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Abstract. Self-similar solutions of the so called Airy equations, equivalent to the disper-
sionless nonlinear Schrödinger equation written in Madelung coordinates, are found and
studied from the point of view of complete integrability and of their role in the recurrence
relation from a bi-Hamiltonian structure for the equations. This class of solutions reduces
the PDEs to a finite ODE system which admits several conserved quantities, which allow to
construct explicit solutions by quadratures and provide the bi-Hamiltonian formulation for
the reduced ODEs.
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1 Introduction

Integrable PDEs in one spatial dimension are well known to admit reductions to invariant finite-
dimensional manifolds, where they give rise to integrable (and sometimes solvable) systems of
ODEs. Among the prototype examples of these reductions are the finite-dimensional manifolds of
the stationary points of one of the vector fields of the integrable hierarchy of PDEs (see, e.g., [1]
and the references quoted therein). In this case, the restriction of the PDE to the invariant
submanifold is a Hamiltonian system of ODEs. Bogoyavlenskii and Novikov [6] described a far-
reaching scheme to construct the Hamiltonian function of the reduced system in terms of the
Hamiltonian of the original PDE by means of techniques coming from the classical calculus of
variations. In general, a vast amount of literature is devoted to the study of these and related
aspects of reductions to finite dimensional systems, see, e.g., [3, 8, 27] and references quoted
therein.

In this work we discuss a specific instance, inspired by the problem of finding (generalized or,
in the terminology of [28], of the second kind) self-similar solutions of the well known system of
dispersionless PDEs

ηt + (ηu)x = 0, ut + uux + ηx = 0. (1.1)

This system of PDEs is one of the oldest and most important non-linear models for shallow water
waves in incompressible fluid dynamics. It is referred to in the literature with many different
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names, such as Saint-Venant system [5], one-dimensional Benney system (see, e.g., [34]), Stokes
system [30], or shallow water equations tout court. We will henceforth refer to system (1.1) as
the Airy shallow water equations, or simply Airy system, following [18, Section 182] and Stoker’s
book [29, Introduction], where the study of (1.1) in the seminal Airy’s paper [2] is pointed out.

Throughout the present paper, the function η = η(x, t) describes the “water” layer thickness,
and u = u(x, t) is the layer-averaged horizontal velocity. As well known, this system can also be
viewed as a model for polytropic gas dynamics, for the special specific heat ratio cp/cv = 2, so
that the pressure is a quadratic function of the density (see, e.g., [33]). As we recall below, these
equations admit the classical self-similar solutions of the dam-break or piston problem [29, 33],
whose simplest case is

η =
1

9

(x
t

)2
, u =

2

3

(x
t

)
. (1.2)

However, these classical rarefaction waves are not quite adequate to characterize interface mo-
tions in presence of dry or vacuum points x = xv say, where η(xv, t) = 0 and system (1.1) ceases
to be purely hyperbolic (see [11] for more details). In the spirit of seeking self-similar solutions of
the second kind, the same spatial scaling as in equations (1.2) can be maintained with different
time scalings, which gives rise to a three-parameter family (already hinted at in [25]). These
self-similar solutions were shown to play a fundamental role in the study of classes of initial data
with dry points in [10, 11]. The time scaling factor is assumed to be a non trivial function τ(t),
leading to explicit solutions of the form

η(x, t) = γ(t)x2 + ζ(t), u(x, t) = α(t)x, (1.3)

where

α2 = 4γ0τ
3 +

(
α2
0 − 4γ0

)
τ2, γ = γ0τ

3, ζ = ζ0τ, (1.4)

and τ(t) solves

τ̇2 = 4γ0τ
5 +

(
α2
0 − 4γ0

)
τ4, τ(0) = 1

(as we shall see in Section 4, replacing the independent variable t with τ has an interesting
geometrical interpretation). Being nonlinear, these equations can have finite time singularities,
which for the PDE (1.1) can be interpreted as the formation of gradient catastrophes and shock
waves [10, 11]. Solutions (1.4) are obtained by the study of conserved quantities. Their structure
is deeply related to the bi-Hamiltonian recursion of the parent system (1.1). A thorough study
of this connection from the geometrical viewpoint is one of the aims of this work.

A natural generalisation of the field configurations above (see [25]) describes a general para-
bolic shape for the water height function η(x, t) and a linear profile for the speed u(x, t), and
reads

η(x, t) = γ(t)x2 + ω(t)x+ ζ(t), u(x, t) = α(t)x+ β(t). (1.5)

As shown below, the simplicity of these relations allows the construction of explicit solutions and
a thorough description of their geometrical properties. (The degenerate case of γ ≡ 0 requires a
separate study, as it is a singular limit of the reduction.) Further interest in such a reduction lies
in the fact that the manifold (1.5) is in some sense an attractor under the action of the special
Lie symmetry of (1.1) given by

ηs = 2η − xηx, us = u− xux.
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More precisely, generalized self-similar solutions, which according to [4] describe intermediate
asymptotic behaviour(s) of general solutions of PDEs, can be realized within this invariant
manifold as suitable paths in the parameter space (t, s), as discussed in Section 2.1.

