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Abstract. Singular nonsymmetric Macdonald polynomials are constructed by use of the
representation theory of the Hecke algebras of the symmetric groups. These polynomials
are labeled by quasistaircase partitions and are associated to special parameter values (q, t).
For N variables, there are singular polynomials for any pair of positive integers m and n,
with 2 ≤ n ≤ N , and parameters values (q, t) satisfying qatb = 1 exactly when a = rm and
b = rn, for some integer r. The coefficients of nonsymmetric Macdonald polynomials with
respect to the basis of monomials

{
xα
}

are rational functions of q and t. In this paper,
we present the construction of subspaces of singular nonsymmetric Macdonald polynomials
specialized to particular values of (q, t). The key part of this construction is to show the
coefficients have no poles at the special values of (q, t). Moreover, this subspace of singular
Macdonald polynomials for the special values of the parameters is an irreducible module for
the Hecke algebra of type AN−1.

Key words: nonsymmetric Macdonald polynomials; Dunkl operators; Hecke algebra; critical
pairs
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1 Introduction

The Hecke algebra HN (t) of the symmetric group SN acting on {1, 2, . . . , N} has representa-
tions on polynomials in N variables as well as on finite-dimensional spaces spanned by reverse
standard Young tableaux (RSYT) of shape τ , for each partition τ of N . Among the different
polynomials related to the Hecke algebra, the nonsymmetric Macdonald polynomials are defined
as homogeneous eigenvectors of the Cherednik operators.

In any structure of algebra and analysis that involves parameters, it is always crucial to know
the effect of different parameter values, for instance, when shifted nonsymmetric Macdonald
polynomials become homogeneous (see [9, Proposition 2, p. 9]). Here we are concerned with
parameters giving rise to singular nonsymmetric Macdonald polynomials. We analyze the situa-
tions where the Cherednik operators coincide with Jucys–Murphy elements of the Hecke algebra.
It is remarkable that this leads directly to singular polynomials, which are defined to be in the
joint kernels of Dunkl operators. We already looked at singular Macdonald polynomials in our
work with Jean-Gabriel Luque in [2], where the singular polynomials form the basic ingredient
of the projection map described there.
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In this paper we construct spaces of nonsymmetric Macdonald polynomials which admit
a representation isomorphic to the representation on finite-dimensional spaces spanned by RSYT
for certain shape τ and parameter values (q, t). Furthermore, the partitions that arise are related
to quasistaircases. As a very initial example, let N = 10 and consider the quasistaircase partition
λ = (4, 3, 3, 2, 2, 0, 0, 0, 0, 0). In this case, we will look at RSYT of shape τ = (5, 2, 2, 1) and
parameter values satisfying qt3 = 1.

It is known that the quasistaircases exhaust all singular nonsymmetric Jack polynomials and
we suspect that this also holds for singular nonsymmetric Macdonald polynomials [5]. By use of
quasistaircases we will construct these subspaces. The idea is that, once we fix certain partition τ
and parameter values (q, t), for each RSYT of shape τ , denoted by S, there is a label α(S) such
that the associated set of nonsymmetric Macdonald polynomials {Mα(S)} is a basis of isotype τ

and the spectral vectors satisfy that ζα(S) =
[
tCTS[i]

]N
i=1

. The partition τ will be of the form

τ =
(
dn−1, (n−1)K−1, νK

)
, for some specific parameters d, n, K, and νK , and the specialization

of the parameter will be of the form $ = (q, t) =
(
ωu−n/g, um/g

)
, where m and n are integers

such that g = gcd(m,n) and u is not a root of unity and u 6= 0. With this idea in mind, we
state our main theorem now.

Theorem 1.1. The polynomials {Mα(S) : S ∈ Tabτ} specialized to (q, t) = $ are a basis of
isotype τ and are singular.

This paper covers an explanation of all the concepts involved in Theorem 1.1, as well as the
presentation of its proof. The presentation begins in Section 2 with a concise overview of the
background needed in this paper. This section includes some combinatorial definitions, together
with an exposition of the representation theory of the Hecke algebra and of nonsymmetric
Macdonald polynomials and singular polynomials. In Section 3, we introduce the quasistaircase
partitions and the specialization that we will be considering through this paper. Section 4 is
dedicated to introduce the concept of the equipolar property since it will simplify notably our
study. We warn the reader that the sketch of the proof of Theorem 1.1 is included in Section 4.1.
The rest of the paper is dedicated to prove some technical results. In Section 5, we use the critical
pair method and we present the minimal set of configurations that need to be checked. This
is done in Section 6, where we finish our study by carefully analyzing the critical pairs for the
quasistaircase partitions. Finally, we wrap up the paper with some concluding remarks and an
illustrative example in Section 7.

2 Background

This paper relates concepts and uses notation from different areas. In this section we set up the
foundations and the notation by reviewing the basic definitions and results that are involved in
our study. The section is split according to the different areas.

2.1 Combinatorics

Let us start with the combinatorial objects. For more details, see [12, 13].

A partition τ = (τ1, . . . , τN ) is a nonincreasing sequence such that τi ≥ 0, for all i. The length
of a partition τ is the number of nonzero parts of τ , `(τ) = max{i : τi > 0}. Moreover, we say
that τ is a partition of n, or that the size of τ is n, if

∑
i τi = n. We denote by τ ` n or |τ | = n

if τ is a partition of n and by Par(n) the set of partitions of n. We consider the following partial
order on partitions. For τ, γ ∈ Par(n), we say that τ dominates γ, and we write τ � γ, if τ 6= γ

and
j∑
i=1

τi ≥
j∑
i=1

γi, for all 1 ≤ j ≤ n.
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A composition α = (α1, . . . , αN ) is any permutation of a partition. We denote by α+ the
unique nonincreasing rearrangement of α such that α+ is a partition. We say that α is a com-
position of n, or that has size n, if |α| = |α+| = n.

The definition of the partial order on partitions applies also for compositions since it does not
use that the sequences are weakly decreasing. We continue using the symbol � for this order
for compositions. Moreover, it can be used to define another order. For α and β compositions,
we write α . β if |α| = |β|, α 6= β, and either α+ � β+, or α+ = β+ and α � β.

Remark. Notice that, by definition, the partitions and compositions appearing in this paper
are allowed to have zeros and are standardized to have N entries in total (including the zeros).
However, we omit the zero entries in those partitions for which they are not relevant. We mostly
work with Par(N), the set of partitions τ = (τ1, . . . , τN ) with

∑
i τi = N .

Given a composition α, we associate to it a rank function rα = (rα(1), rα(2), . . . , rα(N)) by
setting

rα(i) = #{k : 1 ≤ k ≤ N, αk > αi}+ #{k : 1 ≤ k ≤ i, αk = αi}, (2.1)

for 1 ≤ i ≤ N , where we use the notation #A to denote the size of the set A. It is important
to point out that rα is a permutation of {1, 2, . . . , N}. Moreover, rα = (1, 2, . . . , N) if and only
if α is a partition. Therefore, α+ satisfies that α+

rα(i) = αi, for 1 ≤ i ≤ N .

A Ferrers diagram of shape τ ∈ Par(n) is obtained by drawing τi boxes from bottom to top,
all shifted to the left (corresponding to French notation). That is, we draw boxes at points (i, j),
for 1 ≤ i ≤ `(τ) and 1 ≤ j ≤ τi, in the xy-plane. We define two fillings of a Ferrers diagram of
shape τ ∈ Par(n). A reverse standard Young tableau (RSYT) is a filling such that the entries
are exactly {1, 2, . . . , n} and are decreasing in rows and columns when reading from left to right
and from bottom to top. A reverse row-ordered standard Young tableau is a filling such that the
entries are exactly {1, 2, . . . , n} and are decreasing in rows, with no condition on the columns.
Our main objects are the RSYT, and therefore we denote by Tabτ the set of RSYT of shape τ
and by Vτ the space with orthogonal basis given by Tabτ , i.e., Vτ = spanR(t){S : S ∈Tabτ}. We
also denote by RSTabτ the set of reverse row-ordered standard Young tableaux of shape τ . Note
that Tabτ ⊂ RSTabτ .

We finish this subsection introducing useful notation for the tableaux in Tabτ . Let S ∈ Tabτ ,
for some partition τ ` N . The entry i of S is at coordinates (rowS[i], colS[i]), where rowS[i]
denotes the row in which i appears (counting from bottom to top) and colS[i] denotes the
column in which i appears (counting from left to right). Moreover, the content of the entry is
CTS[i] = colS[i] − rowS[i]. Then, each S ∈ Tabτ is uniquely determined by its content vector

CTS = [CTS[i]]Ni=1. For instance, S = 7 6 5 2

4 3 1

has shape τ = (4, 3) and content vector CTS =
[1, 3, 0,−1, 2, 1, 0].

Given S ∈ Tabτ , we define S(i) to be the RSYT obtained by exchanging i and i + 1 in the
case that rowS[i] < rowS[i + 1] and colS[i] > colS[i + 1]. We refer this map S si−→ S(i) as a step.
We reserve the notation Ssi, which again exchange i and i+ 1, for the case in which Ssi is not
a RSYT. We also set up that d[i] = CTS[i]− CTS[i+ 1], since it will appear several times.

There is a partial order on Tabτ related to the inversion number:

inv(S) = #{(i, j) : 1 ≤ i < j ≤ N, rowS[i] < rowS[j]}.

We denote by S0 the inv-maximal element of Tabτ , which has the numbers N,N−1, . . . , 1 entered
column-by-column, and by S1 the inv-minimal element of Tabτ , which has these numbers entered
row-by-row. Note that inv(S1) = 0 and that inv

(
S(i)
)

= inv(S)− 1.

Example. For the shape (4, 3), S0 = 7 5 3 1

6 4 2

with inv(S0) = 6, and S1 = 7 6 5 4

3 2 1

with
inv(S1) = 0.
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2.2 The Hecke algebra and its representations

Let t be a formal parameter (or a complex number not a root of unity). The Hecke algebra HN (t)
is the associative algebra generated by {T1, T2, . . . , TN−1} subject to the relations

(Ti + 1)(Ti − t) = 0, for 1 ≤ i ≤ N − 1,

TiTi+1Ti = Ti+1TiTi+1, for 1 ≤ i ≤ N − 2,

TiTj = TjTi, for 1 ≤ i < j − 1 ≤ N − 2.

The irreducible modules of HN (t) are indexed by partitions of N . In fact, there is a repre-
sentation of HN (t) on Vτ , which we denote by τ (slight abuse of notation).

Following [3], we describe the representation in terms of the actions of Ti on the basis elements.
For S ∈ Tabτ and i, with 1 ≤ i < N ,

(I) If rowS[i] = rowS[i+ 1], then Sτ(Ti) = tS.

(II) If colS[i] = colS[i+ 1], then Sτ(Ti) = −S.

(III) If rowS[i] < rowS[i+ 1] and colS[i] > colS[i+ 1], then Sτ(Ti) = S(i) + t−1
1−t−d[i]S.

(IV) If CTS[i]− CTS[i+ 1] ≤ −2, then Sτ(Ti) = t(td[i]+1−1)(td[i]−1−1)

(td[i]−1)2
S(i) + td[i](t−1)

td[i]−1
S.

Observe that the last case can be obtained from Case (III) by interchanging S and S(i) and
applying the relation (τ(Ti) + I)(τ(Ti)− tI) = 0, where I denotes the identity operator on Vτ .
We will refer to the formulas (I)–(IV) as the action formulas for τ(Ti).

Consider the following inner product on Vτ . For S,S′ ∈ Tabτ , 〈S, S′〉t = δS,S′ · γ(S, t), with

γ(S; t) =
∏
i<j

CTS[j]−CTS[i]≥2

(
1− tCTS[j]−CTS[i]−1

)(
1− tCTS[j]−CTS[i]+1

)(
1− tCTS[j]−CTS[i]

)2 ,

and extended by linearity. Note that this inner product satisfies that 〈fTi, g〉 = 〈f, gTi〉, for
f, g ∈ Vτ , and that it is invariant under the transformation t 7−→ t−1.

For HN (t), a set of Jucys–Murphy elements is defined by the following recursive formula:φN = 1,

φi =
1

t
Tiφi+1Ti, for 1 ≤ i < N.

