ b3 a4(y — ag)
with the parameters
a; = ¢ 1, ag = g~ 2001 az = q L, ay = q*39*/2*1/2,
by = q—¢90—9t—¢9*/27 by = q90—9t—6’*/2’ by = q—0*/2—1/2.

Proof. By definition we have
0102 = (q — 1)1/20304.
Hence, by (3.1) the solution (y, z) of the ¢-Painlevé VI equation has the following limit

T3T4 - T1iT2 — T172
)24 22 M= = A — .

79*71(
TIT2 ¢ /22y

Yy —y1=q qg—1
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Substituting (3.1) into the ¢-Painlevé VI equation (2.2), we get

Yy B (2 _ q79079t+(A79*)/2t1) (2 _ q90791+(/\79*)/2t1) (3 4)
q—A—G*—Q - (E _ q(A—G*—l)/Z) (z _ q—(/\+9*+1)/2)) ’ ’
Zj — (y - q_e*_ltl) (y — q_20t_0*_1t1) (3 5)
q—l (y _ qfl) (y _ qf/\fe**l)

Hence, since y — y1, ¢ 22 — 21 as A — oo, the system (3.4), (3.5) degenerate to the g-Painle-
vé V equation (3.3) for y = y; and z = z1 as A — oc. |

Since we also have
Cs5Cs = (¢ — 1)Y2C1Cs, C1Cy = C5C%,

we obtain the following conjecture.

Conjecture 3.3. The tau functions 1; (i =1,...,6) satisfy the following bilinear equations
e —q (g — 1)1/275737'4 — (1 — q_e*t)ﬁg =0, (3.6)
(¢ — 1)_1/27'172 — 7374 + (1 — q_a*t)q%iﬁﬁ =0, (3.7)
(¢ — 1) Prim — 737y + ¢ 1576 = 0, (3.8)
T1T2 + g2 (q — 1)1/2t376 —nm2 =0, (3.9)
(¢— 1) 2rmy 4¢P 0 1576 — Py = 0, (3.10)
(q— 1)+ g " rrg — ¢Prrgmy = 0. (3.11)
Then the functions
—0.— T3T4 _ _ 7576
y=q 0+ 1(q—1)1/2t ’ z:—qgt 0+ /2 1((]—1)1/2257
TITo TIT2
solves q-Py (3.3).
The four-term bilinear equation (2.13) admits the following limit.
Proposition 3.4. We have
—1/2(y — 1)1/2
TITo — T1T2 = g4 9=/ qeo(z q9)0 t(T3T4 — T3T4). (3.12)

Proof. The identity (3.12) is a direct consequence of (2.13) by the limit (3.1) as A - co. N

We remark that tau functions without the Chern—Simons term is also obtained by the limit

01 + O = —A, 01 — 0o = 0., s:g(q—m*%Hrq(%+A+so—)*€, A=
e=+

from the tau functions of ¢-Pvyr.
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4 From g-Pv to g-Pn,

In this section, we take a limit of the tau functions of ¢-Pv to ¢-Pyir,. Define the tau function
by

0,0, ] 5,0,t) = Y 5"t Oy, [0, 0, | o + 1) Zuay, 04,04 | 0 + . 8],
neEL
with
Gy(1 =6, +e0)Gy(l4co—0,)
Gq(1+ 2e0) ’
[I Noa. (C]_e* _EU)N/\S,Q (qaa_e*)

=+
Zin, [0+, 04 | 0, t] = E fA A /
1 ) (Ap, Ao )eY? [T Naa(q=7)
A e el=%

CIIIl [0*,9* ‘ O'] = (q _ 1)-20’2 H
e=+

Let us define the tau functions for ¢-Py, by

i = 7h (0x — 3,04 5,0,t/:/3), = 71k (05 + 3.0, | s,0,/qt),
A Mg 0 g be/l), = (0,0, + L s — 1, vat).