The organization of this work is as follows. In Section 2 we first discuss and recall the rele-
vance of self-similar solutions of the Airy system, and recall some notions of the bi-Hamiltonian
structure of the system in Section 2.2. Next, we study the resulting ODEs in their own right.
More precisely, in Section 3 we find suitable conserved quantities, obtained by a well known
sequence of global constants of the motion for the Airy system, and we then use them to ex-
plicitly solve, in Section 4, the ODEs system. In Section 5 we find a bi-Hamiltonian structure
of the reduced ODEs, by requiring that the above mentioned quantities give rise to a finite
Lenard–Magri sequence. Finally, in Section 6 we briefly discuss the reductions of the general
ODE system to the space of parity preserving parabolic configurations, and to the degenerate
space of linear-linear configurations.

2 Self-similarity, their Lie symmetry
and a bi-Hamiltonian setting for the Airy system

Self-similarity is well known to provide interesting solutions to physically relevant PDEs (see,
e.g., [28, Chapter IV] and [4]). First kind self-similar solutions of the Airy-SWE

ηt + (ηu)x = 0, ut + uux + ηx = 0 (2.1)

are obtained via the following ansatz, based on dimensional analysis:

η (x, t) = N(ξ), u (x, t) = U(ξ), with ξ =
x

t
. (2.2)

By substituting this in (2.1) and requiring matching of the time-exponents, we obtain the well
known self-similar solutions of the piston problem [29, 33]

η =
1

9
(ξ − 2C)2, u =

2

3
(ξ + C), C ∈ R. (2.3)

It is a classical result [29, 33] that self-similar solutions of the form (2.3) arise in the context
of the Riemann (or dam-break) problem. However, in [19] and [17] it is remarked that such
behaviour (and its shock-like counterpart) seems to be inadequate to study analytic solutions
near their critical points (in particular, the “vacuum” or “dry” points). Indeed, as pointed
out by Barenblatt and Zel’dovich [4], sometimes dimensional analysis is not sufficient to find
the right metastable evolutions in certain regimes, and a generalised notion of self-similarity
(referred to as of the second kind) needs to be introduced. This is defined through a solution of
the form

u = A(τ)U(ξ), η = B(τ)N(ξ), (2.4)

where

τ = τ(t), ξ = xτ, and
dτ

dt
= F (τ).

The functions A(τ), B(τ), U(ξ), N(ξ) and the time scaling F (τ) are unknown functions of one
variable, to be determined by the equations of motion (2.1), with the sole requirement that F (τ)
be never vanishing. Upon the substitution (2.4), one obtains

(BτF )N +
BF

τ
ξNξ + (ABτ)(UN)ξ = 0,

(AτF )U +
AF

τ
ξUξ +

(
A2τ

)
UUξ + (Bτ)Nξ = 0. (2.5)
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We notice that the mathematical structure of the resulting equations consists of the sums of
terms that are factorized into a function of τ and a function of the scaling variable ξ,∑

i

Φi(τ)Ψi(ξ) = 0. (2.6)

The classical ansatz (2.2) is equivalent to the requirement that in (2.6) all the functions Φi(τ)
coincide. However, different choices can be made for the “time” factors Φi(τ) in (2.6), leading to
a consistent set of equations. Let us still require proportionality in the first of (2.5), but choose
two different τ -scaling factors in the second one, as follows:

BτF = k
BF

τ
= lABτ, AτF = mBτ,

AF

τ
= nA2τ, (2.7)

where k, l, m, n are real constants. This yields

B = τ0τ
k, l = nk, F = nAτ2, A2 =

2mτ0
nk

τk + a0,

for some constants τ0, a0 (the latter is assumed non vanishing). Equations (2.5) now become an
overdetermined system of three equations for two unknown functions U(ξ), N(ξ), namely,

knN + nξN ′ + (UN)′ = 0,(
mU +N ′ +

2m

nk
(nξU ′ + UU ′)

)
τ0τ

k+1 = 0,

(nξU ′ + UU ′)a0τ = 0.

This admits nontrivial solutions only if k = 1,

U = −nξ, N =
nm

2

(
ξ2 +N0

)
,

with the amplitudes and the time scaling factor becoming

B = τ0τ, A2 =
2mτ0
n

τ + a0, F (τ)2 = 2mnτ0τ
5 + a0τ

4.

In this way, via the consistent ansatz (2.7) we recover solutions of the form (1.3) after substituting
the definitions of the independent variables ξ and τ back into (2.4). The more general form of
these solutions, that is, solutions of the form (1.5), can be thought of as being obtained by means
of a Galilean transformation applied to (1.3).

2.1 The Lie symmetry

It is well known (see, e.g., [4]) that self-similar solutions of a given PDE are often associated
with its symmetries. This is indeed the case for the solutions of the form (1.5), as we presently
show.