In [8], there is described another set of Jucys–Murphy elements. The set described here is nicely
linked to singularity and seems easier to manipulate in this setup. Next, we describe the action
of this set of Jucys–Murphy elements on RSYT.

Proposition 2.1. For 1 ≤ i ≤ N and S ∈ Tabτ , Sτ(φi) = tCTS[i]S.

Proof. Arguing by induction, for i = N , the result is trivially true since CTS[N ] = 0 and
φN = 1. Now, suppose that Sτ(φi+1) = tCTS[i+1]S for all S ∈ Tabτ . We want to prove that
Sτ(φi) = tCTS[i]S. For that, we study the different cases according to the action formulas
of τ(Ti):

(I) If rowS[i] = rowS[i+ 1], then Sτ(φi) = 1
tSτ(Ti)τ(φi+1)τ(Ti) = tCTS[i+1]+1S = tCTS[i]S.

(II) If colS[i] = colS[i+ 1], then Sτ(φi) = 1
tSτ(Ti)τ(φi+1)τ(Ti) = 1

t t
CTS[i+1]S = tCTS[i]S.
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(III)–(IV) We compute these two cases at the same time. Let T and Φ be the matrices
of τ(Ti) and τ(φi+1) respectively, with respect to the basis

[
S, S(i)

]
. That is,

T =

 − 1− t
1− %

1

(1− %t)(t− %)

(1− %)2

%(1− t)
1− %

 , Φ =

[
tCTS[i+1] 0

0 tCTS[i]

]
,

where % = tCTS[i+1]−CTS[i]. A simple calculation shows that 1
t T ΦT =

[
tCTS[i] 0

0 tCTS[i+1]

]
. �

The Hecke algebraHN (t) also acts on polynomials. Let us denote by P the ring of polynomials
K[x1, . . . , xN ], where K = Q(t) (or Q(t, q) later on). We denote by x the set of variables

{x1, . . . , xN} and, for a composition α, xα =
N∏
i=1

xαii is a monomial of degree |α|. The ring of

polynomials P is graded and we denote by Pn the component of homogeneous polynomials of
degree n ≥ 0, i.e., Pn is the span over K of the monomials xα, for α a composition of n.

We first describe the action of the transposition si = (i, i + 1), for 1 ≤ i ≤ N − 1. For
a composition α, αsi is the composition obtained by exchanging αi and αi+1. For a polynomial
p ∈ P, p(x)si = p(xsi), that is the polynomial obtained by exchanging xi and xi+1. Finally, for
1 ≤ i ≤ N − 1, the operator Ti acts on p ∈ P by

p(x)Ti = (1− t)xi+1
p(x)− p(xsi)
xi − xi+1

+ tp(xsi).

It can be shown straightforwardly that these operators satisfy the defining relations of HN (t).
Moreover, psi = p if and only if pTi = tp, and pTi = −p if and only if p(x) = (txi − xi+1)p0(x),
where p0 ∈ P satisfies p0si = p0.

Remark. Note we are using the notation Ti in some different ways. On one side, there is the
abstract Ti, generator of HN (t), for which τ(Ti) denotes the representation as an operator on
a finite-dimensional vector space, for a given partition τ . On the other side, Ti also denotes
an operator on the infinite-dimensional space of polynomials. Technically, we should denote it
like ρ(Ti) since this is another representation of HN (t). However, one uses Ti in both cases since
the meaning is clear from the context.

Each space Pn can be completely decomposed into subspaces irreducible and invariant under
the action of Ti in HN (t). These subspaces have bases of {φi}-simultaneous eigenvectors (or
even made up of Macdonald polynomials). Since this is one of the key points of this paper, we
introduce the following concept.

Definition 2.2. A basis {pS : S ∈ Tabτ} of an invariant subspace of Pn is called a basis of
isotype τ if each pS transforms under the action formulas for Ti instead of τ(Ti) (i.e., repla-
cing τ(Ti) by Ti in the action formulas).

The next result is a consequence of Proposition 2.1.

Corollary 2.3. Let {gS : S ∈ Tabτ} be a set of polynomials that transforms under the formula
actions of {Ti}. Then, gSφi = tCTS[i]gS, for all S and all i.

The key point here is to figure out when a subspace can have a basis of isotype τ made up
of Macdonald polynomials, which we introduce in next section.
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2.3 Nonsymmetric Macdonald polynomials and singular polynomials

In the literature, the different versions of the Macdonald polynomials are usually defined over
the double affine Hecke algebra HN (q, t), where q and t are parameters. For our purpose, it is
enough to consider the Hecke algebra HN (t) together with an extra parameter q. Therefore, we
work over the field K = Q(q, t). Note that the action and representations defined in Section 2.2
do not involve q, and keep the same. Moreover, we focus our attention on the nonsymmetric
Macdonald polynomials. First, we recall three families of operators [1, 9].

Given p ∈ P, the shift operator is defined as

pπ(x) = p(qxN , x1, x2, . . . , xN−1).

This operator is commonly denoted by ω, but we reserve that notation for the roots of unity
that appear later on the paper. The Cherednik operators are defined, for 1 ≤ i ≤ N , as

ξi = ti−1T−1
i−1T

−1
i−2 · · ·T

−1
1 πTN−1TN−2 · · ·Ti,

where the operator T−1
i = 1

t (Ti + 1− t) is obtained from Ti. Note that ξi = 1
tTiξi+1Ti and that

the operators ξi commute with each other. Finally, the Dunkl operators are defined recursively
by DN = 1

xN
(1− ξN ), and for 1 ≤ i ≤ N − 1, Di = 1

tTiDi+1Ti. It is a nontrivial but very useful
result that Di maps Pn to Pn−1.

For a composition α, the nonsymmetric Macdonald polynomials Mα are defined as the basis of
simultaneous eigenfunctions for the Cherednik operators with B-leading term q∗t∗xα, where q∗t∗

denotes integer powers of q and t, not necessarily the same. That is, for 1 ≤ i ≤ N ,

Mαξi = qαitN−rα(i)Mα,

where the eigenvalues ζα(i) = qαitN−rα(i) form the spectral vector ζα = [ζα(1), . . . , ζα(N)].
The following result presents two relations that will be very useful in our study.

Proposition 2.4 ([8]). Let ρi = ζα(i+1)
ζα(i) = qαi+1−αitrα(i)−rα(i+1). Then, for 1 ≤ i ≤ N − 1,

• if αi < αi+1, ζαsi = (ζα)si and

MαTi = Mαsi −
1− t
1− ρi

Mα,

MαsiTi =
(1− ρit)(t− ρi)

(1− ρi)2
Mα +

ρi(1− t)
(1− ρi)

Mαsi ,

• if αi = αi+1, then MαTi = tMα.

The next result presents an expansion of the nonsymmetric Macdonald polynomial empha-
sizing its leading term.

Proposition 2.5 ([8]). The nonsymmetric Macdonald polynomials are of the form:

Mα(x) = q∗t∗xα +
∑
αBβ

Aα,β(q, t)xβ,

where the coefficients Aα,β(q, t) are rational functions of q and t and whose denominators are of
the form

(
1− qatb

)
.

Remark. Usually in the literature, the nonsymmetric Macdonald polynomials are normalized so
its leading coefficient is 1. In our presentation, we consider the construction of the nonsymmetric
Macdonald polynomials that uses the Yang–Baxter graph [7], and so the multiples of t and q in
the leading coefficient come from the raising operator.
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We say that the parameters (q, t) are generic parameters if q 6= 1 and qatb 6= 1, for a, b ∈ Z
with |b| ≤ N and |a|+ |b| > 0.

Singular polynomials appear as a tool used to construct projection maps for vector-valued
Macdonald polynomials and to find factorizations connected with highest weight symmetric
polynomials [2]. In the most general setting, a polynomial p ∈ P is said to be singular if there
exist some specialization of (q, t) for which pξi = pφi, for all 1 ≤ i ≤ N . When it comes to
nonsymmetric Macdonald polynomials, we have the following equivalent definition.

Definition 2.6. A nonsymmetric Macdonald polynomial Mα is said to be singular for a specific
value of (q, t) if the coefficients Aα,β(q, t) of Mα have no poles at (q, t) and MαDi = 0, for
1 ≤ i ≤ N .

This formulation of singularity is closely related to the problem of when a shifted (nonhomo-
geneous) Macdonald polynomial reduces to a homogeneous one (see [9, Proposition 2, p. 271]).

The following result shows why the definition for singular polynomials in general coincides
with Definition 2.6.

Lemma 2.7. Let p be a polynomial and (q, t) be some fixed value. Then pξi = pφi for all i if
and only if pDi = 0 for all i.

Proof. The definition of DN shows that pDN = 0 if and only if pξN = p = pφN (since φN = 1).
Arguing by induction, suppose the statement holds for k < i ≤ N . Then,

pDk = 0 ⇐⇒ pTkDk+1Tk = 0 ⇐⇒ pTkDk+1 = 0 ⇐⇒ pTkξk+1 = pTkφk+1

⇐⇒ pTkξk+1Tk = pTkφk+1Tk ⇐⇒ tpξk = tpφk.

This completes the induction. �

We finish this section with an example that illustrates the setup presented.

Example. Consider the isotype τ = (3, 1) and the special value qt2 = −1. There are three
RSYTs of shape τ , together with their content and their α(S)-label:

4 3 2

1

4 3 1

2

4 2 1

3

Content [−1, 2, 1, 0] [2,−1, 1, 0] [2, 1,−1, 0]

α(S)-labels (2, 0, 0, 0) (0, 2, 0, 0) (0, 0, 2, 0)

The spectral vector for (2, 0, 0, 0) is
[
q2t3, t2, t, 1

]
, which equals

[
t−1, t2, t, 1

]
when q2 = t−4.

Similar relations hold for (0, 2, 0, 0) and (0, 0, 2, 0). The polynomials M2000, M0020, and M0020

are indeed singular and one need only to show that none of M2000, M0200, M0020, and M0002

have poles at qt2 = −1 (an easy computation). Then, M0020T3 = −M0020 when qt2 = −1 which
follows from the general formula (see Proposition 2.4)

M0020T3 =
q2t3(1− t)

1− q2t3
M0020 +

t
(
1− q2t2

)(
1− q2t4

)(
1− q2t3

)2 M0002,

where we notice that the coefficients reduce to −1 and 0 when specialized to q = −t−2.

We use the term poles to mean the one-dimensional varieties in the (q, t)-space C2 defined by the denominators
of rational functions of (q, t).
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3 The quasistaircase partitions and the specialization

The nonsymmetric Macdonald polynomials indexed by the quasistaircase and specialized to
a family of parameters are our main object of study in this paper. The quasistaircase partitions
can be seen as a generalization of the staircase partitions, which are, in turn, a generalization
of the rectangle, which have been studied before. The formula for the specialization of the Jack
and Macdonald polynomials in connection with quasistaircases was introduced by Jolicoeur and
Luque [10]. Moreover, it lead to a collaboration between two of the authors of this paper [9,
Section 8], in which they study the rectangular singular polynomials. Furthermore, it provides
another link between nonsymmetric and symmetric polynomials.

In this section, we introduce both the quasistaircase partitions and the specialization, together
with useful notation and properties.

The quasistaircase partition associated to the parameters m, n, d, K, N is the partition

λ =
(
((d+K − 1)m)νK , ((d+K − 2)m)n−1, . . . , (dm)n−1, 0dn−1

)
, (3.1)

where νK = N − (dn− 1)− (K − 1)(n− 1), so that 1 ≤ νK ≤ n− 1 and λ has N entries in total
(including the zero entries).

From now on, λ refers to a quasistaircase partitions with the parameters described in (3.1),
unless specified otherwise. We also associate to λ two other partitions and a permutation of
itself.

Definition 3.1. Let λ be a quasistaircase partition. The isotype partition associated to λ is
the partition defined by τ =

(
dn − 1, (n − 1)K−1, νK

)
, which is a partition of N with length

`(τ) = K + 1. We also define another partition ν = (ν0, ν1, . . . , νK+1) recursively by taking
ν1 = N − (dn − 1), and νj+1 = νj − (n − 1), for 1 ≤ j ≤ K − 1. For consistency, we take
ν0 = N and νK+1 = 0. Attached to this partition, we consider the intervals of integers given by
Ij = [νj + 1, νj−1], for 1 ≤ j ≤ K + 1. Intervals are a key object in our study and so, from now
on, we denote by [a, b] the interval of integers [a, b] ∩ Z.

