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1 Introduction

The non-Abelian Hodge theory, which is mainly based on the work of Corlette [16] and Donald-
son [21] on harmonic maps (flat bundles), and the work of Hitchin [34] and Simpson [56] on Higgs
bundles, gives a correspondence between semisimple flat bundles over a compact Kähler mani-
fold X and polystable Higgs bundles over the same manifold with vanishing Chern classes. This
correspondence can be generalized to a statement concerning λ-flat bundles, a topic introduced
by Deligne [17] and further developed by Simpson [61, 62, 63]. More precisely, for arbitrary
λ1, λ2 ∈ C, Mochizuki [45] established a correspondence between the categories of polystable λ1-
flat bundles with vanishing Chern classes and polystable λ2-flat bundles with vanishing Chern
classes. In particular, when λ1 = 1 and λ2 = 0, this correspondence recovers the original non-
Abelian Hodge correspondence. Therefore, in our setting, especially in this paper, non-Abelian
Hodge theory means a correspondence between flat bundles, Higgs bundles and λ-flat bundles.
All these objects are connected by the existence of pluri-harmonic metrics (see Section 2.1),
which produce a new object: harmonic bundle.

All the work mentioned above arise from the study of a classical problem in the non-Higgs
setting: a correspondence between the existence of certain special metrics on a vector bundle and
the stability of that bundle.1 This correspondence builds a bridge between algebraic geometric
side of stability and differential geometric side of existence of pluri-harmonic metrics. The study
of this kind of problem can be dated back to Narasimhan and Seshadri’s work on the stability
of vector bundles [51]. Their theorem states that a vector bundle over a compact Riemann
surface is stable if and only if it arises from an irreducible projectively unitary representation of
the fundamental group of that Riemann surface. The Narasimhan–Seshadri theorem was latter
reproved by Donaldson with a differential geometric method [19], which relates the stability
of vector bundles and the existence of certain special metrics. This celebrating idea was later
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1We usually call this correspondence the Kobayashi–Hitchin correspondence.
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generalized to higher-dimensional compact Kähler manifolds by Donaldson [20], Uhlenbeck and
Yau [64].

There is a natural filed arising from non-Abelian Hodge theory, the study of the corresponding
moduli spaces of these objects. From Simpson’s work on the construction of the moduli spaces
[59, 60, 61], we have the following four moduli spaces:

• Betti moduli space MB(X, r): the moduli space of rank r representations π1(X)→GL(r,C);

• de Rham moduli space MdR(X, r): the moduli space of rank r flat bundles over X;

• Dolbeault moduli space MDol(X, r): the moduli space of semistable rank r Higgs bundles
over X with vanishing Chern classes;

• Hodge moduli space MHod(X, r): the moduli space of semistable rank r λ-flat bundles
over X with vanishing Chern classes.

The study of these moduli spaces arising from non-Abelian Hodge theory shows that they
are also related. More precisely, the Riemann–Hilbert correspondence implies that MB(X, r)
and MdR(X, r) are analytic isomorphic. Moreover, the Hodge moduli space MHod(X, r) has
a fibration over C such that the fibers over 0 and 1 are exactly MDol(X, r) and MdR(X, r),
respectively. The underlying topological spaces of MDol(X, r) and MdR(X, r) are homeomorphic,
and are C∞ isomorphic over the stable points.

This paper is a survey aimed on the introduction of non-Abelian Hodge theory and some re-
lated topics, especially some recent developments on the study of the moduli spaces MdR(X, r),
MDol(X, r) and MHod(X, r). Meanwhile, some open problems will be introduced, these conjec-
tures are very interesting and important on the deep study of moduli spaces. The non-Abelian
Hodge theory first came to the world in 1980s, and obtained a vast development over past
decades. Many branches of mathematics are shown to be related to this theory, and this theory
also sheds light on the study of other topics. During the development of this theory, there are
many good references written on the introduction of this theory from different points of view,
for example, [2, 3, 11, 14, 18, 29, 41, 54]. There are also many important applications of this
theory, for example, this theory is shown to be a powerful tool on the study of higher Teichmüller
theory [27, 65]. Recently, in [24] the authors applied the non-Abelian Hodge theory to study the
theory of vector valued modular forms and showed a conjecture on three-termed inequality. For
the application of this theory on the study of MB(X, r) (here X is a compact Riemann surface),
a recent survey paper by Migliorini [43] introduces a kind of compactification of MB(X, r) by
dual boundary complex. The geometric P = W conjecture arises from this compactification,
which is a geometric analogue of the cohomological P = W conjecture on the identification
between the perverse filtration on the cohomology of MDol(X, r), and the weight filtration on
the cohomology of MB(X, r).