Put
Cr=(q— 1)—02q_Aa2_(0t2+03)/2t0t2+03 H Gy(1— A+ 60)—1’

e=%+
Cy=(q— 1)_02q_A02+(9t2+08)/2t0’%+63 H Gq(l — A+ 60’)_1,
e=%+
Cy=(q— 1)—(0+1/2)2q—(A+1/2)(U+1/2)2t0t2+(90+1/2)2 H Gq(% _ A+e(a+ %))—1’
e=%
Cy=(q— 1)—(0—1/2)2q—(A—1/2)(a—1/2)2t9§+(90—1/2)2 H Gq(% A+ e(a _ %))—17
e==
Cs = (q— 1)—(o+1/2)2q—(A_1/2)(o+1/2)2t(et—1/2)2+93 H Gq(% ~ A+ g(o’ + %))‘1,
e=+
Co=(q— 1)—(0’—1/2)2q—(A—|—1/2)(U—1/2)2t(0t+1/2)2+93 H Gq(% - A+e(a - %))—1‘
e==+
Proposition 4.1. Set
0r+00=1A, 0 —0=0,,  t=qt,
s =3(q—1)72q 7MY T To(—A +e0) ™= (4.1)
e==+
Then we have
CitY (04, 0,00 | 5,0,t) — 77 (04,0, | 5,0, 11), i=1,2,3,4,

CiTiV(e*a 025790 ‘ S, 0, t) — 7_1'11121 (Q*a 0* | 5, g, qtl)a i = 576a
as A — oo.

Proof. For any partition A we have

Nao(q )™ =TT (¢* =P ) - fiw) ™, A= oo
Oex
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Hence, the series Zvy [0, 0, 00| 0,t] goes to Zm, [0«,0x | 0,t1] as A — oo. The coefficients of Zy
are computed in the same way as in the proof of Proposition 3.1 using (3.2) and we obtain the
desired results. |

In what follows, we abbreviate TZ»HIl(Q*, 04| s,0,t) to 7;. Fortunately, the four-term bilinear

equation (3.12) degenerates to a three-term bilinear equation.
Proposition 4.2. We have
TITo — TIT = q_1/4t1/27'33. (4.2)
Proof. By definition and (4.1) we have
CiCy = C1Gy = (¢ = ") (a — )7 Pt Gy
= (¢ =)= )72 P A0,

Hence from the four-term bilinear equation (3.12) degenerates to the three-term bilinear equa-
tion (4.2) by (4.1) as A — oc. |

Theorem 4.3. The functions

—0.—141/27374 2= g 0-/2-3/441 /2 (4.3)

y=gq ;
TIT2 T1T2

solves the q-Painlevé 111 equation

vy Z(Z=b) 2z _ _yly—ast) (4.4)
a3ay Z—bs ’ b3 a4(y - ag)
with the parameters
ag=q "7 ag=q7',  ag=q¢ R by =g by = g 022
Furthermore, the tau functions 7; (i = 1,...,4) satisfy the following bilinear equations.
TIT — qfe*t1/27374 —Ti12 = 0,
TITO — qe*t_1/27'374 + qe*t_1/27'7gg =0,

TIT2 + q_1/4t1/2733 —1112 =0,

TIT2 + q1/4t_1/2733 — q1/4t_1/2BT4 = 0.
Proof. By definition and (4.1) we have
C1Cy = (a7 = ¢7)(a = 1) P CsC.
Hence, by (4.1) and (4.2) the solution (y, z) of the ¢-Painlevé V equation degenerates to

_0.-1,1/2T3T4 _ _ 1/27374
0 —141/ B sz =q 0/2 3/4t1/ 7374

, A = oc0.
TIT2 TiTo

Yy—y1=4¢

Also, the ¢-Painlevé V equation (3.3) degenerates to the g-Painlevé III; equation (4.4) for y = y;
and z = z; as A — oo.
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Next we prove the bilinear equations (4.5)—(4.8). The bilinear equation (4.7) is (4.2). The
identity (4.8) is obtained by substituting the expression (4.3) of (y, z) into the g-Painlevé 111y
equation

yg _ _Z(z=bt)
as3ay Z— bs

I

and using the bilinear equation (4.7).
In order to prove (4.5) and (4.6), we use the following transformation

(0s,04,5,3,1) = (= 0., —0s,0 — L, Cs,q7 070 F1/2), (4.9)
where

C = ¢l V@204 TT Ty (L + e, +¢'(0 — 1) Ty (3 +e(0s +3) +¢'(0 — 1)

e, el=%
From the definition of the Nekrasov factor, for a partition A\ we have

Nga(u)Nyg(w) = (uw)wN@’,\ (wil)N)\’@ (ufl).