Observe that if i ∈ I1, then λi = 0, and if i ∈ Ij , then λi = (d+ j − 2)m, for 2 ≤ j ≤ K + 1.
We also note that νa − νb = (n− 1)(b− a), for 1 ≤ a, b ≤ K.

Example. Consider λ =
(
303, 011

)
, for which N = 14, n = 12, m = 30, d = 1, and K = 1.

Therefore, following the definitions above, τ = (11, 3) and ν = (14, 3, 0). Moreover, we have two
intervals in this case, I1 = [4, 14] and I2 = [1, 3].

Definition 3.2. For S ∈ RSTabτ , we define a permutation α(S) of λ by setting its entries as

α(S)i =

{
(d+ rowS[i]− 2)m, if rowS[i] > 1,

0, if rowS[i] = 1.

Note that for S1, α(S1) = λ.

Lemma 3.3. For S ∈ RSTabτ and 1 ≤ i ≤ N , the rank function associated to α(S) is

rα(S)(i) =


K+1∑

u=rowS[i]

τu − colS[i] + 1, if rowS[i] > 1,

N + 1− colS[i], if rowS[i] = 1.

Proof. If rowS[i] = 1, then the entries at positions (1, colS[i]), (1, colS[i] + 1), . . . , (1, nd− 1) are
equal to α(S)i and the entries in the rest of rows are greater. Thus,

rα(S)(i) = nd− 1− (colS[i]− 1) +
K+1∑
u=2

τu = N + 1− colS[i].
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If rowS[i] ≥ 2, there are exactly τrowS[i]−colS[i]+1 parts of α(S) equal to α(S)i and
K+1∑

u=rowS[i]+1

τu

parts that are greater than α(S)i. Therefore, rα(S)(i) =
K+1∑

u=rowS[i]

τu − colS[i] + 1. �

Now that the family of partitions is described, we look at the parameters q and t and specialize
them.

Definition 3.4. Consider two integers m and n such that m ≥ 1 and 2 ≤ n ≤ N . Let
g = gcd(m,n) and ω ∈ C be such that ωm/g is a primitive gth root of unity, i.e., ω = exp

(
2πik
m

)
with gcd(k, g) = 1. Define the following specialization of the parameters q and t: $ = (q, t) =(
ωu−n/g, um/g

)
where u is not a root of unity and u 6= 0.

For the rest of the paper, F (q, t)|$ denotes the specialization of F (q, t) in $. Note that
(q, t) = $ implies qmtn = 1. In fact, we have the following result.

Lemma 3.5. If there exist integers a, b such that qatb
∣∣
$

= 1, then there exists p ∈ Z such that
a = pm and b = pn.

Proof. By hypothesis ωau−an/g+bm/g = 1 and, since u is not a root of unity, −ang + bmg = 0.

From gcd
(
n
g ,

m
g

)
= 1, it follows that a = p′mg and b = p′ ng , for some p′ ∈ Z.

Thus, 1 = ωa = exp
(

2πik
m

mp′

g

)
= exp

(
2πik
g p′

)
. Moreover, since gcd(k, g) = 1, p′ = pg with

p ∈ Z. Hence a = pm and b = pn. �

In fact, to describe all the possibilities for ω, it suffices to let 1 ≤ k < g. The following result
shows that under certain conditions, we can simplify the specialization of $ = (q, t).

Lemma 3.6. Suppose $ = (q, t) =
(
ωu−n/g, um/g

)
, where g = gcd(m,n), u is not a root of

unity and u 6= 0, and ω = exp
(

2πik
m

)
with gcd(k, g) = 1. Then we can write the factorization as

(q, t) =
(

exp
(

2πik′

m

)
(u′)−n/g, (u′)m/g

)
, with gcd(k′, g) = 1 and 1 ≤ k′ < g, and u′ is not a root

of unity again.

Proof. Set k′ = k − z1g with z1 ∈ Z such that 1 ≤ k′ < g, that is, z1 =
⌊
k
g

⌋
. By definition of

gcd, there exist z2, z3 ∈ Z such that z2m+z3n = g. Replace u by ψu′ where ψ = exp
(

2πi
m z1z3g

)
,

then (ψu′)m/g = (u′)m/g and

ωu−n/g = exp

(
2πi

m
(k − nz1z3)

)
(u′)−n/g

= exp

(
2πi

m
(k − z1(g − z2m))

)
(u′)−n/g = exp

(
2πik′

m

)
(u′)−n/g.

This completes the proof. �

Note that Lemma 3.6 shows that the number of connected components of the solution set
for $ in (C\{0})2 equals φ(g), where φ is the Euler function.

Since we study nonsymmetric Macdonald polynomials, the study of the spectral vectors
associated is important. The spectral vector for α(S) has a nice description when specialized.

Proposition 3.7. For 1 ≤ i ≤ N , ζα(S)(i)|$ = tCTS[i].
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Proof. By the definition of the spectral vector, ζα(S)(i) = qα(S)itN−rα(S)(i). Now, we specialize

it to $. If rowS[i] = 1, then ζα(S)(i) = tcolS[i]−1 = tCTS[i]. Otherwise, the exponent of q is
(d− 2 + rowS[i])m, and then the exponent of t under the specialization is

N − n(d− 2 + rowS[i])−

 K+1∑
u=rowS[i]

τu − colS[i] + 1


= −n(d− 2 + rowS[i]) + colS[i]− 1 + (nd− 1) + (rowS[i]− 2)(n− 1)

= colS[i]− rowS[i] = CTS[i]. �

4 The equipolar property

The equipolar property appears in this work with the purpose of working with polynomials
whose hook length products hq,t(α, tq) vanish at $, but for which the poles do not occur when
the set of variables is small enough. This property allows us to produce a minimal list of labels α
that have to be analyzed.

Definition 4.1. Let α and β be compositions. We say that Mα and Mβ are $-equipolar if
α+ = β+ and either both Mα and Mβ have no poles at $ or both have at least one pole at $.

By Proposition 2.5, the coefficient Aα,β(q, t) is the coefficient of xβ in Mα, which is a rational
function of q, t whose denominator is of the form 1− qatb. Whether Ma has a pole at $ depends
on the presence of a factor 1− qmptnp, for some integer p ≥ 1, in the denominator. However, the
action of Ti by itself introduces no new poles because xγTi is a polynomial in x with coefficients
in Z[t], for any composition γ. Recall also that ρi = ζα(i+1)

ζα(i) .

Proposition 4.2. If ρi|$ 6= t±1 and ρi|$ 6= 1, then Mα and Mαsi are $-equipolar.

Proof. Since the relation is symmetric in α 6= αsi, we assume that αi < αi+1. Moreover, to
simplify the notation, we also assume that all the expressions depending on q and t appearing
in this proof are evaluated at $. By the relations described in Proposition 2.4,

Mαsi = MαTi +
1− t
1− ρi

Mα,

Mα =
(1− ρi)2

(1− ρit)(t− ρi)
MαsiTi −

ρi(1− t)(1− ρi)
(1− ρit)(t− ρi)

Mαsi .

Then, the transformation Mα → Mαsi is invertible for generic parameters (q, t) and introduces
no pole at $ provided that ρi 6= t±1 and ρi 6= 1. �

Remark. The condition ρi|$ 6= 1 is necessary for the validity of the proof, even though it is
always true for quasistaircases. For instance, for α =

(
0,m, 1n−1

)
, qα2−α1trα(1)−rα(2) = qmtn.

However, α is not of staircase type.

4.1 Back to Theorem 1.1

In the introduction we state our main theorem and the goal of this paper. Now, it is time to
get back to it. Let us recall it.

Theorem (Theorem 1.1). The polynomials {Mα(S) : S ∈ Tabτ} specialized to (q, t) = $ are
a basis of isotype τ and are singular.

See [13] for more details about hook length products.
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We have already done part of its proof. First of all, the action formulas for τ(Ti) follow from
the spectral vector relations described in Proposition 3.7.

By the definition of singular polynomials, Definition 2.6, we need to show that for 1 ≤ i ≤ N ,
Mα(S)ξi = Mα(S)φi. Our idea is to show that no Mα(S) has a pole at $ and that if colS[i] =
colS[i + 1], for some i and S, then Mα(S)si has no pole at $. This way, we conclude that
Mα(S)Ti = −Mα(S), and so Mα(S)ξi = Mα(S)φi, for 1 ≤ i ≤ N , by Proposition 2.1.

These results will take up the rest of the paper. We finish this section with the gist of our
approach and how far we are.

Given S ∈ RSTabτ , consider the pair (α(S),CTS). The next two results tell us what happen
when CTS[i]− CTS[i+ 1] ≥ 2.

Corollary 4.3. Let S ∈ RSTabτ be such that CTS[i] − CTS[i + 1] 6= 0,±1. Then, Mα(S) and
Mα(Ssi) are $-equipolar.

Starting at S0, there is a sequence of steps that end up at S, where each step links S′ to S′si
with rowS′ [i] < rowS′ [i + 1] and colS′ [i] > colS′ [i + 1]. Thus, CTS′ [i] − CTS′ [i + 1] ≥ 2 and so,
Mα(S′) and Mα(S′si) are $-equipolar. By an inductive argument on inv(S′), we have the following
result.

Corollary 4.4. Let S ∈ Tabτ . Then, Mα(S0) and Mα(S) are $-equipolar and, equivalently,
Mα(S1) and Mα(S) are $-equipolar.

This means that while there exists some i such that CTS[i]− CTS[i+ 1] ≥ 2, we must apply
the step si. In this algorithm, the steps si are under control until no more steps are possible. In
the end, the resulting pair (α(S′),CTS′) satisfies that CTS′ [i] ≤ CTS′ [i + 1] + 1, for 1 ≤ i < N .
Therefore, now we have to understand what happens when CTS[i] ≤ CTS[i+ 1] + 1.

5 Critical pairs and the minimal set of configurations

According to the end of the previous section, we are concerned with tableaux with CTS[i+ 1] =
CTS[i] + 1, for which Corollary 4.3 do not apply. These tableaux are of the form Ssi where
S ∈ Tabτ and colS[i] = colS[i + 1]. The rest of the paper is dedicated to prove the following
result.

Theorem 5.1. Let τ as in Definition 3.1. For S ∈ Tabτ with colS[i] = colS[i+ 1] for some i, the
nonsymmetric Macdonald polynomials Mα(S) and Mα(Ssi) in N variables have no poles at $.

Our technique for proving the absence of a pole for a polynomial Mγ is to show that the
spectral vector ζγ is different from the spectral vector of each element of {β : α B β, `(β) ≤ N}.
We use the critical pair method to establish this.

Consider two compositions of N , α and β, such that for all i, ζα(i)−ζβ(i)|$ = 0. This means
that

qαitN−rα(i) − qβitN−rβ(i)
∣∣
$

= qαitN−rα(i)
(
1− qβi−αitrα(i)−rβ(i)

)∣∣
$

= 0.

Therefore, by applying Lemma 3.5, there exist integers pi such that βi − αi = mpi and rα(i)−
rβ(i) = npi, for all i. This motivates the following definition.

Definition 5.2. Let (m,n) ∈ N2 be a pair with n ≥ 2, and take N ′ ≥ N . We say that the pair
of compositions of N ′ (α, β) is an (m,n)-critical pair if α B β and there exists p ∈ ZN ′ such
that β = α+mp and rα − rβ = np.
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Remark. Trailing zeros can be adjoined to α and β without changing the criticality property.
In fact, if αi = 0 = βi, for i ≥ i0, then ra(i) = i = rβ(i) and pi = 0. In other words, the
definition is independent of N ′ as long as N ′ is sufficiently large. For fixed α and β, it is enough
to take N ′ ≥ max{`(α), `(β)}. For this paper, N ′ is implicit and large enough unless otherwise
is specified.

Critical pairs were introduced in [6] by one of the authors of this paper. We use the algorithm
included in [6] to produce the second element of the pair when we have the first element of the
pair as input. In [11], there is a known formula for the least common multiple of the denominators
of the coefficients of Mα which involves a certain hook product. However, it assumes that the
number of variables is at least |α|. Thus, we need a method of handling a restricted number of
variables which shows that there is no β such that `(β) ≤ `(α) and (α, β) is a critical pair.

The following is an easy consequence of the definition of critical pairs, Definition 5.2.