The Airy system (2.1) admits the Lie symmetry

ηs = 2η − xηx, us = u− xux, (2.8)

i.e., ηts = ηst and uts = ust, as can be shown by a straightforward computation. The solutions
of equations (2.8) are

η(x, s) = e2sN(ξ), u(x, s) = esU(ξ),
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for generic functions N and U of the variable ξ = x/es. If (η(x, t), u(x, t)) is a solution of (2.1),
then for all s ∈ R we have that

η(x, t; s) = e2sη
(
x/es, t

)
, u(x, t; s) = esu

(
x/es, t

)
is also a solution of (2.1). Let us expand the Airy fields as

η(x, t) = γ(t)x2 + ω(t)x+ ζ(t) +Rη(x, t), u(x, t) = α(t)x+ β(t) +Ru(x, t), (2.9)

with Rη(x, t)/x
2 → 0 and Ru(x, t)/x → 0 for x → 0 with t bounded. Along the flow of the

symmetry (2.8) we have, for the layer thickness variable η,

η(x, t; s) = e2s
(
γ(t)x2e−2s + ω(t)xe−s + ζ(t)

)
+ x2

Rη(ξ, t)

ξ2

' γ(t)x2 + ω(t)xes + e2sζ(t), for ξ → 0.

Similarly, for the velocity field u along the flow of (2.8), we have

u(x, t, s) ' α(t)x+ esβ(t).

Notice that, for x bounded and t in any interval of continuity for the coefficients of the expan-
sion (2.9), the limit s → ∞ corresponds to ξ → 0. Hence, while not being generally invariant
along the s-flow, regular solutions to the Airy-SWE approach the finite-dimensional manifold of
parabolic/linear fields asymptotically for large s. Thus, the relevance of the self-similar solutions
above is further highlighted by these symmetry arguments.

2.2 The bi-Hamiltonian structure of Airy-SWE

The Airy-SWE (1.1) are a pair of quasi-linear PDEs. As such, it is well known that they can
be integrated via the hodograph method. Their integrability can also be viewed in the sense
of Liouville as they inherit a bi-Hamiltonian formulation (see, e.g., [22, 23]) from their NLS
dispersionless interpretation, with the pair of compatible local Poisson structures given by

P0 = −
(

0 ∂x
∂x 0

)
, P1 = −1

2

(
η∂x + ∂xη u∂x

∂xu 2∂x

)
.

Note that the compatibility between P0 and P1 is guaranteed by the existence of the vector field

Z ≡ (η̇ = 0, u̇ = 2), (2.10)

deforming P1 into P0 via Lie derivative. By means of the bi-Hamiltonian recursion method
[9, 23], or by the inverse scattering method [34] a one-parameter family of conserved densities
can be encoded in generator h(u, η; z), in particular in the limit z →∞,

h(u, η; z) = −
√

(u− z)2
4

− η +
z − u

2
=
∞∑
i=1

hi(η, u)

zi
. (2.11)

(The first of these conserved density is the fluid’s mass η.) These quantities are in mutual
Poisson bi-involution, that is,{∫

R
h`dx,

∫
R
hmdx

}
P0

=

{∫
R
h`dx,

∫
R
hmdx

}
P1

= 0.
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Let us introduce the vector fields of the hierarchy associated with (2.11),

Xk := P0d

(∫
R
hk+1dx

)
= P1d

(∫
R
hkdx

)
,

and the vector field T0 given by (2.8). This does not commute with all the Xk’s; however, as
shown in [35], it generates a family of symmetries of the hierarchy as follows. Acting on T0 with
the recursion operator

N = P1P
−1
0 =

1

2

(
u 2η + ηx∂

−1
x

2 ux∂
−1
x + u

)
to define iteratively Tk ≡ NkT0, yields

[Ti, Tj ] = −(i− j)Ti+j for all i, j ≥ 0,

while, still thanks to the general properties of recursion operators,

[Xi, Tj ] = −jXi+j .

Note that the hierarchy of τ -symmetries generated (see [14, 24]) via the action of the recursion
operator N with T0 as a seed does not coincide with the hierarchy of symmetries stemming from
the vector field Z defined by (2.10).

3 The reduced equations of motion

A natural generalization of the three-field self-similar solutions (1.3) is given by polynomial
solutions of the form [25]

η(x, t) = γ(t)x2 + ω(t)x+ ζ(t), u(x, t) = α(t)x+ β(t). (3.1)

The Airy system reduces to the following closed system of ODEs for the coefficients of the
parabolic solution:

α̇+ α2 + 2γ = 0, γ̇ + 3αγ = 0, ζ̇ + αζ + βω = 0,

ω̇ + 2βγ + 2αω = 0, β̇ + αβ + ω = 0. (3.2)

This system admits a symmetry (induced by the x-translational symmetry of the parent
system) given by

α′ = 0, γ′ = 0, ζ ′ = ω, ω′ = 2γ, β′ = α. (3.3)

As discussed in Section 2.2, the Airy system admits the family of mutually commuting con-
served densities generated by (2.11), obtained by expanding h(u, η; z) in powers of z in the limit
z → +∞:

h(u, η; z) =
η

z
+
ηu

z2
+
η2 + ηu2

z3
+

3η2u+ ηu3

z4
+

2η3 + 6η2u2 + ηu4

z5
+ · · · . (3.4)