This survey is organized as follows. In the following section, we first give a brief introduction
to non-Abelian Hodge theory by introducing four objects: Higgs bundles, flat bundles, λ-flat
bundles, and harmonic bundles. This is based on the work of Corlette [16], Donaldson [21],
Hitchin [34], Simpson [56] and Mochizuki [45]. Then we introduce a recent development of this
theory, that is the systematic work by Mochizuki on the Kobayashi–Hitchin type correspondence
between periodic monopoles and difference modules [47, 48, 49]. The next three sections can
be treated as various applications of non-Abelian Hodge theory, we will fix on compact Rie-
mann surfaces. In the third section, we introduce the conformal limit conjecture proposed by
Gaiotto [26], which identifies two objects in the corresponding moduli spaces. More precisely, it
relates the Hitchin section in MDol, and the space of opers in MdR. This conjecture was recently
confirmed by the authors of [22], and with some generalization by the authors of [15]. The fourth
section is aimed on the study of moduli spaces by generalizing the natural C∗-action on MDol
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to the C∗-action on MHod. This is based on Simpson’s work [63], which gives the Bia lynicki-
Birula stratification of MHod(X, r) into locally closed subsets. In particular, it gives the oper
stratification of MdR(X, r), and recovers the Bia lynicki-Birula stratification of MDol(X, r). The
Hitchin sections and opers introduced in the third section, appears as a special stratum of the
stratifications of MDol and MdR, respectively. Some interesting conjectures on moduli spaces
proposed by Simpson [63] are introduced in this section. Moreover, we give an explicit de-
scription between the Harder–Narasimhan filtration and the Simpson filtration for rank 3 flat
bundles. The last section is aimed on the study of twistor spaces. We first introduce the
Hitchin’s twistor construction for general hyper-Kähler manifolds, which applies in particular to
the moduli spaces with hyper-Kähelr structure. Then we introduce Deligne’s interpretation of
Hitchin twistor space in terms of flat λ-connections, which produces a new twistor space which
is analytic isomorphic to the old one. But Deligne’s construction is from a different viewpoint,
that is, by gluing the moduli space MHod(X, r) over X and the moduli space MHod(X̄, r) over
the conjugate X̄. Finally, we introduce our recent work [37] on a new interpretation of the
Deligne–Hitchin twistor space. It can be treated as a generalization of Deligne’s construction
for the case of compact Riemann surfaces. We define de Rham sections for this twistor space,
and show they have weight 1 property, which implies the twistor space contains ample rational
curves. As an application, we obtain a Torelli-type theorem for this twistor space.

2 Non-Abelian Hodge theory

2.1 Higgs bundles, flat bundles and λ-flat bundles

Let (X,ω) be a compact Kähler manifold, where ω is the Kähler form. We have three different
ways to define a harmonic bundle: from Higgs bundles, from flat bundles, and from λ-flat
bundles. The non-Abelian Hodge theory tells us in fact they are equivalent, that is, the non-
Abelian Hodge theory gives a correspondence between these objects.

To begin this theory, we first give the following notations for reader’s convenience:

• C∞(X,C): the space of smooth complex valued functions on X;

• E: a complex vector bundle over X;

• T ∗CX: complexified cotangent bundle, it has a decomposition

T ∗CX = (T ∗X)1,0
⊕

(T ∗X)0,1;

• Ωp,q
X : the exterior algebra bundle of (p, q)-type, that is,

Ωp,q
X =

∧p (
(T ∗X)1,0

)⊗∧q (
(T ∗X)0,1

)
;

• Ak(X,E): the space of smooth complex k-forms on X with values in E, that is,

Ak(X,E) = C∞(X,E
⊗∧k

(T ∗CX));

• Ap,q(X,E): the space of smooth (p, q)-forms on X with values on E, that is,

Ap,q(X,E) = C∞
(
X,E

⊗
Ωp,q
X

)
.

Then we have the decomposition

Ak(X,E) =
⊕
p+q=k

Ap,q(X,E).
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2.1.1 Higgs bundles and harmonic bundles

A holomorphic structure on E is a C-linear operator ∂̄E : A0(X,E)→ A0,1(X,E) such that

(1) ∂̄E(fs) = ∂̄(f)s+ f∂̄E(s) for any f ∈ C∞(X,C) and s ∈ A0(X,E),

(2) (∂̄E)2 = 0;

where the second condition is obtained under the natural extension ∂̄E : Ap,q(X,E) →
Ap,q+1(X,E) for any integers p, q ≥ 0. Such a pair

(
E, ∂̄E

)
is called a holomorphic vector bun-

dle, sometimes we use a single E to denote a holomorphic vector bundle. By Koszul–Malgrange
theorem, this is equivalent to the usual definition of a holomorphic vector bundle by holomorphic
transition functions.