Lemma 5.3. Let (α, β) be a (m,n)-critical pair. If
(

1
m

)
α is a composition of N , then

(
1
m

)
β

is a composition of N ′, for some N ′ ≥ N . Moreover,
((

1
m

)
α,
(

1
m

)
β
)

is a (1, n)-critical pair.
Conversely, if (α′, β′) is a (1, n)-critical pair, then (mα′,mβ′) is a (m,n)-critical pair.

We present two other consequences of this definition.

Lemma 5.4. Let (α, β) be a (m,n)-critical pair. If there exist i and p such that αi = αi+u, for
1 ≤ u ≤ p, and βi = βi+p, then βi+u = βi, for 1 ≤ u ≤ p.

Proof. Consider the equation (rβ(i + p) − rα(i + p))m = n(αi − βi) and subtract from it
(rβ(i)−rα(i))m = n(αi−βi). Now, use that rα(i+p)−rα(i) = p to obtain that rβ(i+p)−rβ(i)
= p. Moreover, by the definition of the rank function (2.1), rβ(i + p) − rβ(i) = #{u : i < u ≤
i+ p, βu = βi}. Thus, i < u ≤ i+ p implies that βu = βi. �

Lemma 5.5. Let (α, β) be a (m,n)-critical pair with βi = 0 for some i > `(α). Then, βj = 0,
for all j > i.

Proof. From αi = βi = 0, it follows that rβ(i) = i. Now, by definition of the rank function (2.1),
rβ(i) = #{j : j ≤ i, βj ≥ 0}+ #{j : j > i, βj > 0}. Thus, #{j : j > i, βj > 0} = 0. �

The next result sets up a sufficient condition for having no poles, and that will be used to
prove Theorem 5.1.

Proposition 5.6. Let α be a composition. Suppose that there is no γ, with `(γ) ≤ N , such
that (α, γ) is an (m,n)-critical pair. Then, Mα has no poles at $. That is, the coefficients
Aα,β(q, t)|$, with α B β, are well-defined.

Proof. By the B-triangularity of the operators ξi, there are coefficients bα,β(q, t) such that

xα = bα,α(q, t)Mα +
∑
βCα

bα,β(q, t)Mβ,

where bα,α = qjtj
′

for some j, j′ ∈ Z. For each β C α with `(β) ≤ N , there is at least one
index i[β] such that qαi[β]tN−rα(i[β]) − qβi[β]tN−rβ(i[β]) 6= 0 at $, or else (α, β) is a (m,n)-critical
pair. Define the operator

Tα =
∏
βCα

ξi[β] − qβi[β]tN−rβ(i[β])

qαi[β]tN−rα(i[β]) − qβi[β]tN−rβ(i[β])
,

for which xαTα = bα,α(q, t)Mα. Each factor of Tα maps Mα to Mα and, for any β C α, Mβ is
annihilated by at least one factor. Moreover, by construction, the operator Tα has no poles at $
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and
∏
βCα

(
qαi[β]tN−rα(i[β])− qβi[β]tN−rβ(i[β])

)
Mα has (q, t)-polynomial coefficients. Note that none

of the terms in the prefactor vanish at $.

The formulation shows that Aα,β(q, t) is a polynomials in q and t divided by a prefactor that
does not vanish at $, and so it has no poles. �

The rest of the section is dedicated to providing a minimal list of S′ ∈ RSTabτ , so that Mα(Ssi)
is $-equipolar with Mα(S′). For that, we look at the possible end configurations, starting with Ssi
with S ∈ Tabτ and colS[i] = colS[i+ 1].

In Definition 3.1, we associate two partitions, τ and ν, to the quasistaircase partition λ. We
can define ν in terms of τ in a more general setting without τ being the isotype partition of
a quasistaircase partition. Given an arbitrary partition τ of N , we define a sequence ν by setting

ν0 = N and νj = N −
j∑
i=1

τi, for 1 ≤ j ≤ `(τ). This sequence is related to the inv-minimal RSYT

by S1[i, 1] = νi−1 and S1[i, τi] = νi + 1, for 1 ≤ i ≤ `(τ).

Definition 5.7. Let S ∈ RSTabτ . We say that S has the property V (j, k), for some specific j
and k, if by interchanging the entries S[j, k] and S[j + 1, k] we obtain a RSYT. We denote this
new RSYT by Ŝ when the values of j and k are clear from the context.

That is, except for the entries at (j, k) and (j + 1, k), S agrees with an RSYT. Note that
S[j, k] > S[j+1, k]. It is not necessarily true that performing a vertical interchange on an RSYT
leads to such an S, as we can see in the following example.

Example. Interchanging the entries with coordinates (1, 2) and (2, 2) in
5 2 1

6 4 3
produces

5 4 1

6 2 3
, which is not in RSTabτ .

We need one more definition, in this case, of a particular element among the subset of RSTabτ
satisfying the property V (j, k).

Definition 5.8. For 1 ≤ j < `(τ) and 1 ≤ k ≤ τj+1, there exists a distinguished element
Θj,k ∈ RSTabτ with the property V (j, k). We describe Θj,k by rows as follows. For i 6= j, j + 1,
the ith row of Θj,k agrees with the ith row of S1. For j and j+ 1, the corresponding rows of Θj,k

are filled with νj−1, νj−1 − 1, . . . , νj+1 + 1 in a particular way depending on the value of k. We
describe them in the following table in which the first row indicated the column index, the
second row indicates the entries in the (j+1)th row, and the third row the entries in the jth row.
In order to make the table more readable, we denote by dots · · · when we fill with consecutive
integers, and we leave empty spots where the entries are zeros.

In general, for 1 < k < τj+1,

1 · · · k − 1 k k + 1 · · · τj+1 τj

νj−1 − k + 1 · · · νj−1 − 2k + 3 νj−1 − 2k + 2 νj − k · · · νj+1 + 1
νj−1 · · · νj−1 − k + 2 νj−1 − 2k + 1 νj−1 − 2k · · · · · · νj − k + 1

We also have two special cases. For k = 1, we just read the table starting from the kth column.
For k = τj+1, in the (j + 1)th row, all the entries after the entry in the (τj+1)th are zero entries.

Remark. The elements Θj,k are extremal which means that we get to the stage when we cannot
apply more steps si, interchanging i and i+ 1, legally in the sense that rowS[i] < rowS[i+ 1] and
colS[i] > colS[i+ 1].
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Let us see an example.

Example. Consider the tableau S of shape τ =
(
43
)

and described below on the left. Then, we
can consider its extremal element for j = k = 2, Θ2,2, which has the property V (2, 2), and that
we include on the right.

S =

8 7 2 1

11 6 5 3

12 10 9 4

Θ2,2 =

7 6 2 1

8 5 4 3

12 11 10 9

Our first result claims that (i, i+ 1) can be interchanged in S preserving the property V (j, k)
provided that rowS[i] < rowS[i+1] and that at least one of the rows is not the jth or the (j+1)th

row.

Lemma 5.9. Let S be a reverse row-ordered standard tableau that has the property V (j, k) and
such that rowS[i] < rowS[i+ 1] and {rowS[i], rowS[i+ 1]} 6= {j, j + 1}. Then, S(i) = Ssi also has
the property V (j, k).

Proof. The argument has several cases, each more or less obvious. These cases can be briefly
described by rowS[i+ 1] < j; rowS[i] > j + 1; rowS[i] < j and rowS[i+ 1] ≥ j; or rowS[i] ≤ j + 1
and rowS[i+ 1] > j + 1.

We prove the case when S[j + 1, k] = i+ 1, and leave the other cases for the reader.
By hypothesis rowS[i] < j and Ŝ[j, k] = i + 1 > Ŝ[j + 1, k]. This implies that Ŝ[j + 1, k] < i

and Ssi[j + 1, k] = i > Ssi[j, k]. Also, colS[i] = colŜ[i] < colŜ[i + 1] = colS[i + 1]. Thus, S(i) has
the property V (j, k). �

Next, we consider the possible transformations of the rows of S with property V (j, k) other
than jth and (j + 1)th rows.

Proposition 5.10. Let S ∈ Tabτ be such that colS[u] = colS[u + 1] = k, for some u, and set
j = rowS[u+1]. Then, Ssu has the property V (j, k) and there is a series of steps as in Lemma 5.9
so that Ssu is transformed to S′, where S′ agrees with S1 except in the jth and (j + 1)th rows.

Proof. We proceed by rows, starting with the 1st row, unless j = 1. Suppose the process has
arrived at S′ with S′[a, b] = S1[a, b], for 1 ≤ a < a0 < j and 1 ≤ b ≤ τa, and for a = a0 and
b < b0 ≤ τa0 , with possibly b0 = 0. Then, v = S′[a0, b0] < S1[a0, b0] and the entry v + 1 in S′
must satisfy rowS′ [v + 1] > rowS′ [v] and colS′ [v + 1] < colS′ [v]. Applying Lemma 5.9, S′sv has
the property V (j, k). Continuing in this way leads to S′′ which agrees with S1 in rows with
index < j, and every entry in rows with index ≥ j is less than νj−1 + 1. Let z be the largest
entry in jth and (j + 1)th rows, which is an entry with row index > j + 1 in S1 and satisfies

z = max
((
{S′′[j, b]|1 ≤ b ≤ τj} ∪ {S′′[j + 1, b′]|1 ≤ b′ ≤ τj+1}

)
∩ [1, νj+1]

)
.

If the intersection is empty, then this part of the process is done. Otherwise rowS′′ [z+ 1] > j+ 1
and rowS′′ [z] ≤ j + 1. Applying once more Lemma 5.9, S′′sz has the property V (j, k) and the
maximum is increased by 1, one step closer to the upper limit νj+1 = S1[j + 2, 1].

If the entries in [νj+1 +1, νj−1] are in the jth and (j+1)th rows of S′′, then the process is done.
Otherwise, one of these values is replaced by νj+1. Let y be the replaced entry, i.e. y = S′′[a, b],
for some a > j + 1. If y = νj+1 + 1, then S′′sy−1 has νj+1 moved to a row with index > j + 1.
Otherwise, rowS′′ [y− 1] = j or j+ 1, and S′′sy−1 replaces y by y− 1 in a row with index > j+ 1
in S′′. Repeat this process until y = νj+1 + 1. �

This proof describes a process for the 1st row. We apply it now to all the rows after the
(j + 1)th row until these rows agree with the corresponding rows of S1. Once this is done, we
describe the values appearing in the jth and (j + 1)th rows.
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Proposition 5.11. Let S ∈ RSTabτ such that it has the property V (j, k) and each row of S
except the jth and (j + 1)th rows agrees with the corresponding rows of S1. Then,

S[j, k] = νj−1 + 1− 2k,

S[j + 1, k] = νj−1 + 2− 2k,⋃
1≤s<k

{S[j, s], S[j + 1, s]} = [νj−1 − 2k + 3, νj−1],

⋃
s>k

{S[j, s],S[j + 1, s]} = [νj+1 + 1, νj−1 − 2k].

Furthermore, if we consider the subtableaux of S given by {S[u, v] : j ≤ u ≤ j + 1, 1 ≤ v < k}
and {S[u, v] : j ≤ u ≤ j + 1, k < v ≤ τu}, we observe that their entries can be arranged to be in
row-by-row order, so that the property V (j, k) is preserved in each step and the resulting tableau
is Θj,k.

Proof. By hypothesis, the entries in the jth and (j + 1)th rows of S comprise the interval
[νj+1 + 1, νj−1]. Let m1 = S[j, k] and m2 = S[j + 1, k]. Then, m1 < m2 and by row-strictness,
S[j, b] > m2 and S[j + 1, b] > m2, for 1 ≤ b < k. Observe that by the property V (j, k),
Definition 5.7, the tableau with m1 and m2 interchanged is an RSYT.

Similarly, S[j, b] < m1 and S[j + 1, b] < m1, for b > k. Thus, the first 2k − 2 entries with
column index < k, are in the interval [m2 + 1, νj−1]. Since the entries of S are pairwise distinct,
it follows that 2k− 2 ≤ νj−1 −m2. Analogously, the τj + τj+1 − 2k entries of S in columns with
index > k are in the interval [νj+1 + 1,m1 − 1]. Thus,

τj + τj+1 − 2k ≤ m1 − νj+1 − 1 = m1 − (νj−1 − τj − τj+1 + 1).