We can equip system (3.2) with a sequence of conserved quantities from the Casimir (3.4) of
the Poisson pencil, by using the following construction, which is inspired by our previous works
[10, 11]. The integration of the densities hi over the whole real line would yield ill-defined
quantities for our field configurations (3.1). A physically sensible way to regularize them is to
bound the range of η by piecewise links to background constant states (see, e.g., [11]). Here,
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we choose the background constant to be zero, so that the fluid domain is bounded by the floor
η = 0 for γ < 0 (and ω2 − 4γζ > 0). Thus, the support of the fluid is the finite interval

x− < x < x+, x± =
−ω ∓

√
ω2 − 4γζ

2γ
. (3.5)

Notice that this construction is well defined since the equation for γ̇ in (3.2) implies that γ
cannot change sign during the time evolution. Integrating the quantities hi(η, u) between the
two limits (3.5) yields a well defined sequence of conserved quantities. (These quantities can
be extended to hold for different signs of the reduction parameters, which can then be inter-
preted physically by suitable normalizations, see, e.g., [10]). From the density η and the linear
momentum density ηu one can construct the quantities

H1 ≡
∫ x+

x−

ηdx =

∫ x+

x−

(
γx2 + ωx+ ζ

)
dx =

(
ω2 − 4γζ

)3/2
6γ2

,

and

H2 ≡
∫ x+

x−

ηudx =

(
ω2 − 4γζ

)3/2
(2βγ − αω)

12γ3
,

respectively. Similarly, the “energy density” ηu2 + η2 yields

H3 =

(
ω2 − 4γζ

)3/2(
2α2γζ − 3α2ω2 + 10αβγω − 10β2γ2 − 8γ2ζ + 2γω2

)
60γ4

,

while the fourth member of the sequence provides the conserved quantity

H4 = −
(
ω2 − 4γζ

)3/2 (αω − 2βγ)
(
3α2γζ − 2α2ω2 + 5αβγω − 5β2γ2 − 12γ2ζ + 3γω2

)
60γ5

,

and so on to higher orders. By defining

K0 ≡ (6H1)
2/3 =

ω2 − 4γζ

γ4/3
,

a closer look at these first four quantities shows that they can be represented as

H1 =
1

6
K

3/2
0 , H2 =

1

6
K

3/2
0

(
β − αω

2γ

)
,

H3 = K
3/2
0

(
1

6

(
β − αω

2γ

)2

+
K0

120

(
α2

γ2/3
− 4γ1/3

))
,

H4 = K
3/2
0

(
β − αω

2γ

)(
1

6

(
β − αω

2γ

)2

+
K0

40

(
α2

γ2/3
− 4γ1/3

))
, (3.6)

and, continuing on,

H5 = K
3/2
0

(
1

6

(
β − αω

2γ

)4

+
K0

20

(
β − αω

2γ

)2( α2

γ2/3
− 4γ1/3

)
+
K0

2

1120

(
α2

γ2/3
− 4γ1/3

)2
)

etc. Since under the action of the canonical Poisson tensor P0, the densities

h2 = ηu and
h3
2

=
1

2
η
(
η2 + u2

)
generate, respectively, x-translation and time evolution, the physical meaning of the quantities
naturally appearing in (3.6) is clear:
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• H1 ≡
1

6
K

3/2
0 is the total mass of fluid,

• β − αω

2γ
is the center of mass speed,

• K0
5/2

240

(
α2

γ2/3
− 4γ1/3

)
represents the energy of the motion in the center of mass frame.

The structure of the so-obtained constants of the motion clearly suggests the opportunity of
considering, as generators of the ring of invariant functions obtained by the Casimir of the
Airy-SWE Poisson pencil, the simpler quantities

K0 =
ω2 − 4γζ

γ4/3
, K1 = β − αω

2γ
, K2 =

α2

γ2/3
− 4γ1/3. (3.7)

These are defined on the manifold M5 =
{

(α, γ, ζ, ω, β) ∈ R5 | γ 6= 0
}

, without assumptions on
the signs of γ and ω2 − 4γζ.

3.1 Reductions for general symmetric smooth initial data

When initial data for system (1.1) are analytic in x, local solutions as |x| → 0 can be sought in
the form of powers series in x. Focussing for simplicity on the symmetric case η(−x, ·) = η(x, ·),
u(−x, ·) = −u(x, ·), these are

η(x, t) =
∞∑
n=0

ηn(t)x2n, u(x, t) =
∞∑
n=0

un(t)x2n+1, (3.8)

where, as well known, the Cauchy–Kovalevskaya theorem (see, e.g., [13]) assures that these power
series have a finite radius of convergence, so that all coefficients are analytic in a neighbourhood
of t = 0. The exact solutions (3.1) restricted to the invariant manifold ω = β = 0 are of course
in this class, and are particular cases in that they derive from a hierarchy that truncates at the
leading orders, n = 0, 1, so that η and u are second and first degree polynomials, respectively.
Of course, this property is special, and the series (3.8) cannot in general be expected to truncate
to a polynomial form; once substituted in (1.1) the series generate a recursive infinite hierarchy
of ODEs for the coefficients ηn(t) and un(t). The first equations in the hierarchy are (cf. (6.2))

u̇0 + u20 + 2η1 = 0, η̇0 + u0η0 = 0, η̇1 + 3(η1u0 + η0u1) = 0. (3.9)

