Processing math: 100%

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 085, 28 pages      arXiv:1808.10125      https://doi.org/10.3842/SIGMA.2019.085

Hitchin Fibrations on Two-Dimensional Moduli Spaces of Irregular Higgs Bundles with One Singular Fiber

Péter Ivanics a, András I. Stipsicz a and Szilárd Szabó b
a) Rényi Institute of Mathematics, 1053 Budapest, Reáltanoda utca 13-15, Hungary
b) Budapest University of Technology and Economics, 1111 Budapest, Egry József utca 1, H épület, Hungary

Received February 02, 2019, in final form October 25, 2019; Published online November 04, 2019

Abstract
We analyze and completely describe the four cases when the Hitchin fibration on a 2-dimensional moduli space of irregular Higgs bundles over CP1 has a single singular fiber. The case when the fiber at infinity is of type I0 is further analyzed, and we give constructions of all the possible configurations of singular curves inelliptic fibrations having this type of singular fiber at infinity.

Key words: irregular Higgs bundles; Hitchin fibration; elliptic fibrations.

pdf (986 kb)   tex (778 kb)  

References

  1. Alekseev A., Malkin A., Meinrenken E., Lie group valued moment maps, J. Differential Geom. 48 (1998), 445-495, arXiv:dg-ga/9707021.
  2. Biquard O., Boalch P., Wild non-abelian Hodge theory on curves, Compos. Math. 140 (2004), 179-204, arXiv:math.DG/0111098.
  3. Boalch P., Hyperkahler manifolds and nonabelian Hodge theory of (irregular) curves, arXiv:1203.6607.
  4. Boalch P., Simply-laced isomonodromy systems, Publ. Math. Inst. Hautes 'Etudes Sci. 116 (2012), 1-68, arXiv:1107.0874.
  5. Boalch P., Geometry and braiding of Stokes data; fission and wild character varieties, Ann. of Math. 179 (2014), 301-365, arXiv:1111.6228.
  6. Boalch P., Yamakawa D., Twisted wild character varieties, arXiv:1512.08091.
  7. Crawley-Boevey W., On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J. 118 (2003), 339-352, arXiv:math.RA/0103101.
  8. de Cataldo M.A.A., Hausel T., Migliorini L., Topology of Hitchin systems and Hodge theory of character varieties: the case A1, Ann. of Math. 175 (2012), 1329-1407, arXiv:1004.1420.
  9. Friedman R., Morgan J.W., Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 27, Springer-Verlag, Berlin, 1994.
  10. Gong C., Lu J., Tan S.-L., On families of complex curves over P1 with two singular fibers, Osaka J. Math. 53 (2016), 83-99.
  11. Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59-126.
  12. Hitchin N.J., Lie groups and Teichmüller space, Topology 31 (1992), 449-473.
  13. Ivanics P., Stipsicz A., Szabó S., Two-dimensional moduli spaces of rank 2 Higgs bundles over CP1 with one irregular singular point, J. Geom. Phys. 130 (2018), 184-212, arXiv:1604.08503.
  14. Ivanics P., Stipsicz A., Szabó S., Hitchin fibrations on moduli of irregular Higgs bundles and motivic wall-crossing, J. Pure Appl. Algebra 223 (2019), 3989-4064, arXiv:1710.09922.
  15. Kodaira K., On compact analytic surfaces. II, Ann. of Math. 77 (1963), 563-626.
  16. Kraft H., Procesi C., Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), 227-247.
  17. Kronheimer P.B., Nakajima H., Yang-Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990), 263-307.
  18. Miranda R., Persson's list of singular fibers for a rational elliptic surface, Math. Z. 205 (1990), 191-211.
  19. Nitsure N., Moduli space of semistable pairs on a curve, Proc. London Math. Soc. 62 (1991), 275-300.
  20. Persson U., Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z. 205 (1990), 1-47.
  21. Simpson C., Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713-770.
  22. Simpson C., The dual boundary complex of the SL2 character variety of a punctured sphere, Ann. Fac. Sci. Toulouse Math. 25 (2016), 317-361, arXiv:1504.05395.
  23. Stipsicz A.I., Szabó Z., Szilárd A., Singular fibers in elliptic fibrations on the rational elliptic surface, Period. Math. Hungar. 54 (2007), 137-162.
  24. Szabó S., The birational geometry of unramified irregular Higgs bundles on curves, Internat. J. Math. 28 (2017), 1750045, 32 pages, arXiv:1502.02003.
  25. Szabó S., Perversity equals weight for Painlevé spaces, arXiv:1802.03798.
  26. Tan S.-L., Chern numbers of a singular fiber, modular invariants and isotrivial families of curves, Acta Math. Vietnam. 35 (2010), 159-172.

Previous article  Next article  Contents of Volume 15 (2019)