Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 101, 23 pages      arXiv:1902.01361      https://doi.org/10.3842/SIGMA.2019.101
Contribution to the Special Issue on Algebraic Methods in Dynamical Systems

Commuting Ordinary Differential Operators and the Dixmier Test

Emma Previato a, Sonia L. Rueda b and Maria-Angeles Zurro c
a) Boston University, USA
b) Universidad Politécnica de Madrid, Spain
c) Universidad Autónoma de Madrid, Spain

Received February 04, 2019, in final form December 23, 2019; Published online December 30, 2019

Abstract
The Burchnall-Chaundy problem is classical in differential algebra, seeking to describe all commutative subalgebras of a ring of ordinary differential operators whose coefficients are functions in a given class. It received less attention when posed in the (first) Weyl algebra, namely for polynomial coefficients, while the classification of commutative subalgebras of the Weyl algebra is in itself an important open problem. Centralizers are maximal-commutative subalgebras, and we review the properties of a basis of the centralizer of an operator $L$ in normal form, following the approach of K.R. Goodearl, with the ultimate goal of obtaining such bases by computational routines. Our first step is to establish the Dixmier test, based on a lemma by J. Dixmier and the choice of a suitable filtration, to give necessary conditions for an operator $M$ to be in the centralizer of $L$. Whenever the centralizer equals the algebra generated by $L$ and $M$, we call $L$, $M$ a Burchnall-Chaundy (BC) pair. A construction of BC pairs is presented for operators of order $4$ in the first Weyl algebra. Moreover, for true rank $r$ pairs, by means of differential subresultants, we effectively compute the fiber of the rank $r$ spectral sheaf over their spectral curve.

Key words: Weyl algebra; Ore domain; spectral curve; higher-rank vector bundle.

pdf (503 kb)   tex (37 kb)  