Note that, when applied to zero velocity smooth initial data with a dry point η0(0) = 0, then
η0(t) = 0 for all times and these equations reduce to a closed system for u0 and η1 which can
be solved exactly (see below). In fact, the presence of the dry point linearizes the evolution
equations of all the pairs ηn+1 and un with n ≥ 1, whose coefficients and inhomogeneous terms
depend solely on the (ηk+1, uk) pairs, k < n. Note that this linearization property induced by
a dry point still requires solving an infinite sequence of ordinary differential equations, up to
a possible singularity time t = ts, to determine the solution of the original PDE. A more direct
analog of the self-similar solutions that truncate to second order polynomial also exists in the
power series approach, which we examine next.

3.2 More general algebraic reductions

Power series solutions of the Airy system (1.1) admit a natural reduction that can be viewed as
a generalization of the simple parabolic truncation (3.1). Focussing once again for simplicity on
the symmetric case, expressed by definitions (3.8) above, one can choose the primary constraint
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of either un or ηn+1, n > 1, to be identically zero (or, equivalently, just constant). With such
a constraint, the equations that determine the time dependence of the higher order coefficients ul
and ηl+1 for all l > n reduce to algebraic relations to the preceding set of coefficients with l ≤ n.
For instance, the case n = 1 and u1 = 0 yields system (3.9) above, while with n = 2 and setting
u2 ≡ 0 yields the reduction

η3 = −1

2
u21, u3 =

3

14η0

(
5u21u0 − 2η2u1

)
,

and so on. Thus, provided the series converge, the resulting solutions can be seen as finite
dimensional reductions of the PDE even though they are not of polynomial type. The general
non-symmetric case can be handled similarly with the appropriate choice of primary constraints.
The geometric interpretation of these reductions and their study in the context of Hamiltonian
structures goes beyond the aims of the present work and will be reported elsewhere.

4 Explicit solutions and their physical meaning

In this section we will solve explicitly the system (3.2) via its conserved quantities, extending in
this way a result obtained in [11]. The explicit solution of the system is better obtained using
a set of physically relevant coordinates. These are given by the velocity gradient α, the parabola
curvature γ, the abscissa and the height of the vertex, respectively,

ξ = − ω

2γ
, µ = ζ − ω2

4γ

(which can be used as alternatives to ω and ζ), together with δ = β− αω
2γ . They are readily seen

to be rectifying coordinates for the momentum vector field Y , in the sense that

Y (ξ) = ξ′ = −1

and the derivatives along Y of the other coordinates vanish. We obtain the following represen-
tation for the vector field X:

α̇+ α2 + 2γ = 0, γ̇ + 3αγ = 0, µ̇+ αµ = 0, ξ̇ = δ, δ̇ = 0.

The last two equations yield

δ(t) = β0 −
α0ω0

2γ0
≡ δ0, ξ(t) =

(
β0 −

α0ω0

2γ0

)
t+

(
− ω0

2γ0

)
≡ δ0t+ ξ0,

that is, the motion of the abscissa of the parabola vertex is uniform. The equations for µ and γ
imply that these quantities maintain their initial sign. In particular, as expected by the physical
meaning of η, if µ is initially positive, then it remains positive for all times (for as long as
singularities do not develop).

The conserved quantity K2 yields the relation

α2 = 4γ +K2γ
2/3,

which coincides with that of the three-field reduction (1.3). Then one obtains the solution (see
[10, 11] for the case α0 = 0)

α2 = 4γ0τ
3 +

(
α2
0 − 4γ0

)
τ2, γ = γ0τ

3, ζ = ζ0τ, (4.1)
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where τ(t) solves

τ̇2 = 4γ0τ
5 +

(
α2
0 − 4γ0

)
τ4, τ(0) = 1,

and thus is related to t by

t(τ) =
|α0|τ −

√
α2
0 + 4γ0(τ − 1)

τ
(
α2
0 − 4γ0

) +

4γ0

(
atanh

√
α2
0+4γ0(τ−1)
α2
0−4γ0

− atanh

(
|α0|√
α2
0−4γ0

))
(
α2
0 − 4γ0

)
3/2

(4.2)

if the condition α2
0 6= 4γ0 is fulfilled.

We close this section discussing the case α0 = β0 = 0 (i.e., the fluid is initially at rest) and
γ0 > 0. From (4.2) it can be checked that τ → +∞ if

t→ ts ≡
π

4
√
γ0
.

Hence (4.1) shows that there is a blow-up of α, γ, and ζ at the finite time ts. Therefore we can
see the variable change τ = τ(t) as an analogue of the classical regularizing Kustaanheimo-Stiefel
transformation for the Kepler problem (see, e.g., [12] and the references quoted therein).