By the identity above, the series part Z of the tau functions 7, ..., 74 transform to
Znn, [é* -1, ), | &,t/\/a] = Zu, [0+, 0 + 5 | 0 — 3. V/at],
Zn, [5* + 3, ), | 5, Vat] = Zm, [04,0. — Lo — L, /at].
Zu, [04,0, — 316 + . 1//a] = Zuy, [0+ 1,6, | 0, Vat],
[ |

& — 3.1 = Zm, [0+ — 3,04 |0 — 1, /qt],
respectively. Using the identity

Gy(1+ 2+ n)Gy(1 — )
Gy(1—2—n)Gy(1+2)

— (_1)n(n+l)/2qn(n+1)x/2+(n—l)n(n-i—l)/GFq(x)nFq(1 . x)n

for n € Z, we can compute the coefficients Cyyj, and obtain

7:1:K[9*79*+%a0_%]7—47 %QZSK[H*’G*_%’U_%}TT%’

%SZK[9*+%70*7U]T27 7:4:SK[0*_%79*70-_1]T717

where we denote by 7; the tau functions with parameters (5*, 0,,5,3, ) and by 7; the tau functions
with parameters (0., 04,0, s,t), and

K[0:,0.,0) = ¢~ T Gyl + 0. + £'0)°Gy(1 + €0, + €0,

e,el==4
By definition we have

K[Q*,Q*—I—%,U—%]K[Q*,e*—%,O'—%]

= —q—0:)/2, 4.1
K[6: + 3,600 K[0, — 10,0 1] a (4.10)

Applying the transformation (4.9) to the bilinear equations (4.7) and (4.8) and using the rela-
tion (4.10), we obtain the identities (4.5) and (4.6). [

We note that the bilinear equations (3.6), (3.8), (3.9), and (3.10) for the tau functions of ¢-Py
degenerate to (4.5), (4.6), (4.7), and (4.8), respectively.
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5 From g-Pr, to g-Pm,

In this section, we take a limit of the tau functions of ¢-Pry, to ¢-Prir,. Define the tau function
by

29, |s,0,t) = Z snt(aJrn)?C’HIQ [0« | 0 + n]Zi1, [0k | 0 + n, 8],
nel
with
Gy(1 =6, +¢€0)
Gy(1+42e0) '

Cu, (04 [ 0] = (¢ = 1) [

e=%+
I1 No. (¢7%=) fa (")~
Zh1, [0« | o, t] = Z A HA| =
, N, (e—€")o
(A4 A_)eY? Eﬁlli e (4 )

In the same way as in Section 3, it is possible to remove fy_(¢°)~! from Zy, [0« | o,t] by
change of variables. Because if we set

H N&)\s (q—G*—aa)
0ot = Y ’

N ) (e—€')o
(A+,A_)€EY? cez AesAe (q )

then we have
Zn, 04 | 0, 1] = Ziit,° [<0. | 0,7 t].
Let us define the tau functions for ¢-Pyr, by

il — 1k (0 — 1 s,0.t/\/q), il = 1k (0 + 3 |s,0+1,/qt),

T;HQ = 7l (0x]s,0+ 3,t).
Put

Cl = (q — 1)_02q_AJ2 H Gq(l —A + EU)_l,

e=+
Cy = Ch,
Cy=(q— 1)—(a+1/2)2q—(A—l/z)(a+1/2)2 H Gq(% _A _1_8(0 i %))71’
e==%
Ci=(q— 1)—(0—1/2)2q—(A+1/2)(a—1/2)2 H Gq(% _A _1_6(0 _ %))71'
e==%