These inequalities imply that νj−1 + 1− 2k ≤ m1 < m2 ≤ νj−1 + 2− 2k, and we conclude that
m1 = νj−1 + 1− 2k and m2 = νj−1 + 2− 2k.

This also shows that the first k−1 columns form an RSYT with entries νj−1 + 3−2k · · · νj−1

and can be transformed to row-by-row order. In the same way, the last τj − k columns form an
RSYT with entries νj+1 + 1 · · · νj−1 + 1− 2k. �

Example. Consider S = 10 8 7 6 3

12 11 9 5 4 2 1
, which has the property V (1, 4). Then, the

row-by-row rearrangement of type Θ1,4 is given by
9 8 7 6 1

12 11 10 5 4 3 2
.

6 Critical pairs for the quasistaircase partitions

This section includes a series of technical results that lead us to finish our study.

Let S ∈ RSTabτ with the property V (j, k), for some j and k. Applying Corollary 4.3 and
Propositions 5.10 and 5.11, Mα(S) and Mα(Θj,k) are $-equipolar. For Θj,k, α(Θj,k) is defined as
follows:

1) if i ≤ νj+1 or i > νj−1 (or equivalently, rowΘj,k [i] 6= j, j + 1), then α(Θj,k)i = λi,

2) if νj+1 + 1 ≤ i ≤ νj − k or νj−1 − 2k+ 2 ≤ i ≤ νj−1 − k+ 1, then α(Θj,k)i = m(d+ j − 1),

3) if νj − k + 1 ≤ i ≤ νj−1 − 2k + 1 or νj−1 − k + 2 ≤ i ≤ νj−1 then α(Θj,k)i = m(d+ j − 2)
for j > 1, and α(Θj,k)i = 0 for j = 1.
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Applying Lemma 5.3, we can assume that m = 1 in α(Θj,k), and we denote the resulting
composition by µ.

Let us see an example.

Example. Consider λ =
(
4, 4, 3, 3, 3, 2, 2, 2, 07

)
, the quasistaircase with n = 4, d = 2, m = 1.

Suppose we apply s9 to S0, then S0s9 has property V (2, 2). Then,

S0s9 =
12 8

13 10 5

14 9 6

15 11 7 4 3 2 1

Θ2,2 =
2 1

7 6 3

8 5 4

15 14 13 12 11 10 9

and µ = α(Θ2,2) =
(
4, 4, 3, 2, 2, 3, 3, 2, 07

)
. Observe that the location of the two out-of-order

entries, [2, 2] and [3, 2], stays the same. We will show that (α(Θ2,2), β) is the only (1, 4)-critical
pair where β =

(
4, 4, 3, 0, 0, 0, 0, 3, 19

)
. Note that `(β) = 17 = 15 + 2.

Now, we want to present an equivalent characterization of the critical pairs, for which we
need the following definition.

Definition 6.1. Given a composition α, we define the sequence Rα by setting Rα(i) = rα(i)
+ nαi, for 1 ≤ i ≤ `(α), and Rα(i) = i, for i > `(α).

We use this definition to give another characterization of the critical pairs.

Lemma 6.2. The pair (α, β) is a (1, n)-critical pair if and only if α B β and Rα(i) = Rβ(i),
for all i ≥ 1.

Our goal in this section is to analyze the (1, n)-critical pairs of the form (µ, β). For that,
consider a composition β such that µ D β and Rµ = Rβ. We refer to these two assumptions as
usual hypothesis. We assume them for β with respect to µ, but we occasionally replace µ by λ.

Once we analyze the (1, n)-critical pairs (µ, β), we show that there are no (1, n)-critical pairs
of the form (λ, β). This allows us to conclude that Mλ has no poles in $ for any number of
variables ≥ `(λ). Taking the idea from [4], our main tool is applying the maximum principle for
the cardinality of the sets {i : βi = c}, for all c ≥ 0.

The arguments in this section are complicated and involve case-by-case studies. That is why
this section is split into subsections as follows. In Section 6.1, we define the set B, to which we
will apply the maximum principle, together with some notation. We also include some useful
properties. In Section 6.2, we describe the consequences for λ of assuming that β satisfies the
usual hypothesis with respect to λ. The last two sections, Sections 6.3 and 6.4, study the
pair (µ, β) for j > 1 and j = 1, respectively. For that, we will do an analysis in terms of different
intervals, so we can estimate the size of the set B and the implications about the possible β.

6.1 The set B

For c ≥ 0, let Bc = {i : βi = c, 1 ≤ i ≤ N}. In order not to overload the notation, we
include c as a subindex of B only when is not clear from the context. Moreover, for intervals
[p1, p2] and [p3, p4], we say [p1, p2] � [p3, p4] if p2 < p3 − 1. In particular, this implies that
#[p1, p2] + #[p3, p4] < #[p1, p4].

For u 6= j, j+1, by Lemma 5.4, B∩Iu is either empty or an interval that we denote by [au, bu].
Define su = νu−1− bu and tu = νu−1− au. Therefore, for u 6= 1,K + 1, 0 ≤ su ≤ tu ≤ n− 2 and
tK+1 ≤ νK − 1 and t1 ≤ nd− 2. Moreover, #[au, bu] = #[su, tu].
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Proposition 6.3. Let u, u + p 6= j, j + 1 be such that B ∩ Iu+p and B ∩ Iu are nonempty and
B∩ Is = ∅, for u < s < u+p (void if p = 1). Then su+p− tu = p+ 1 and [su, tu]� [su+p, tu+p].

Proof. By definition, Rµ(bu+p) = bu+p + nµbu+p and Rµ(au) = au + nµau , and by hypothesis,
Rβ(au) = rβ(au)+nc = 1+rβ(bu+p)+nc = Rβ(bu+p)+1. Since Rµ = Rβ, Rµ(au)−Rµ(bu+p) = 1
and then, 1 = au − bu+p + n(µau − µbu+p). Thus,

(νu−1 − tu)− (νu+p−1 − su+p) = 1− n(µau − µbu+p).

If u > 1, then νu−1−νu+p−1 = p(n−1) and µau−µbu+p = (d+u−2)−(d+u+p−2) = −p which
implies su+p−tu = p+1. For u = 1, ν0−νp = nd−1+(p−1)(n−1) and µa1−µb1+p = −(d+p−1)
and again s1+p − t1 = p+ 1. Thus tu < su+p − 1 and [su, tu]� [su+p, tu+p]. �

We use Proposition 6.3 to estimate the size of B.

Corollary 6.4. If B ∩ (Ij ∪ Ij+1) = ∅ and B has a nonempty intersection with at least two
intervals Iu, with u 6= j, j+1, then #B ≤ n−2. If, additionally, B∩IK+1 6= ∅ then #B ≤ νK−1.

Proof. Suppose B ∩ Iui 6= ∅, for u1 > u2 > · · · > up, with p ≥ 2. By Proposition 6.3,

[sup , tup ]� · · · � [su2 , tu2 ]� [su1 , tu1 ], and so #B =
p∑
i=1

(tui−sui +1). Notice that the intervals

are contained in [0, tu1 ]. Furthermore, tu1 ≤ n−2, for u1 < K+1, or tu1 = νK−1, for u1 = K+1.
The case u1 = 1 is not possible because p ≥ 2. Note also that there is at least one gap, and
therefore, #B ≤ #[0, n− 2]− 1 = n− 2, for u1 > K + 1, and #B ≤ νK − 1, for u1 = K + 1. �

Remark. Proposition 6.3 and Corollary 6.4 apply to λ without the exclusion u, u+p 6= j, j+ 1.

6.2 Consequences of the usual hypothesis for λ

In this section we show that λ D β and Rλ = Rβ imply that β = λ.

Lemma 6.5. If Rλ = Rβ, then βν1+1 = 0.

Proof. On one hand, since `(λ) = ν1, Rλ(ν1 + 1) = ν1 + 1. On the other hand, by definition,
Rβ(ν1 + 1) = rβ(ν1 + 1) + nβν1+1. Setting βν1+1 = b, we obtain that

rβ(ν1 + 1) = ν1 + 1− nβν1+1

= ν1 + 1−#{i : 1 ≤ i ≤ ν1, βi < b}+ #{i : i > ν1 + 1, βi > b}

≥ ν1 + 1−
b−1∑
s=0

#{i : 1 ≤ i ≤ ν1, βi = s} ≥ ν1 + 1− b(n− 1).

By Corollary 6.4, #{i : 1 ≤ i ≤ ν1, βi = s} ≤ n − 1 because the bound i ≤ ν1 excludes I1 and
the other intervals satisfy #Iu ≤ n − 1. Thus, −nb = rβ(ν1 + 1) − ν1 − 1 ≥ −b(n − 1), and
therefore, b = 0. �

Remark. Note that by Lemma 5.5 this implies that βi = 0 for i > ν1.

Lemma 6.6. If λ D β and Rλ = Rβ, then β is a permutation of λ.

Proof. Since `(λ) = ν1 and λ D β, we have that `(β) ≥ ν1. However, by Lemma 6.5, we also
have that `(β) ≤ ν1. Therefore, we conclude that `(β) = ν1. Moreover, d ≤ βi ≤ d+K − 1, for
1 ≤ i ≤ ν1. For 2 ≤ i ≤ K + 1, let Di = {s : βs = d + i − 2} and mi = #Di − (νi−1 − νi). By

Corollary 6.4, mi ≤ 0. Also
K+1∑
i=2

mi = 0 and thus mi = 0, for all i, and β+ = λ. �
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We are ready to prove the following result.

Proposition 6.7. If λ D β, Rλ = Rβ and β+ = λ, then β = λ.

Proof. By definition, Rλ(νK) = νK + n(d + K − 1), and since Rλ = Rβ, we also have that
Rλ(νK) = rβ(νK) + nβνK . Suppose βνK = d + u − 2, with u < K + 1. Using that #{s : βs >
d+ u− 2} = #{s : β+

s > d+ u− 2} = νu, we obtain that

rβ(νK) = #{s : s ≤ νK , βs = d+ u− 2}+ #{s : βs > d+ u− 2}
= #{s : s ≤ νK , βs = d+ u− 2}+ νu ≤ νK + νu,

Putting all together, we get the inequality νK + n(d+K − 1)− n(d+ u− 2) ≤ νK + νu, which
contradicts the condition βνK < λνK . Therefore, βνK = d + K − 1 and rβ(νK) = νK . The
hypothesis λ D β implies that βi ≤ d+K − 1 and so, βi = d+K − 1, for 1 ≤ i ≤ νK .

Arguing inductively, suppose βi = λi, for i ∈
K+1⋃
s=u+1

Is. The possible nonzero values of β on Iu

are d + s − 2, for 2 ≤ s ≤ u. Consider Rβ(νu−1) = Rλ(νu−1) = νu−1 + n(d + u − 2). A similar
argument shows that βi = d+ u− 2, for i ∈ Iu, and therefore β = λ. �

6.3 The pairs (α(Θj,k), β): Case j > 1

In this case, we look at the set Ij ∪ Ij+1, with j > 1, by splitting it into four intervals. These
intervals, together with their key properties, are:

• E1 = [νj+1 +1, νj−k], with E1 = ∅, for k = τj+1. For i ∈ E1, µi = d+ j−1 and rµ(i) = i.
Moreover, #E1 = τj+1 − k.

• E2 = [νj − k + 1, νj−1 − 2k + 1]. For i ∈ E2, µi = d+ j − 2 and rµ(i) = i+ k. Moreover,
#E2 = n− k.

• E3 = [νj−1−2k+2, νj−1−k+1]. If i ∈ E3, µi = d+ j−1 and rµ(i) = i−n+k. Moreover,
#E3 = k.

• E4 = [νj−1− k+ 2, νj−1], with E4 = ∅, for k = 1. For i ∈ E4, µi = d+ j− 2 and rµ(i) = i.
Moreover, #E4 = k − 1.

Recall that our goal is to describe the possible compositions β such that Rµ = Rβ. We claim
that there is a unique such β and that is of the form:

βi =



µi + 1 for i ∈ Iu, with 1 < u < j,

d+ j − 1 for i ∈ E1 ∪ E4,

0 for i ∈ E2 ∪ E3,

µi for i ∈ Iu, with u > j + 1,

1 for ν1 < i ≤ N + j.