5 The bi-Hamiltonian structure

In this section we construct a bi-Hamiltonian structure for our system, that is, a pair of
compatible Poisson tensors P and Q on M5 fulfilling the Lenard–Magri [15, 20], or Gelfand–
Zakharevich [16] relations1

dK0

P

}}

Q

!!

dK1

P

}}

Q

!!

dK2

P

}}

Q

!!
0 Y X 0

(5.1)

where, here and below, X and Y are the vector fields (3.2) and (3.3). In other words, we require
that P satisfies

PdK0 = 0, PdK1 = Y, PdK2 = X, (5.2)

while Q satisfies

QdK0 = Y, QdK1 = X, QdK2 = 0, (5.3)

where the Kj ’s are defined in (3.7).
A consequence of (5.1) being fulfilled is that the three Hamiltonians are in mutual involution

with respect to both brackets, that is,

{Ki,Kj}P = 〈dKi, PdKj〉 = 0, {Ki,Kj}Q = 〈dKi, QdKj〉 = 0, i, j = 0, 1, 2. (5.4)

To show this, it is convenient to introduce another set of coordinates. In fact, K0 and K1 are,
respectively, linear in ζ and β, and suggest for coordinates in M5 the set

(α, σ, κ, ω, δ), (5.5)

1See, e.g., [21] and references quoted therein for a gentle introduction to this theory, and [26] for the historical
origin of the term Lenard–Magri relations/sequences/chains.
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where

σ = γ1/3, κ = −ω
2 − 4γζ

4γ4/3
, δ = β − αω

2γ
, (5.6)

with inverse relations

γ = σ3, β = δ +
αω

2σ3
, ζ = σκ+

ω2

4σ3
.

The conserved quantities now read

K0 = κ, K1 = δ, K2 =
α2

σ2
− 4σ,

and system (3.2) becomes

α̇+ α2 + 2σ3 = 0, σ̇ + ασ = 0, κ̇ = 0, ω̇ + 3αω + 2δσ3 = 0, δ̇ = 0. (5.7)

Moreover, the symmetry (3.3) is

α′ = 0, σ′ = 0, κ′ = 0, ω′ = 2σ3, δ′ = 0

(which shows that K ′j = 0 for j = 1, 2, 3, so that X and Y share these three constants of the
motion).

To find the descending Poisson structure P in (5.1), we first consider the bivector

P ′ := Y ∧ ∂δ +X ∧Xα,

where Xα = σ2/(2α)∂α. Since Xα(K2) = ∂δ(δ) = 1 and ∂δ(K2) = Xα(δ) = 0, relations (5.2) are
indeed fulfilled. Note that P ′ is not a Poisson bivector. As well known, the Jacobi condition for
a bivector P to give rise to a Poisson structure is encoded by the Schouten bracket [P, P ]S as

{f1, {f2, f3}P }P + {f2, {f3, f1}P }P + {f3, {f1, f2}P }P = −1

2
〈df1 ∧ df2 ∧ df3, [P, P ]S〉.

Using standard formulas of Poisson calculus (see, e.g., [32]) that express the Schouten bracket
of decomposable bivectors in term of ordinary Lie brackets of vector fields as

[X1 ∧X2, Y1 ∧ Y2]S = −[X1, Y1] ∧X2 ∧ Y2 + [X1, Y2] ∧X2 ∧ Y1 + [X2, Y1] ∧X1 ∧ Y2
− [X2, Y2] ∧X1 ∧ Y1,

and taking into account that the only non vanishing Lie brackets among the four vector fields
entering the definition of P ′ are

[X,Xα] = − σ2

2α2
(X + δY ) and [X, ∂δ] = Y,

we can easily compute

[P ′, P ′]S = [X ∧Xα, X ∧Xα]S = 2[X,Xα] ∧Xα ∧X = −σ
2δ

α2
Y ∧Xα ∧X. (5.8)

However, note that the bivector R defined by

R ≡ Y ∧X
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has a kernel spanned by (dK0,dK1,dK2), since the Kj ’s are conserved quantities for both Y
and X. Thus, any bivector of the form

Pf := P ′ + fR, (5.9)

where f is an arbitrary function on M5, still satisfies the conditions (5.2). Hence, we can use
this “extra” degree of freedom to seek a Poisson structure among the family of bivectors (5.9).
Indeed, another straightforward computation shows that

[Pf , Pf ]S = −2Y (f)Y ∧ ∂δ ∧X +

(
2X(f)− σ2δ

α2

)
Y ∧Xα ∧X.