Proposition 5.1. Set

bo=A  t=q¢, s=3q—1)"2g D] Ty(—A+e0).
e=+

Then we have
CiTiHIl (6*’ 9* | $,0, t) - 72'1112(0* | '§7 g, tl)v 1= ]-7 37
Cory™ (0,0, | 5,0,t) — 5752(04 | 3,0, 1),

047_4{111 (0*’ 0* | S,0, t) — 57—?{112 (0* | §, o, tl)

as A — oo.
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In what follows, we abbreviate TZ»I 20, |s,0,t) to 7;. Since we have the relation
C10y = (¢ — 1)V (g2 — M) 030y,
we obtain the following theorem by the degeneration.

Theorem 5.2. The functions
—6*—1( )" 1/241/2 T3 73 o q_e*/2_3/4(q _ 1)—1/2t1/27'3B

y=gq
Ty TIT2

q—

solves the q-Painlevé 111y equation

vy .z 2Z _ yly —ast)

asay o z— bg’ b3 o a4(y — CL3)

with the parameters

0.—1 -1 —30./2—1/2
/ / 3 b2

az=gq " 7, a3 =gq -, as = q —0./2 by = ¢ 0+/21/2,

=q

Furthermore, the tau functions 7; (i = 1,2,3) satisfy the following bilinear equations.

nimy—q (g — 1)V — A =0, (5.1)
s — (g — 1) V222 4 (g — 1)V 2 = 0, (5.2)
TIT2 + g Vg - 1)*1/2151/27'33 — i =0. (5.3)

We note that the bilinear equations (4.5), (4.6), and (4.7) for the tau functions of ¢-Pr,
degenerate to (5.1), (5.2), and (5.3), respectively.
6 From q-PIH2 to q-PHI3

In this section, we take a limit of the tau functions of ¢-Pr1, to g-Pir,. Define the tau function
by

7_IHg (S, o, t) — Z Snt(0+n)2 CIHs [O’ + TL} ZIHs [0‘ +n, t],

nez
with
1
C = (qg—1)"%"
1
- (A |42 ]
fnlol= | Ty
()‘+))‘7)€Y2 gel=+ e

Let us define the tau functions for ¢-Pry, by
T1HI3 = (s, 0,1), 7'5113 = 71 (s,0+ %, t).
Put
Ci=(q—1)"7" g~ A-1/2)0 HG (3-A+eo)

Cy = (q— 1)+’ q‘("+1/2)("+1) [[GG-A+e@+1)7
e=%

Oy = (g — 1) /2P N2 TT @1 - A+ (o + 1)
e=+
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Proposition 6.1. Set

9* = A, t= thl, S = §(q — 1)—20q—20A H Fq(% —A + 60')_6.
e=%
Then we have
C’lT%HQ(H* |s,0,t) — 7'1HI3 (8,0,t1),
Cora™2(0, | s,0,t) — 7173(5, 0, 1) /3,

C’gT:,I)HQ(H* |s,0,t) — 7'2HI3 (8,0,t1),

as A — oo.
In what follows, we abbreviate TZ-I H3(s, o,t) to 7;. Since we have the relation
—o—1/2+A/2
. 1\1/24 2
0102 - (q 1) q_a_l/g - qA 037

we obtain the following theorem by the degeneration.

Theorem 6.2. The functions

2
1/25T5 —3/4,1/25T272
7'1 7’1@

solves the q-Painlevé 1113 equation

Y — agt
W_p o YuTa (6.1)
as Yy—as
with the parameters
ap=q', az=q .

Furthermore, the tau functions 11, To satisfy the following bilinear equations.
stl/272 _ 72 47 =0, (6.2)
S—1t1/2712 2y 71y = 0. (6.3)

We note that the bilinear equations (5.1), (5.2) for the tau functions of ¢-Pry, degenerate
to (6.2), (6.3), respectively. Assuggested in [5, equations (2.9)—(2.11)], the bilinear equation (6.3)
is derived from (6.2) by the transformation o — o + 1/2.