To prove that such β satisfies Rβ = Rµ it suffices to check a few cases:

• If i ≤ νj+1 or i ∈ E1, then λi = βi and rµ(i) = i = rβ(i). Note that if E2 = E3 is excluded,
then β is nonincreasing.

• If i > νj−1 or i ∈ E4, then rβ(i) = i − n. As a consequence, Rβ(i) = rβ(i) + nβi =
i− n+ n(µi + 1) = Rµ(i).

• If i = minE2, then Rβ(i) = N+j−n+1 and Rµ(i) = νj +1+n(d+j−2) = N+j−n+1.

• If i = maxE3, then Rβ(i) = N + j and Rµ(i) = νj + n(d+ j − 1) = N + j.
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The challenge is to prove the uniqueness of β.
Our first step is to extend the maximum principle to B ∩ (Ij ∪ Ij+1). For that, we describe

the analogues of the intervals [au, bu] and [su, tu] for B ∩ Ei, 1 ≤ i ≤ 4.

• B∩E1 = [aj+1, bj+1] and [sj+1, tj+1] = [νj−bj+1, νj−aj+1], with k ≤ sj+1 ≤ tj+1 ≤ τj+1−1.

• B ∩E2 = [a′j , b
′
j ] and [s′j , t

′
j ] = [νj−1 − k − b′j , νj−1 − k − aj ], with k − 1 ≤ s′j ≤ t′j ≤ n− 2.

• B ∩ E3 = [a′j+1, b
′
j+1] and [s′j+1, t

′
j+1] = [νj−1 − k + 1 − b′j+1, νj−1 − k + 1 − a′j+1], with

0 ≤ s′j+1 ≤ t′j+1 ≤ k − 1.

• B ∩ E4 = [aj , bj ] and [sj , tj ] = [νj−1 − bj , νj−1 − aj ], with 0 ≤ sj ≤ tj ≤ k − 2.

If B∩Ei is empty for some i, the corresponding interval is omitted. We introduce a shorthand
notation for the possible states of B ∩ Es: set b = (bi)

4
i=1 where bi = 1 if B ∩ Ei 6= ∅, bi = 0

if B ∩ Ei = ∅, and bi = ∗ if either is possible.
We list here the consequences of the rank equation Rβ = Rµ according to the possible values

of b.

• For b = (11 ∗ ∗), a′j = bj+1 + n − k + 1 and sj+1 = t′j + 2, so then [s′j , t
′
j ] � [sj+1, tj+1].

Note also that rµ(a′j) = a′j + k.

• For b = (∗ ∗ 11), aj = b′j+1 + k + 1 and s′j+1 = tj + 2, so then [sj , tj ]� [s′j+1, t
′
j+1]. Note

also that rµ(b′j+1) = b′j+1 − n+ k.

• For b = (101∗), a′j+1 = bj+1 + n − k + 1 and sj+1 = t′j+1 + 1. Moreover, [s′j+1, t
′
j+1] and

[sj+1, tj+1] are contiguous and #(B ∩ (E1 ∪ E3)) = #[s′j+1, tj+1]. Also bj+1 = νj − k and
a′j+1 = νj−1 − 2k + 2 since #E2 = n− k.

• For b = (∗101), aj = b′j + k + 1 and s′j = tj + 1. Then [sj , tj ] and [s′j , t
′
j ] are contiguous

and #(B ∩ (E2 ∪ E4)) = #[sj , t
′
j ]. Also b′j = νj−1 − 2k + 1 and aj = νj−1 − k + 2.

• For b = (∗11∗), a′j+1 = b′j + 1 and t′j+1 = s′j . Also a′j+1 = νj−1− 2k+ 2, b′j = νj−1− 2k+ 1
and s′j = k − 1. Thus, #(B ∩ (E2 ∪ E3)) = #[s′j+1, t

′
j ] + 1.

We give more detail on those cases with more non-empty intersection.

• For b = (∗111), s′j+1 = tj + 2 and [sj , tj ]� [s′j+1, t
′
j ]. Furthermore,

#B ∩ (E2 ∪ E3 ∪ E4) = (tj − sj + 1) + (t′j − s′j+1 + 2) = t′j − sj + 1 = #[sj , t
′
j ],

giving an upper bound of n− 1.

• For b = (111∗), sj+1 = t′j + 2 and [s′j+1, t
′
j ]� [sj+1, tj+1]. Moreover,

#B ∩ (E1 ∪ E2 ∪ E3) = (tj+1 − sj+1 + 1) + (t′j − s′j+1 + 2)

= tj+1 − s′j+1 + 1 = #[s′j+1, tj+1].

• For b = (1111), [sj , tj ]� [s′j+1, t
′
j ]� [sj+1, tj+1]. Furthermore,

#B ∩ (E1 ∪ E2 ∪ E3 ∪ E4) = (tj+1 − sj+1 + 1) + (t′j − s′j+1 + 2) + (tj − sj + 1)

= tj+1 − sj = #[sj , tj+1]− 1.

The next three results give us an estimate for the size of B, obtained by studying the cases
depending on its intersection with the intervals Ei. The bounds for #B are analyzed by argu-
ments depending on which of the intersections of B with E1, E2, E3, E4 are non-empty. Some
of the 16 possibilities can be combined for this purpose. Our first result cover the case when
B ∩ (E2 ∪E3) = ∅ and it can be obtained reproducing the proof for Proposition 6.3 and Corol-
lary 6.4. Note that the case B ⊂ E1 ∪ E4 implies the states (100∗) or (∗001) and is treated in
the following result.
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Corollary 6.8. If b = (100∗) or b = (∗001) and B ∩ Iu 6= ∅ for at least one value of u, then
#B ≤ n− 2. If, additionally, B ∩ IK+1 6= ∅, then #B ≤ νK − 1.

Observe that if b = (1001), then sj+1 = tj + 2 and [sj , tj ]� [sj+1, tj+1]. Moreover, the case
B ⊂ E1 ∪ E4 implies the states (100∗) or (∗001) and it is treated in Corollary 6.8.

Now, we look at the case in which B ∩ (E2 ∪ E3) 6= ∅, splitting it into two cases depending
on the intersection of B with the intervals Iu.

Proposition 6.9. If B ∩ (E2 ∪ E3) 6= ∅ and at least one B ∩ Iu 6= ∅, for some u 6= j, j + 1,
then #B ≤ n− 2.

Proof. First, we consider the case B ∩ Iu 6= ∅, with u > j + 1 such that B ∩ Is = ∅,
for j + 1 < s < u. We look at the possible configurations of b starting from the left. If
b = (1 ∗ ∗∗), by Proposition 6.3, su − tj+1 = u− j ≥ 2 and [sj+1, tj+1]� [su, tu]. Furthermore,
#B∩ (E1∪E2∪E3∪E4) = #[s′j+1, tj+1] or #[sj , tj+1]−1, depending on B∩E4. If b = (01∗∗),
then the rank equations show that su − t′j = 1 + u − j ≥ 3 and [s′j , t

′
j + 1] � [su, tu]. If

b = (∗11∗), then #(B ∩ (E2 ∪ E3)) = #[s′j+1, t
′
j ] + 1. Finally, if b = (001∗), then su ≥ t′j+1 + 2

and [s′j+1, t
′
j+1]� [su, tu].

Now, consider the other case, B ∩ Iu 6= ∅, with u < j such that B ∩ Is = ∅, for j > s > u.
Again, we look at the possible configurations of b starting now from the right. If b = (∗ ∗ ∗1),
then sj − tu = j − u + 1, even when u = 1, and [su, tu] � [sj , tj ]. If b = (∗ ∗ 10), then
s′j+1− tu = j−u+2 ≥ 3. Thus, [su, tu]� [s′j+1−1, t′j+1] and #(B∩ (E2∪E3)) = #[s′j+1−1, t′j ]
or #[s′j+1, t

′
j+1]. Finally if b = (∗100) then s′j − tu = j − u+ 1 ≥ 2 and [su, tu]� [s′j , t

′
j ].

In all cases, B has the same cardinality as a union of disjoint subintervals of [0, n − 2],
with gaps of at least one between adjacent subintervals. Thus, #B ≤ n − 2 and ≤ νK − 1, if
B ∩ IK+1 6= ∅. �

Now, we consider the case in which B ∩ (E2 ∪ E3) 6= ∅ but the intersection of B with the
intervals Iu is empty.

Proposition 6.10. We list here the exceptional cases, for which B ∩ Iu = ∅, for u 6= j, j + 1.

• For b = (0 ∗ ∗0), #B ≤ n with #B = n if and only if B = E2 ∪ E3.

• For b = (1110), #B ≤ n− 1.

• For b = (0111), #B ≤ n− 1.

Finally, if we are not in any case included in Corollary 6.8 or Propositions 6.9 and 6.10,
B ⊂ Iu for some u 6= j, j + 1 or B ⊂ Es, with 1 ≤ s ≤ 4.

Our next step is to analyze the implications of these results with respect to the possible
compositions β. First, we notice that since we are assuming j > 1, we know that for µ,
`(µ) = ν1 = N − (nd− 1), and so µi = 0, for i > ν1. Next lemma tells us this information for β.

Lemma 6.11. Either βi = 0 for all i ≥ ν1 + 1 or βi = 1 for ν1 + 1 ≤ i ≤ `(β). Moreover, in
the last case, rβ(ν1 + 1) = ν1 + 1− n and {i : 1 ≤ i ≤ ν1, βi = 0} = E2 ∪ E3.

Proof. Let b = βν1+1. By the rank equation, rβ(ν1 + 1) + nb = (ν1 + 1), since Rβ = Rµ and
µν1+1 = 0. Then, ν1 + 1− nb = rβ(ν1 + 1) ≥ 1. By definition,

rβ(ν1 + 1) = ν1 + 1−#{i : 1 ≤ i ≤ ν1, βi < b}+ #{i : i > ν1, βi > b}.

We already know that #{i : 1 ≤ i ≤ ν1, βi = c} ≤ n − 1, with one possible exception of n, in
which we have exactly E2 ∪E3, by Proposition 6.10. Since we are considering subsets of [1, ν1],
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then it is not possible to have #{i : 1 ≤ i ≤ ν1, βi = c} > n. Moreover, the interval [ν1 + 1, N ]
is excluded here, so values in [n+ 1, nd− 1] are excluded. Thus,

#{i : 1 ≤ i ≤ ν1, βi < b} =

b−1∑
c=0

#{i : βi = c, 1 ≤ i ≤ ν1}

≤ (n− 1)(b− 1) + n = b(n− 1) + 1.

Putting all together,

ν1 + 1− nb = rβ(ν1 + 1) ≥ ν1 + 1−#{i : 1 ≤ i ≤ ν1, βi < b} ≥ ν1 − b(n− 1).

That is nb − 1 ≤ b(n − 1), and so b ≤ 1. If b = 0, then rβ(ν1 + 1) = ν1 + 1 which implies
#{i : i > ν1, βi > 0} = 0 and βi = 0 for i > ν1. Otherwise, b = 1 and rβ(ν1 + 1) = ν1 + 1 − n.
According to the notation described in Section 6.1, let B0 = {i : 1 ≤ i ≤ ν1, βi = 0}. By the
results about the size of B presented in Section 6.1, #B0 ≤ n and #{i : i > ν1, βi > 1} = 0. We
conclude then that #B0 = n and B0 = E2 ∪ E3. Furthermore, ν1 + 1 ≤ i ≤ `(β) implies βi = 1
because the values βi > 1 and βi = 0 are excluded. �

In fact, we also know the length of β for the last case in Lemma 6.11 as we show in the
following proposition.

Proposition 6.12. If βν1+1 = 1, then `(β) = N + j.

Proof. By Lemma 6.11, i0 = min{i : βi = 0} = minE2 = νj − k + 1. Then rβ(i0) = 1 +
#{i : 1 ≤ i ≤ `(β), βi > 0} = `(β) + 1− n and the rank equation Rβ(i0) = Rµ(i0) implies that
n(d + j − 2) = rβ(i0) − rµ(i0) = `(β) + 1 − n − (i0 + k) = `(β) + 1 − n − νj − 1. Substitute
νj = N − (nd− 1)− (j − 1)(n− 1) in the last equation and obtain `(β) = N + j. �

We are ready to prove how is β in this last case.