Since X, Y , Xα, ∂δ together with ∂κ (which will be used for the second Poisson tensor Q below)
are a (local) basis for the sections of TM5, we get that f must satisfy the differential system

Y (f) = 0 ⇐⇒ σ3fω = 0,

X(f) =
σ2δ

2α2
⇐⇒ −

(
α2 + 2σ3

)
fα − ασfσ −

(
3αω + 2δσ3

)
fω =

σ2δ

2α2
,

which turns out to be explicitly solvable. Indeed, this reduces to the linear equation

−
(
α2 + 2σ3

)
fα − ασfσ =

σ2δ

2α2
, (5.10)

for a function of three variables f(α, σ, δ). This equation can be solved by the method of
characteristics. Using σ as characteristic parameter, we have

df(α(σ), σ, δ(σ))

dσ
+

σδ

2α(σ)3
= 0, f(α(σ0), σ0, δ(σ0)) = f(α0, σ0, δ0),

where the characteristics are the solutions of the Cauchy problems

dα

dσ
=
α2 + 2σ3

ασ
,

dδ

dσ
= 0, α(σ0) = α0, δ(σ0) = δ0.

The solutions of this ODEs system are

α2

σ2
=
α2
0 + 4 (σ − σ0)σ20

σ20
, δ = δ0, (5.11)

and the variation of f along the characteristics is given by

df(α(σ), σ, δ(σ))

dσ
+

σσ30δ

2σ3
(
α2
0 + 4(σ − σ0)σ20

)3/2 = 0. (5.12)

Using (5.11) and (5.12) one can find that a possible solution of (5.10) is

f(α, σ, δ) = −6σ5δ
atanh

(
α√

α2−4σ3

)
(
−4σ3 + α2

)5/2 +
1

2

σ2δ
(
8σ3 + α2

)
α
(
α2 − 4σ3

)2 ,
and the matrix structure of the tensor Pf is given by

0 1
2σ

3 0 P 14
f 0

−1
2σ

3 0 0 −2fσ4α 0

0 0 0 0 0

−P 14
f 2fσ4α 0 0 2σ3

0 0 0 −2σ3 0

 , (5.13)
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with P 14
f = σ5δ

α + 3
2σ

2ω−2f
(
2σ3+α2

)
σ3. By similar arguments, one can show that system (5.7)

is Hamiltonian with respect to the second structure

0 0 0
g
(
2σ3 + α2

)
ασ

−2σ3 − α2

0 0 0 g −ασ
0 0 0 −2σ3 0

−
g
(
2σ3 + α2

)
ασ

−g 2σ3 0 −2δσ3 − 3αω

2σ3 + α2 ασ 0 2δσ3 + 3αω 0


, (5.14)

where g = g(α, σ) solves the equation(
α2 + 2σ3

)
gα + ασgσ = 1. (5.15)

We can rephrase the arguments leading to the tensor Pf of (5.13) for the second Poisson tensor Q
as follows. A suitable bivector satisfying (5.3) is given by

Q′ := Y ∧ ∂κ +X ∧ ∂δ.

As before, Q′ is not a Poisson tensor, since [Q′, Q′]S = 2Y ∧ ∂δ ∧X. Defining

Qg := Q′ + gR

and imposing the vanishing of the Schouten bracket of Qg with itself (and taking into account
that ∂κ has vanishing Lie bracket with the other vector fields appearing in Qg) yields the
differential system{

Y (g) = 0 ⇐⇒ σ3gω = 0,

X(g) = −1 ⇐⇒
(
α2 + 2σ3

)
gα + ασgσ +

(
3αω + 2δσ3

)
gω = 1,

which reduces to (5.15). Its simplest solution is

g(α, σ) = 4σ3
atanh

(
α√

α2−4σ3

)
(
α2 − 4σ3

)3/2 − α

α2 − 4σ3
.

It turns out that requiring the compatibility of Pf and Qg does not add any conditions on f
and g. In fact

[Pf , Qg]S =

(
X(f)− δσ2

2α2

)
Y ∧X ∧ ∂δ + (X(g) + 1)Y ∧Xα ∧X = 0,

so that the tensors Pf given in (5.13) and Qg given in (5.14) endow M5 with the structure of
a bi-Hamiltonian manifold.

Let us stress that, by construction, the Lenard–Magri chain (5.1) follows and, consequently,
the bi-involution relations (5.4). Actually, all the functions Hj , obtained via the integration
process described in Section 3, are in bi-involution, since they are constants of the motion for
both X and Y , and therefore

{Hj , Hj}P = 〈dHi, PdHj〉
= Y (Hi)∂δ(Hj) +X(Hi)Xα(Hj) + fX(Hi)Y (Hj)− (i↔ j) = 0.

Note that this implies that Hj , j ≥ 3, must be functionally dependent on K0, K1, and K2, given
that P is rank four.
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6 Reductions

In this final section we discuss how to further reduce the 5-dimensional system of ODEs (3.2)
to physically significant submanifolds. The first case we consider is that of parity conserving
solutions, obtained by “killing” the Galilean symmetry (3.3). This is interesting since, by the
arguments of Section 4, such a reduction provides the most relevant information on the evolution.
The second case we consider next, that of the submanifold given by “linear-linear” initial data
obtained by setting γ = 0, is somewhat trickier. Although the integration of the resulting ODEs
can be most easily performed in an iterative way, the Hamiltonian functions of the system (3.2)
blow up in this limit, and so an ad hoc procedure is needed to recover them.