Definition 2.1. A Higgs bundle over X is a holomorphic vector bundle
(
E, ∂̄E

)
together with

a map θ : E → E⊗Ω1
X which is holomorphic and integrable, i.e., ∂̄E(θ) = 0 and θ∧ θ = 0. Such

a map θ is called a Higgs field and the triple (E, ∂̄E , θ) denotes a Higgs bundle.

Definition 2.2. A Higgs bundle (E, ∂̄E , θ) is called stable (resp. semistable) if for any proper
coherent subsheaf F of 0 < rk(F ) < rk(E) and θ(F ) ⊆ θ ⊗ Ω1

X such that E/F is torsion-free,
we have

µ(F ) < (resp. ≤) µ(E),

where µ(E) := deg(E)
rk(E) denotes the slope of E, and deg(E) :=

∫
X c1(E) · [ω]n−1 is the degree of E.

It is called polystable if it is the direct sum of stable Higgs bundles of the same slope as µ(E).

Given a Hermitian metric h on the Higgs bundle
(
E, ∂̄E , θ

)
, then h and ∂̄E uniquely deter-

mine an (1, 0)-type operator ∂E,h such that ∇h := ∂E,h + ∂̄E is a unitary connection. Here
a connection ∇ on a vector bundle E is an operator ∇ : A0(X,E) → A1(X,E) that satisfies
the Leibniz rule ∇(fs) = df ⊗ s + f∇(s) for any f ∈ C∞(X,C) and s ∈ A0(X,E). A con-
nection ∇ is said to be unitary with respect to the metric h if it preserves this metric, i.e., if
dh(u, v) = h(∇(u), v) + h(u,∇(v)) for any u, v ∈ A0(X,E). This unique unitary connection is
called the Chern connection, and its curvature Fh := ∇h ◦ ∇h is called the Chern curvature.
A connection ∇ on E is said to be flat if its curvature F∇ := ∇ ◦ ∇ vanishes under the natural
extension ∇ : Ak(X,E)→ Ak+1(X,E) for any integer k ≥ 0.

With h, the Higgs field θ determines an adjoint operator θ†h ∈ A
0,1(X,End(E)) by

h(θ(u), v) = h
(
u, θ†h(v)

)
for any u, v ∈ A0(X,E). The new obtained connection D1 := ∂E,h+ ∂̄E + θ+ θ†h is usually called
a Hitchin–Simpson connection, and its curvature F(∂̄E ,θ,h) := D1 ◦ D1 is called a Hitchin–Simpson
curvature.

Definition 2.3. h is called a pluri-harmonic metric on the Higgs bundle
(
E, ∂̄E , θ

)
if the

Hitchin–Simpson connection D1 := ∂E,h + ∂̄E + θ + θ†h is flat, that is, if
(
E,D1

)
is a flat bun-

dle. A Higgs bundle with a pluri-harmonic metric is called a harmonic bundle, and denoted as(
E, ∂̄E , θ, h

)
.

2.1.2 Flat bundles and harmonic bundles

A flat bundle over X is a pair (E,∇) that consists of a complex vector bundle E and a flat
connection ∇.
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Definition 2.4. A flat bundle (E,∇) is called irreducible if it has no non-zero proper flat
subbundle, and it is called semisimple if it is a direct sum of irreducible flat bundles.

Let (E,∇) be a flat bundle over X with a Hermitian metric h, then h induces a unique
decomposition of ∇:

∇ = ∇h + Φh

such that:

• ∇h is a unitary connection;

• Φh ∈ A1(X,End(E)) is a self-adjoint operator.

To see the decomposition, we first decompose ∇ into its (1, 0) and (0, 1) parts: ∇ = ∇1,0 +∇0,1.
Then define a unique (0, 1)-type operator δ′′E,h such that ∇1,0 + δ′′E,h preserves h and a unique

(1, 0)-type operator δ′E,h such that ∇0,1 + δ′E,h preserves h. Finally, let

∂E,h =
1

2

(
∇1,0 + δ′E,h

)
, ∂̄E,h =

1

2

(
∇0,1 + δ′′E,h

)
,

θE,h =
1

2

(
∇1,0 − δ′E,h

)
, θ†V,h =

1

2

(
∇0,1 − δ′′E,h

)
,

then ∇h := ∂E,h + ∂̄E,h and Φh := θE,h + θ†E,h is the desired decomposition.