Theorem 6.13. If Rβ = Rµ, µ B β, j > 1 and βν1+1 = 1, then

βi =


µi for i < minE2,

0 for minE2 ≤ i ≤ maxE3,

µi + 1 for maxE3 ≤ i ≤ N + j.

Notice that the description is given in terms of E2 and E3 to avoid awkwardness with E1 = ∅
or E4 = ∅, when k = τj+1 or 1, respectively.

Proof. By Lemma 6.11 and Proposition 6.12, βi = 1 for ν1 + 1 ≤ i ≤ N + j and, by hypothesis,
βi = 0 for i ≤ N + j if and only if i ∈ E2 ∪ E3. Thus, we consider the values of β on
J = [1,minE2 − 1] ∪ [maxE3 + 1, ν1]. First, we show that d + 1 ≤ βi ≤ d + K − 1, for i ∈ J .
Suppose i ∈ Iu, with Ij = E4 and Ij+1 = E1. Then, Rµ(i) = Rβ(i) = i+n(d+u−2). Moreover,
i ∈ J implies that rβ(i) ≤ ν1 − n and then, i+ n(d+ u− 2) ≤ ν1 − n+ nβi. This last inequality
translates into:

nβi ≥ i+ n(d+ u− 2) + n− ν1 = (i− νu) + νu − ν1 + n(d+ u− 1)

= (i− νu) + n(d+ u− 1)− (u− 1)(n− 1) = (i− νu) + nd+ u− 1.

Since i− νu ≥ 1, we have that βi ≥ d+ 1.
Let Ci = {s : βs = d + i − 2}, for i ≤ K + 1, and mi = n − 1 − #Ci for 3 ≤ i ≤ K and

mK+1 = νK − #CK+1. By the maximum principle and the fact that µ D β, it follows that
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mi ≥ 0, for all i. Note that the set E2 ∪ E3 is excluded here. There are two equations satisfied
by the mi’s:

K+1∑
i=3

#Ci = ν1 − n and
K+1∑
i=3

#Ci(d+ i− 2) = |β| − (j + nd− 1).

Simplifying the first equation, we get that
K+1∑
i=3

mi = 1, and simplifying the second equation,

which requires more computation, we get that
k+1∑
i=3

mi(d+ i− 2) = d+ j − 1.

The unique solution is mj+1 = 1 and mi = 0, for i 6= j+1, implying that #Ci = n−1. Thus,
Ci = Ig(i), for some g(i) 6= j, j + 1, and Cj+1 = E1 ∪ E4, since #Cj+1 = n − 2. The obvious
modifications are made here if νK < n − 1 or j = K. If i > j + 1, then rβ(νg(i)−1) = νi−1 and
rβ(νg(i)−1)−rµ(νg(i)−1) = n[(d+ i−2)−d+g(i)−2)]. Therefore, n(i−g(i)) = (νi−1−νg(i)−1) =
(n − 1)(g(i) − i) and i = g(i), thus βu = µu, for u ∈ Ig(i). If i < j, then rβ(νg(i)−1) = νi−1 − n
and rβ(νg(i)−1) − rµ(νg(i)−1) = n[(d + i − 2) − 1 − (d + g(i) − 2)]. Thus, g(i) = i − 1 and
βu = d+ g(i)− 1 = µu + 1, for u ∈ Ig(i). �

It remains to show the other case described in Lemma 6.11. The next results show that if
βν1+1 = 0, then β = µ. Let us start with a lemma.

Lemma 6.14. Let c and c′ be two different indexing parameters such that their corresponding
sets Bc = {i : βi = c} and Bc′ = {i : βi = c′} satisfy that Bc∪Bc′ = Ij ∪ Ij+1, with Bc′ ∩E2 6= ∅.
Then, Bc = E1 ∪E3 and Bc′ = E2 ∪E4, or Bc = E1 ∪E4 and Bc′ = E2 ∪E3. Moreover, in the
latter case, #Bc′ = n.

Proof. If #Bc ≤ n− 2, then #Bc′ ≥ n, which means that Bc′ = E2 ∪ E3.
The cases b = (1010) and (1110) allow #B = n − 1 and imply that E4 ⊂ Bc′ and that

b′ = (0111) and (0101), respectively.
The case (1000) is excluded because #E1 = τj+1 − k ≤ τj+1 − 1, as well as b′ = (0001)

because #E4 = k − 1 ≤ n − 2. Finally, b = (1110) and b′ = (0111) can not occur because the
state (∗11∗) implies t′j+1 = s′j and βνj−1−2k+1 = c = βνj−1−2k+2 = c′. �

We are ready to prove that β = µ, under the conditions established for this case.

Theorem 6.15. If Rβ = Rµ, µ D β, j > 1 and `(β) ≤ ν1, then β = µ.

Proof. Since µ D β, d ≤ βi ≤ d+K − 1 for 1 ≤ i ≤ ν1.

Let Ci = {s : βs = d+ i−2} and mi = #Ci− (νi−1−νi), for 2 ≤ i ≤ K+1. Then
K+1∑
i=2

mi = 0

and
K+1∑
i=2

mi(d + i − 2) = 0. We also have that mK+1 ≤ 0 because µ D β. For 2 ≤ i ≤ K, by

the study about the size of B presented in Section 6.1, we know that νi−1 − νi = n − 1, and
this implies that mi ≤ 1 and that at most one value of i allows mi = 1. Now, this is impossible
because the sums would imply there exists u such that mu = −1 and (d+ i−2)−(d+u−2) = 0.

The previous argument shows that the level sets of β are permutations of the level sets of µ.
That is, Ci = Ig(i) for some g(i) 6= j, j + 1. Since β is a permutation of µ, rβ(νg(i)−1) = νi−1

and the rank equation gives rβ(νg(i)−1) − rµ(νg(i)−1) = n[(d + i − 2) − (d + g(i) − 2)] and
n(i− g(i)) = (νi−1 − νg(i)−1) = (n− 1)(g(i)− i). We conclude then that i = g(i).

As a consequence, #Cj = n−1 = #Cj+1, or #Cj+1 = νK if j = K, and Cj∪Cj+1 = Ij∪Ij+1.
If i ∈ Cj ∩ (E2∪E4) or i ∈ Cj+1∩ (E1∪E3), then rβ(i) = rµ(i). Therefore, i = minBj = minE2

or else rβ(i) − rµ(i) = νj + 1 − i = n and i = νj+1 /∈ E1 when i ∈ E1, or rβ(i) − rµ(i) =
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νj + 1 − (i − n + k) = n, i ∈ E3 and i = νj + 1 − k ∈ E2. Thus Cj ∩ E2 6= ∅ and we apply
Lemma 6.14 taking Bc′ = Cj and Bc = Cj+1 to conclude that Cj = E2∪E4 and Cj+1 = E1∪E3.
The case Cj = E2 ∪ E3 is impossible since #(E2 ∪ E3) = n. Thus β = µ. �

We finish the case j > 1 with the following theorem.

Theorem 6.16. For j > 1, if (µ, β) is an (1, n)-critical pair, then `(β) = N + j.

6.4 The pairs (α(Θj,k), β): Case j = 1

In this case, µ has length `(µ) = N−k+1, with k ≤ n−1. It turns out that β in the critical pair
(µ, β) is a permutation of λ = µ+, and differs from µ only in the arrangement of the values d
and 0. Moreover, `(β) = N + 1.

The relevant subdivision of I1 ∪ I2 and its properties are:

• E1 = [ν2 + 1, ν1 − k] and E1 = ∅ if k = τ2. For i ∈ E1, µi = d and rµ(i) = i. Moreover,
#E1 = τ2 − k.

• E2 = [ν1−k+1, N−2k+1]. For i ∈ E2, µi = 0 and rµ(i) = i+k. Moreover, #E2 = nd−k.

• E3 = [N − 2k + 2, N − k + 1]. For i ∈ E3, µi = d and rµ(i) = i − nd + k. Moreover,
#E3 = k.

• E4 = [N − k + 2, N ] and E4 = ∅ if k = 1. For i ∈ E4, µi = 0 and rµ(i) = i. Moreover,
#E4 = k − 1.

Furthermore, the intervals [au, bu] for B ∩ (I1 ∪ I2) are of the form:

• B ∩ E1 = [a2, b2] and [s2, t2] = [ν1 − b2, ν1 − a2], with k ≤ s2 ≤ t2 ≤ τ2 − 1.

• B ∩ E2 = [a′1, b
′
1] and [s′1, t

′
1] = [N − k − b′1, N − k − a′1], with k − 1 ≤ s′1 ≤ t′1 ≤ nd− 2.

• B ∩E3 = [a′2, b
′
2] and [s′2, t

′
2] = [N − k + 1− b′2, N − k + 1− a′2], with 0 ≤ s′2 ≤ t′2 ≤ k − 1.

• B ∩ E4 = [a1, b1] and [s1, t1] = [N − b1, N − a1], with 0 ≤ s1 ≤ t1 ≤ k − 2.

Using the same shorthand notation, the analysis of the sequence b depends on the intersection
of B with the Iu intervals. Since the arguments for j > 1 apply here when E2 is not involved,
we summarize the results that we can extend from the case j > 1.

First, suppose B ∩ Iu 6= ∅ and B ∩ Is = ∅ for 2 < s < u. This implies that τ2 = n− 1. The
following result resumes part of the information we know about b.

Proposition 6.17. Suppose B ∩ Iu 6= ∅ and B ∩ Is = ∅ for 2 < s < u.

• If b = (1 ∗ ∗∗), then su − t2 = u− 1 > 1 and [s2, t2]� [su, tu].

• If b = (01 ∗ ∗), then su − t′1 = u > 2 and [s′1, t
′
1 + 1]� [su, tu].

• If b = (001∗), then su − t′2 = u− 1 > 1 and [s′2, t
′
2]� [su, tu].

• If b = (0001), then su − t1 = u > 2 and [s1, t1]� [su, tu].

There a few more configurations for which we know more details.

Proposition 6.18.

• For b = (11 ∗ ∗), s2 = t′1 + 2 and [s′1, t
′
1]� [s2, t2].

• For b = (∗11∗), t′2 = s′1 and #B ∩ (E2 ∪E3) = #[s′2, t
′
1] + 1. Notice that this implies also

that a′2 = b′1 + 1 = N − 2k + 2, so this configuration is possible for only one value of c.

• For b = (∗ ∗ 11), s′2 = t1 + 2 and [s1, t1]� [s′2, t
′
2].
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• For b = (101∗), a′2− b2 = nd− k+ 1 = #E2 + 1. Then, b2 = ν1− k, a′2 = N − 2k+ 2 and
s2 = t′2 + 1. Therefore, #(B ∩ (E1 ∪ E3)) = #[s′2, t2].

• For b = (∗101), a1 − b′1 = k + 1 = #E3 + 1, thus b′1 = N − 2k + 1, a1 = N − 2k + 2 and
s′1 = t1 + 1. Therefore, #(B ∩ (E2 ∪ E4)) = #[s1, t

′
1].

• For b = (1001), s2 = t1 + 2, [s1, t1]� [s2, t2].

From these relations it follows that if B ∩ Iu 6= ∅ and that B ∩ (I1 ∪ I2) = [s̃, t̃] 6= ∅, with
[s̃, t̃]� [su, tu]. Then, we have the following result.

Corollary 6.19. Suppose B ∩ Iu 6= ∅ and B ∩ Is = ∅ for 2 < s < u. Then, for j = 1,
#B ≤ n− 2 and #B ≤ νK − 1, if B ∩ IK+1 6= ∅.

Now, suppose B ∩ Iu = ∅, for all u > 2. The following bounds are combinations of the
relations among the intervals stated in Proposition 6.18.

Proposition 6.20.

• For b = (∗0 ∗ 0), B ⊂ E1 ∪ E3 and #B ≤ n− 1.

• For b = (1110), #B ≤ n− 1.

• For b = (1111), #B ≤ n− 2.

• For b = (100∗) and (∗001), #B ≤ n − 2 since #B ≤ #[s1, t1] + #[s2, t2] with 0 ≤ s1 ≤
t1 ≤ k − 2 and k ≤ s2 ≤ t2 ≤ n− 2.

• For b = (0 ∗ 0∗), B ⊂ E2 ∪ E4 and #B ≤ dn− 1.

• For b = (0111), #B ≤ dn− 1.

• For b = (0110), #B ≤ dn.