References

  1. Briançon J., Maisonobe P., Idéaux de germes d'opérateurs différentiels à une variable, Enseign. Math. 30 (1984), 7-38.
  2. Burban I., Zheglov A., Fourier-Mukai transform on Weierstrass cubics and commuting differential operators, Internat. J. Math. 29 (2018), 1850064, 46 pages, arXiv:1602.08694.
  3. Burchnall J.L., Chaundy T.W., Commutative Ordinary Differential Operators, Proc. London Math. Soc. s2-21 (1923), 420-440.
  4. Burchnall J.L., Chaundy T.W., Commutative ordinary differential operators, Proc. London Math. Soc. 118 (1928), 557-583.
  5. Burchnall J.L., Chaundy T.W., Commutative ordinary differential operators. II. The identity $P^n = Q^m$, Proc. London Math. Soc. 134 (1931), 471-485.
  6. Castro-Jiménez F.J., Narváez-Macarro L., Homogenising differential operators, arXiv:1211.1867.
  7. Chardin M., Differential resultants and subresultants, in Fundamentals of Computation Theory (Gosen, 1991), Lecture Notes in Comput. Sci., Vol. 529, Springer, Berlin, 1991, 180-189.
  8. Davletshina V.N., Mironov A.E., On commuting ordinary differential operators with polynomial coefficients corresponding to spectral curves of genus two, Bull. Korean Math. Soc. 54 (2017), 1669-1675, arXiv:1606.01346.
  9. Davletshina V.N., Shamaev E.I., On commuting differential operators of rank 2, Sib. Math. J. 55 (2014), 606-610.
  10. Dixmier J., Sur les algèbres de Weyl, Bull. Soc. Math. France 96 (1968), 209-242.
  11. Eilbeck J.C., Enolski V.Z., Matsutani S., Ônishi Y., Previato E., Abelian functions for trigonal curves of genus three, Int. Math. Res. Not. 2008 (2008), 140, 38 pages, arXiv:math.AG/0610019.
  12. Goodearl K.R., Centralizers in differential, pseudodifferential, and fractional differential operator rings, Rocky Mountain J. Math. 13 (1983), 573-618.
  13. Grinevich P.G., Rational solutions for the equation of commutation of differential operators, Funct. Anal. Appl. 16 (1982), 15-19.
  14. Grünbaum F.A., Commuting pairs of linear ordinary differential operators of orders four and six, Phys. D 31 (1988), 424-433.
  15. Komeda J., Matsutani S., Previato E., The sigma function for Weierstrass semigroups $\langle 3, 7, 8\rangle$ and $\langle 6, 13, 14, 15, 16\rangle$, Internat. J. Math. 24 (2013), 1350085, 58 pages, arXiv:1303.0451.
  16. Krichever I.M., Integration of nonlinear equations by the methods of algebraic geometry, Funct. Anal. Appl. 11 (1977), 12-26.
  17. Krichever I.M., Rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of $N$ particles on a line, Funct. Anal. Appl. 12 (1978), 59-61.
  18. Krichever I.M., Commutative rings of ordinary linear differential operators, Funct. Anal. Appl. 12 (1978), 175-185.
  19. Krichever I.M., Novikov S.P., Holomorphic bundles and nonlinear equations. Finite-gap solutions of rank $2$, Soviet Math. Dokl. 20 (1979), 650-654.
  20. Krichever I.M., Novikov S.P., Holomorphic bundles over algebraic curves and nonlinear equations, Russian Math. Surveys 35 (1980), no. 6, 53-79.
  21. Krichever I.M., Novikov S.P., Holomorphic bundles and nonlinear equations, Phys. D 3 (1982), 267-293.
  22. Latham G., Previato E., Higher rank Darboux transformations, in Singular Limits of Dispersive Waves (Lyon, 1991), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 320, Plenum, New York, 1994, 117-134.
  23. Li Z., A subresultant theory for Ore polynomials with applications, in Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (Rostock), ACM, New York, 1998, 132-139.
  24. McCallum S., Winkler F., Resultants: algebraic and differential, Technical Reports RISC18-08, J. Kepler University, Linz, Austria, 2018.
  25. Mironov A.E., Self-adjoint commuting ordinary differential operators, Invent. Math. 197 (2014), 417-431.
  26. Mironov A.E., Zheglov A.B., Commuting ordinary differential operators with polynomial coefficients and automorphisms of the first Weyl algebra, Int. Math. Res. Not. 2016 (2016), 2974-2993, arXiv:1503.00485.
  27. Mokhov O.I., Commuting ordinary differential operators of rank 3 corresponding to an elliptic curve, Russian Math. Surveys 37 (1982), no. 4, 129-130.
  28. Mokhov O.I., Commuting differential operators of rank $3$, and nonlinear equations, Math. USSR Izv. 35 (1990), 629-655.
  29. Mokhov O.I., On commutative subalgebras of the Weyl algebra related to commuting operators of arbitrary rank and genus, Math. Notes 94 (2013), 298-300, arXiv:1201.5979.
  30. Mokhov O.I., Commuting ordinary differential operators of arbitrary genus and arbitrary rank with polynomial coefficients, in Topology, Geometry, Integrable Systems, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 234, Editors V.M. Buchstaber, B.A. Dubrovin, I.M. Krichever, Amer. Math. Soc., Providence, RI, 2014, 323-336.
  31. Mulase M., Cohomological structure in soliton equations and Jacobian varieties, J. Differential Geom. 19 (1984), 403-430.
  32. Mulase M., Geometric classification of commutative algebras of ordinary differential operators, in Differential Geometric Methods in Theoretical Physics (Davis, CA, 1988), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 245, Editors L.L. Chau, W. Nahm, Plenum, New York, 1990, 13-27.
  33. Mumford D., An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg de-Vries equation and related nonlinear equation, in Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 115-153.
  34. Oganesyan V.S., Commuting differential operators of rank 2 with polynomial coefficients, Funct. Anal. Appl. 50 (2016), 54-61, arXiv:1409.4058.
  35. Oganesyan V.S., Explicit characterization of some commuting differential operators of rank 2, Int. Math. Res. Not. 2017 (2017), 1623-1640, arXiv:1502.07491.
  36. Oganesyan V.S., Alternative proof of Mironov's results on commuting shelf-adjoint operators of rank 2, Sib. Math. J. 59 (2018), 102-106.
  37. Pogorelov D.A., Zheglov A.B., An algorithm for construction of commuting ordinary differential operators by geometric data, Lobachevskii J. Math. 38 (2017), 1075-1092.
  38. Previato E., Another algebraic proof of Weil's reciprocity, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2 (1991), 167-171.
  39. Previato E., Wilson G., Differential operators and rank $2$ bundles over elliptic curves, Compositio Math. 81 (1992), 107-119.
  40. Richter J., Burchnall-Chaundy theory for Ore extensions, in Algebra, geometry and mathematical physics, Springer Proc. Math. Stat., Vol. 85, Springer, Heidelberg, 2014, 61-70.
  41. Sato M., Sato Y., Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, in Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), North-Holland Math. Stud., Vol. 81, North-Holland, Amsterdam, 1983, 259-271.
  42. Schur I., Über vertauschbare lineare Differentialausdrücke, Sitzungsber. Berl. Math. Ges. 3 (1904), 7-10.
  43. Segal G., Wilson G., Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65.
  44. Verdier J.L., Équations différentielles algébriques, in Séminaire Bourbaki, 30e année (1977/78), Lecture Notes in Math., Vol. 710, Springer, Berlin, 1979, 101-122.
  45. Wilson G., Algebraic curves and soliton equations, in Geometry Today (Rome, 1984), Progr. Math., Vol. 60, Birkhäuser Boston, Boston, MA, 1985, 303-329.
  46. Zheglov A.B., Mironov A.E., On commuting differential operators with polynomial coefficients corresponding to spectral curves of genus one, Dokl. Math. 91 (2015), 281-282.

Previous article  Contents of Volume 15 (2019)