6.1 The reduction to the parity conserving solutions

Parabolic-linear solutions of the form

η(x, t) = γ(t)x2 + ζ(t), u(x, t) = α(t)x, (6.1)

of the Airy-SWE were first introduced in [25, 31] and studied in [7, 10, 11], where an explicit
description of the solutions starting with zero velocities was given. Solutions (6.1) are obviously
a particular case, given by η(−x, t) = η(x, t) and u(−x, t) = −u(x, t), of the ones studied in the
previous sections, and the three coefficients (α, γ, ζ) evolve according to the following system of
ODEs,

α̇+ α2 + 2γ = 0, γ̇ + 3αγ = 0, ζ̇ + αζ = 0. (6.2)

This is the reduction of the 5-field system discussed so far to the invariant manifold M3 obtained
by setting β = ω = 0 (that is, δ = ω = 0) in the original system. The adapted coordinates and
the coordinate change described in (5.5)–(5.6) now read

σ = γ1/3, κ = ζγ−1/3, with inverse γ = σ3, ζ = κσ.

We now have two Hamiltonians, namely, κ and H ≡ K2. Note that the vector field Y defined
above is not tangent to M3, as x-translations move the vertex away from the origin. The time
evolution (given by the vector field X3, that is, X restricted to M3) reads

α̇+ α2 + 2σ3 = 0, σ̇ + ασ = 0, κ̇ = 0.

As far as the Poisson structures are concerned, the first one (fulfilling P3dκ = 0, P3dH = X3) is
just the restriction of the previously found Pf , that is

P3 = X3 ∧Xα,

where Xα ≡ σ2/(2α)∂α is now seen as a vector field on M3. Being the restriction of a Poisson
structure, P3 is automatically a Poisson structure (see also (5.8)). Notice that P3 can also be
seen as the projection of Pf along the distribution D spanned by Y and ∂δ.

The restriction of the second Poisson tensor Qg to M3 does not exist. Its projection along D
is the vanishing bivector, so it is useless for our purposes. However, a second Poisson tensor for
the (shortened) Lenard–Magri chain

dκ
P3

~~

Q3

  

dH
P3

}}

Q3

  
0 X 0

can be easily found to be

Q3 = X3 ∧ ∂κ.

It can be checked that P3 and Q3 are compatible.
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6.2 The reduction to linear-linear solutions

The submanifiold γ = 0 is invariant for the ODEs (3.2). The restriction of the vector field to
this submanifold of linear-linear configurations of the form

η(x, t) = ω(t)x+ ζ(t), u(x, t) = α(t)x+ β(t)

is

α̇+ α2 = 0, ζ̇ + αζ + β = 0, ω̇ + 2αω = 0, β̇ + αβ + ω = 0, (6.3)

and the Galilean vector field restricts to

α′ = 0, ζ ′ = ω, ω′ = 0, β′ = α. (6.4)

System (6.3) can be integrated via a straightforward inductive process, starting from the first
equation, substituting into the third, then into the fourth and finally into the second. The
solution of the Cauchy problem is

α(t) =
α0

α0t+ 1
, β(t) = −ω0 ln(α0t+ 1)− β0α0

α0(α0t+ 1)
,

ω(t) =
ω0

(α0t+ 1)2
, ζ(t) =

ζ0
α0t+ 1

− ω0(β0α0 − ω0)t

α0(α0t+ 1)2
− ln(α0t+ 1)ω0

2

α0
2left(α0t+ 1)2

.

The vector field X4 given by (6.3) admits three global constants of the motion:

H l
1 ≡

α2

ω
, H l

2 ≡
αµ

ω
− β +

ω

α
, H l

3 ≡
αβ

ω
− ln |α|.

The first two of them are shared with the Galilean vector field Y4 defined by (6.4). In com-
plete analogy with the procedure discussed in Section 5, one can find a pair of Poisson tensors
generating the pair of vector fields (6.3), (6.4) from H l

1 and H l
2. They are given by

P1 = Y4 ∧
∂

∂H l
1

+X4 ∧
∂

∂H l
2

− 1

α
Y4 ∧X4

and

P2 = Y4 ∧
∂

∂H l
2

+X4 ∧
∂

∂H l
1

+

(
µ

α2
+

ln |α|(
H l

1

)2
)
Y4 ∧X4,

where we have used
(
α, µ,H l

1, H
l
2

)
as coordinates.

7 Conclusions

In this work, we have studied the geometric structure of self-similar solutions of the second
kind of the Airy system (1.1). Of course, while the Airy system is used as an example, given
its relevance from the physical viewpoint as it lies at the intersection of hydrodynamics, optics
and condensed matter, our approach can be applied to more general setups that share the
same fundamental structure. For instance, multilayer systems of different density fluids admit
polynomial solutions whose proper geometric interpretation could be carried out similarly, as
well as extensions to more spatial dimensions. Further generalizations naturally arise as well,
extending the Hamiltonian degrees of freedom for the finite system of ODEs to numbers higher
than two. As seen in Section 3, the formalism developed herein could be extended beyond
the case of polynomials of second degree to power series solutions. These and other topics are
currently under investigation and will be reported in the future.
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