Lemma 6.21. Set i0 = minE2 = ν1 − k + 1. If i < i0, then βi 6= βi0.

Proof. Consider B = {i : 1 ≤ i ≤ N, βi = βi0}. By definition and the fact that a′1 = i0, it
follows that t′1 = nd − 2. If B ∩ E1 6= ∅, then b = (11 ∗ ∗) and the inequality [s′2, t

′
2] � [s1, t1]

holds. However, this implies that s1 ≤ n− 2, which is contrary to s1 ≥ t′2 + 2. If B ∩ Iu 6= ∅ for
some u > 2, then [s′1, t

′
1 + 1]� [su, tu] because su ≤ n− 2. �

The goal of the remaining discussion is to show that either β = µ or `(β) = N + 1 and β is
the unique solution of Rβ = Rµ and µ . β.

Proposition 6.22. Consider i0 = minE2 = ν1 − k + 1. Then, βi0 = 0 and `(β) ≤ N + 1.

Proof. Recalling that Rβ = Rµ and noticing that µi0 = 0, we have that Rβ(i0) = ν1 + 1. Let
b = βi0 . Thus rβ(i0) = ν1 + 1− nb. First we show b ≤ 1. Consider Bs = {i : 1 ≤ i ≤ N, βi = s},
for s ≥ 0. By Lemma 6.21,

ν1 + 1− nb = rβ(i0) = 1 + #{i : 1 ≤ i ≤ N, βi > b}+ #{i : i > N, βi > b}

≥ N + 1−
b∑

s=0

#Bs ≥ N + 1− nd− b(n− 1) = ν1 − b(n− 1).

The cardinalities in the formula for rβ(i0) are computed by changing to the set-theoretic com-
plement; then b of the numbers #Bs satisfy #Bs ≤ n− 1 and by Proposition 6.20, at most one
satisfies #Bs ≤ dn. Thus 0 ≤ b ≤ 1. The only possibility for #Bs = nd is s = b. If this bound
is not achieved then #Bs = nd− 1 or n− 1 where the bound nd− 1 is possible only once, and
the inequality becomes rβ(i0) ≥ ν1 + 1− b(n− 1), implying that b = 0.
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Suppose b = 1, then B1 = E2 ∪ E3 and βi 6= 1 for i ∈ Ẽ = [1,minE2 − 1] ∪ [maxE3 + 1, N ].
Thus B0 ⊂ Ẽ. Set m>1 = #{i > N : βi > 1}. Then,

ν1 + 1− n = rβ(i0) = 1 + #
{
i ∈ Ẽ : βi > 1

}
+m>1 = 1 + Ẽ −#B0 +m>1, (6.1)

and #B0 = N − nd+ n− ν1 +m>1 = n− 1 +m>1.
The equation (6.1) is only possible if m0 = n − 1 and m>1 = 0. Therefore, βN+1 ≤ 1 and

B0 = Iu, for some u > 2. This implies that βi > 0, for νu−1 < i ≤ N , and βi > 0 also for
N < i ≤ `(β). Thus, rβ(νu−1) = `(β), Rβ(νu−1) = `(β) = Rµ(νu−1) = νu−1 + n(d + u − 2) =
N + u − 1, and `(β) = N + u − 1 > N . However, but βN+1 = 0 else Rµ(N + 1) = N + 1 and,
since #{i ≤ N + 1: βi ≥ 1} = (N + 1) − (n − 1), Rβ(N + 1) = N + 2 − n + nβN+1 = N + 2.
Then, `(β) ≤ N and we get to a contradiction.

This proves that b = 0. Thus rβ(i0) = ν1 + 1 and #{i : βi > 0} = ν1. Consider m>N =
#{i : i > N, βi > 0}. Then, ν1 + 1 = N + 1−#B0 +m>N ≥ N + 1− nd+m>N = ν1 +m>N ,
which means m>N ≤ 1. If m>N = 0, then `(β) ≤ N and #B0 = nd− 1, otherwise `(β) = N + 1
and #B0 = nd. �

This is rather a complicated argument but it is a key step in the development of our study.

Corollary 6.23. For i ≥ minE2, βi = 0. If i < minE2, the #{i : βi > 0} = ν1 and d ≤ βi ≤
d+K − 1.

Proof. The bounds d ≤ βi ≤ d+K− 1 for the nonzero values follow from #{i : βi > 0} = ν1 =
#{i : µi > 0} and µ D β. Finally, by Lemma 6.21, βi > 0, for i < minE2. �

Our next result is a first step in the direction of Theorems 6.13 and 6.15.

Proposition 6.24. If j = 1, µ D β and Rµ = Rβ, then β+ = λ = µ+.

Proof. From Corollary 6.23, d ≤ βi ≤ d + K − 1 or βi = 0. Let Ci = {s : βs = d + i − 2} and
mi = #Ci − (νi−1 − νi), for 2 ≤ i ≤ K + 1. It is possible that N + 1 ∈ Ci for some i only if

{i : 1 ≤ i ≤ N, βi = 0} = E2 ∪ E3 and #Cu ≤ n− 1 for u 6= qi. The equations
K+1∑
i=2

mi = 0 and

K+1∑
i=2

mi(d + i− 2) = 0, together with the bound mK+1 ≤ 0 (since µ D β), implies that mi ≤ 0.

The value mi = 1 is impossible because the sums would imply there exists u such that mu = −1
and (d+ i− 2)− (d+ u− 2) = 0. Therefore, the bound n− 1 applies to all the sets Cu. From
Proposition 6.22, {i : i ≤ N, βi = 0} = E2 ∪ E3 or E2 ∪ E4. Thus #Ci = n− 1, for 2 ≤ i ≤ K,
and #CK+1 = νK . Equivalently β+ = λ. �

Proposition 6.25. If u > 2, then βi = µi for i ∈ Iu.

Proof. We proceed as in the proof of Proposition 6.7.
Consider Rµ(νK) = νK + n(d + K − 1) = rβ(νK) + nβνK . Suppose βνK = d + u − 2 and

u < K + 1. Notice that the value βνK = 0 can not occur by Corollary 6.23. Since β+ = λ,
#{s : βs > d+ u− 2} = νu. Then, by definition,

rβ(νK) = #{s : s ≤ νK , βs = d+ u− 2}+ #{s : βs > d+ u− 2}
= #{s : s ≤ νK , βs = d+ u− 2}+ νu ≤ νK + νu,

and thus νK + n(d+K − 1)− n(d+ u− 2) ≤ νK + νu, which simplifies to n+K − u ≤ νK and
implies K − u ≤ νK − n ≤ −1.

The bound u ≥ K + 1 contradicts that βνK < µνK . Therefore, βνK = d + K − 1 and
rβ(νK) = νK . The hypothesis µ D β implies βi ≤ d + K − 1 and so, βi = d + K − 1 for
1 ≤ i ≤ νK .
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Arguing inductively, suppose βi = µi for i ∈
K+1⋃
s=u+1

Is. The possible nonzero values of β on Iu

are d + s − 2 for 2 ≤ s ≤ u. Consider Rβ(νu−1) = Rµ(νu−1) = νu−1 + n(d + u − 2). A similar
argument shows βi = d+ u− 2, for i ∈ Iu. �

It remains to consider the set {i : βi = d}.

Lemma 6.26. Consider Bd = {i : i ≤ N, βi = d} and B0 = {i : i ≤ N, βi = 0} such that
Bd ∪B0 = I1 ∪ I2. Then, Bd = E1 ∪E3 and B0 = E2 ∪E4, or Bd = E1 ∪E4 and B0 = E2 ∪E3.

Proof. If #Bd ≤ n − 2, then #B0 ≥ dn implying B0 = E2 ∪ E3. Let b be the configuration
for Bd and b′ be the configuration for B0.

The cases b = (1010) and (1110) allow #Bd = n− 1 and imply E4 ⊂ B0 and b′ = (0111) or
(0101).

The case (1000) is excluded because #E1 = τ2 − k ≤ τ2 − 1, as well as the case (0001),
because #E4 = k − 1 ≤ n − 2. Finally, b = (1110) and b′ = (0111) can not occur because the
state (∗11∗) implies t′2 = s′1 and βN−2k+1 = d = βN−2k+2 = 0. �

We are ready to prove the analogous result to Theorems 6.13 and 6.15 for j = 1.

Theorem 6.27. If j = 1, µ D β and Rµ = Rβ then either β = µ or `(β) = N + 1 and β is
unique.

Proof. By Lemma 6.26, if {i : i ≤ N, βi = d} = E1 ∪ E3 and {i : i ≤ N, βi = 0} = E2 ∪ E4,
then β = µ. Otherwise {i : βi = d} = E1 ∪ E4 ∪ {N + 1}, which has cardinality n − 1, and
{i : i ≤ N, βi = 0} = E2 ∪ E3, with cardinality nd. �

We finish this section illustrating our results with an example.

Example. Consider the parameters j = 1, K = 2, n = 4, d = 3, and N = 17, for which
µ =

(
4, 4, 4, 3, 010, 3, 3, 0

)
and β =

(
4, 4, 4, 3, 012, 3, 3

)
, with `(β) = 18.

7 Concluding remarks

We have shown that if S ∈ Tabτ with colS[i] = colS[i + 1] = k and rowS[i + 1] = j, then
the polynomials Mα(Ssi) and Mα(Θj,k) are $-equipolar for S ∈ Tabτ and Mα(Ssi) has no pole
at $ in N variables. Hence, the polynomials Mα(S), for S ∈ Tabτ specialized to $ satisfy the
equations Mα(S)ξi = Mα(S)φi for all i, and are singular.

The result on critical pairs provides a new proof for singular nonsymmetric Jack polynomials
with the restriction gcd(m,n) = 1; then the quasistaircase polynomials are singular for κ = −m

n
(see [4]). Considering the known singular nonsymmetric Jack polynomials theory we suspect that
there are no singular Macdonald polynomials other than the quasistaircase types constructed in
this paper. This may be quite harder to prove, if true.

We also want to point out that there is a different behavior for partitions with only two parts,
in the sense that there may be more than one quasistaircase for a given τ and (m,n). That is,
consider the case K = 1, for which necessarily j = 1. Then, τ = (N − τ2, τ2) with τ2 ≤ N/2,
and λ =

(
mτ2 , 0N−τ2

)
, with n = N − τ2 + 1. We want to figure out the values of ω for which

$ =
(
ωu−n, um

)
provides singular polynomials. Let g = gcd(m,n) and d be a factor of g.

To produce a quasistaircase, set n = dn1,m = dm1 subject to τ2 ≤ n1−1. That is, nd ≥ τ2+1,

or d ≤ n
τ2+1 . Then, let ω = exp

(
2πki
m

)
with gcd(g, k) = d. As a result (q, t) =

(
ωu−n, um

)
satisfies

qm/dtn/d = 1. This formula is based on replacing m, n, and g by m
d , n

d , and g
d , respectively, and

setting k = k′d, with gcd
(
k′, gd

)
= 1.

We wrap up the paper with a last example illustrating all the study done here.
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Example. Let λ =
(
303, 011

)
, for which N = 14, n = 12, and τ2 = 3. Then, gcd(30, 12) = 6

and d is a factor of 6 such that d ≤ 12

4
= 3. Thus, ω = exp

(
2πki
30

)
, with gcd(k, 6) = 1, 2,

or 3, resulting in the singular values q30t12 = 1, q15t6 = 1, and q10t4 = 1. In terms of $ the
implication is that $ =

(
ωu−2, u5

)
where

1) ω2 − ω + 1 = 0 (primitive 6th root of unity) and q30t12 = 1;

2) ω2 + ω + 1 = 0 (primitive 3rd root of unity) and q15t6 = 1;

3) ω + 1 = 0 (primitive square root of unity) and q10t4 = 1.

Note that the fact that ω = 1 is specifically excluded is a manifestation of the result that the
nonsymmetric Jack polynomial with label

(
303, 011

)
is not singular for κ = −30/12 = −5/2, and

so it may have poles. The known results in [4] assert that for every pair (m,n) with 2 ≤ n ≤ 14

and m = 1, 2, 3, . . . such that
m

n
/∈ Z there is a nonsymmetric Jack polynomial singular for

κ = −m
n . In our case, for the pair (30, 12) the corresponding label is

(
40, 35, 30, 011

)
. That is,(

303, 011
)

is not a valid label for singular Jack polynomials.
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