Definition 2.5. h is called a pluri-harmonic metric on the flat bundle (E,∇) if(
∂̄E,h + θE,h

)2
= 0,

that is, if
(
E, ∂̄E,h, θE,h

)
is a Higgs bundle. A flat bundle with a pluri-harmonic metric is called

a harmonic bundle, and denoted as (E,∇, h).

2.1.3 λ-flat bundles and harmonic bundles

For λ ∈ C, the notion of flat λ-connection as the interpolation of usual flat connection and Higgs
field was suggested by Deligne [17], illustrated by Simpson in [61] and further studied in [62, 63].

Let E =
(
E, ∂̄E

)
be a holomorphic vector bundle over X. The following definitions of λ-flat

bundles mainly come from [61] and [45] (see also [37]).

Definition 2.6.

(1) A holomorphic λ-connection on E is a C-linear map Dλ : E → E ⊗ Ω1
X that satisfies the

following λ-twisted Leibniz rule:

Dλ(fs) = fDλs+ λs⊗ df,

where f and s are holomorphic sections of OX and E, respectively. If
(
Dλ + ∂̄E

)
◦(

Dλ+ ∂̄E
)

= 0 under the natural extension Dλ : E ⊗Ωp
X → E⊗Ωp+1

X for any integer p ≥ 0,
then we call Dλ a (holomorphic) flat λ-connection, and

(
E , Dλ

)
a (holomorphic) λ-flat

bundle.

(2) A C∞ λ-connection on E is a C-linear map Dλ : A0(X,E) → A1(X,E) that satisfies the
following λ-twisted Leibniz rule:

Dλ(fs) = fDλs+ λs⊗ ∂f + s⊗ ∂̄f,

where f ∈ C∞(X,C) and s ∈ A0(X,E). If Dλ ◦ Dλ = 0 under the natural extension
Dλ : Ap(X,E) → Ap+1(X,E) for any integer p ≥ 0, then we call Dλ a (C∞) flat λ-
connection, and

(
E,Dλ

)
a (C∞) λ-flat bundle.
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Clearly, λ = 1 and 0 correspond to the usual flat connection and Higgs field, respectively. If
we work on a compact Riemann surface, then every λ-connection is automatically flat. Giving
a holomorphic flat λ-connection Dλ on E is equivalent to giving a C∞ flat λ-connection Dλ
on E. From now on, we will denote a λ-flat bundle as

(
E, ∂̄E , D

λ
)

in holomorphic category and(
E,Dλ

)
in C∞ category.

Definition 2.7. A λ-flat bundle
(
E,Dλ

)
over X is called stable (resp. semistable) if for any

λ-flat subbundle
(
V,Dλ|V

)
of 0 < rk(V ) < rk(E), we have the following inequality

µ(V ) < (resp. ≤) µ(E),

where µ(E) is the slope of the bundle E as in Definition 2.2. It is polystable if it decomposes as
a direct sum of stable λ-flat bundles with the same slope.

Let
(
E,Dλ

)
be a λ-flat bundle, and h be a Hermitian metric on E. Then h induces a unique

decomposition of Dλ:

Dλ = λ∂h + θh + ∂̄h + λθ†h

such that ∇h := ∂h + ∂̄h is a unitary connection and Φh := θh + θ†h ∈ A
1(X,End(E)) is a self-

adjoint operator.
In fact, when λ = 0, this is the trivial decomposition into different types which defines a Higgs

bundle structure, that is, D0 = ∂̄E +θ for ∂̄E defines a holomorphic structure on E and θ defines
a Higgs filed. When λ 6= 0, we decompose Dλ into its (1, 0)-part d′E and (0, 1)-part d′′E that
defines a holomorphic structure on E. From h and d′E , we have a (0,1)-operator δ′′h determined
by the condition

λ∂h(u, v) = h(d′Eu, v) + h(u, δ′′hv).

Similarly, h and d′′E provides a (1, 0)-operator δ′h via the condition

∂̄h(u, v) = h(d′′Eu, v) + h(u, δ′hv).

One easily checks that

δ′h(fs) = fδ′h(s) + ∂(f)⊗ s,
δ′′h(fs) = fδ′′h(s) + λ̄∂̄(f)⊗ v

for any f ∈ C∞(X,C) and s ∈ A0(X,E). We introduce the following four operators

∂h :=
1

1 + |λ|2
(
λ̄d′E + δ′h

)
, ∂̄h :=

1

1 + |λ|2
(
d′′E + λδ′′h

)
,

θh :=
1

1 + |λ|2
(
d′E − λδ′h

)
, θ†h :=

1

1 + |λ|2
(
λ̄d′′E − δ′′h

)
.