Remark 6.3. The tau function 72((]2", s;q]| t) proposed in [5] for the g-Painlevé III3 equation
are related to our tau functions by

72(q2",s;q | t) = (—1)720271113((—1)740870', t).
Remark 6.4. ¢-P(A%) in [19] (or q—P(Agl)/A(;)) in [17, equation (8.14)]) is

yy  Z(Z —bat) 2z Y

a4_ Z — b3 ’ b3 aq’

where y = y(t), z = 2(t), and ay4, by, be, bs are complex parameters. Replacing y, z in (6.1)
by z, y, we obtain ¢-P(A7) with ag =1, by = 1, and b3 = gt
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The bilinear equations (6.2), (6.3) are also proved by using the Nakajima—Yoshioka blow-up
equations [6]. There exists another g-difference equation admitting P, and Pr as limits [13],

which corresponds to the g-difference Painlevé equation of the surface type Agl) [25]. Its standard
form (see equation (2.44) in [26]) is

g9°g =t*(1—g), (6.4)

where g = g(t). A series expansion of the tau function for ¢-P (Agl)) (6.4) was proposed and
conjectured to satisfy its bilinear form in [4]. Later, it was proved in [6]. Below, we show that

their tau function for ¢-P (Agl)) (6.4) is also obtained as another limit of the tau function for

q-Prr, .
Redefine the tau function by

TIH3 (8, o, t) = Z Snt(a+n)201113 [O’ + n]Z1113 [U +n, t],
neEL
with
2 2 1
-1 —4o ’
(a=1) LG,(0+2e(0+n)

[T (=)™

=+
Z11 [0-7 t] — t|>\+|+|>\,| € . )
3 (/\+,/\§:)ey2 [I N (a==)7)

Crlo] = (=1)"

g,e'==%
Let us define the tau functions for q—P(Agl)) by
7‘11H3 = 713 (s, o, t/ﬁ), 7‘21113 = 71 (s, o+ %, t).
Put
Cr=(g—1)" H Gy(B+A+e0)™

Cy=(g—1) v+1>2 H Gyl +A+e(0+1)7",

Cs = (¢ — 1)~ (@+1/2)° H Ge(l+A+e(o+4) "
e=+4

Proposition 6.5. Set
Q*I—A, s:§(q—1)_2"HFq(%—|—A+€a)75
=+

Then we have
4 7'%112(0* |s,0,t) — 7_11113 (8,0,1),
Cory™2(0, | 5,0,t) — 1173(5,0,qt) /3,
037';112(0* |s,0,t) — 7_21113 (8,0,1),

as A — oo.

In what follows, we abbreviate THIB(S, o,t) to 7;. Since we have the relation

(¢ — 12

10y = 1 gA-ot1/2

2
C3,

we obtain the following theorem by the degeneration.
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Theorem 6.6. The functions

2
ST SToT:
y=—q WL o= T2
T1T1 T1T1
solves
—3/2 Z2
YW=—a"-"=5; 2z =y(qy — t). (6.5)
Z—q

Furthermore, the tau functions 11, To satisfy the following bilinear equations.

871t1/27'17'71 — 722 + 7 =0, (6.6)

i — sq M Py — A = 0. (6.7)

We note that the bilinear equations (5.2), (5.3) for the tau functions of ¢-Py, degenerate
o (6.6), (6.7), respectively. By the change of variables t — ,/qt, o — o + 1/2, the bilinear
equation (6.7) transforms (6.6). The bilinear equation (6.6) is equivalent to the bilinear equa-
tion (4.20) for N = 2, m = 1 in [6], which is for ¢-P(A"). Following [4, Example 3.5, we
take a time evolution T" as T'(f(o,t)) = f(o + 1/2,,/qt). Then the bilinear equation (6.7) is
equivalent to

7'2—751/2?1— =0,

where 7 = Ws(s,0,t), 7 = T(r), £ = T 7). Let g = t'/?Fr7=2, then g satisfies ¢-
1
P(AY) (6.4).
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