They satisfy that

d′E = λ∂h + θh, d′′E = ∂̄h + λθ†h,

δ′h = ∂h − λ̄θh, δ′′h = λ̄∂̄h − θ†h.

By direct calculation, ∂h and ∂̄h obey the usual Leibniz rule, so Dh = ∂h + ∂̄h is a usual
connection. Moreover, Dh is a unitary connection with respect to h. By definition, θh ∈
C∞

(
X,End(E) ⊗ Ω1,0

X

)
, θ†h ∈ C

∞(X,End(E) ⊗ Ω0,1
X

)
, and θ†h is the adjoint of θh in the sense

that h(θh(u), v) = h
(
u, θ†h(v)

)
.

Definition 2.8. h is called a pluri-harmonic metric on the λ-flat bundle
(
E,Dλ

)
if (∂̄h+θh)2 = 0,

that is, if
(
E, ∂̄h, θh

)
is a Higgs bundle. A λ-flat bundle with a pluri-harmonic metric is called

a harmonic bundle, and denoted as
(
E,Dλ, h

)
.
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2.1.4 Non-Abelian Hodge correspondence

The non-Abelian Hodge theory, arises from the existence of pluri-harmonic metric for the objects
we introduced above. This is based on the work of Donaldson [21] and Corlette [16] on harmonic
maps (flat bundles), Hitchin [34] and Simpson [56] on Higgs bundles, and Mochizuki [45] on λ-flat
bundles.

Theorem 2.9. Let (X,ω) be a compact Kähler manifold. Then

(1) (Donaldson [21], Corlette [16]) A flat bundle (E,∇) over X admits a pluri-harmonic metric
if and only if it is semisimple;

(2) (Hitchin [34], Simpson [56]) A Higgs bundle
(
E, ∂̄E , θ

)
over X admits a pluri-harmonic

metric if and only if it is polystable with vanishing Chern classes;

(3) (Mochizuki [45]) A λ-flat bundle
(
E,Dλ

)
(λ 6= 0) over X admits a pluri-harmonic metric

if and only if it is polystable with vanishing Chern classes.

Moreover, in all above cases, the pluri-harmonic metric is unique up to scalar multiplicities.

We give a brief description of above theorem here. By the work of Corlette and Donaldson, for
any given flat bundle (E,∇) of rank r, let ρ : π1(X)→ GL(r,C) be the associated monodromy
representation. If (E,∇) is semisimple, then there is a unique map hρ : X̃ → GL(r,C)/O(r)
which is ρ-equivariant and harmonic (i.e., hρ achieves the minimum of the energy functional
E(hρ) :=

∫
X |dhρ|

2dvol). We call such harmonic map a harmonic metric. Then by a theorem
of Siu and Sampson on harmonic maps, over any compact Kähler manifold, each harmonic
map is pluri-harmonic, i.e., D0,1

(
(dfρ)

0,1
)

= 0, where D is the descend of the pull back of the
canonical Levi-Civita connection on the tangent bundle of the symmetric space GL(r,C)/O(r)
by hρ. Therefore, it induces a Higgs bundle structure. On the other hand, by the work of
Hitchin and Simpson, for any given Higgs bundle

(
E, ∂̄E , θ

)
of rank r. If it is polystable, then it

admits a Hermitian–Einstein metric h, i.e., the Hitchin–Simpson curvature F(∂̄E ,θ,h) satisfies the
Hermitian–Yang–Mills equation ΛωF(∂̄E ,θ,h) = αId for some constant α. Moreover, if such Higgs
bundle has vanishing first and second Chern characters, then a Bogomolov–Gieseker inequality
will imply F(∂̄E ,θ,h) = 0. Therefore, it induces a flat bundle structure. This ideas were general-
ized by Mochizuki to study the case of λ-flat bundles [45], where he considered this object over
higher-dimensional smooth complex projective varieties with a simple normal crossing divisor.
In [45], he built the Kobayashi–Hitchin correspondence between polystable parabolic λ-flat bun-
dles with vanishing first and second parabolic Chern characters and tame harmonic bundles.
Mochizuki’s method relies on a ε-perturbation technique developed by himself on the study of
higher-dimensional Kobayashi–Hitchin correspondence between polystable parabolic Higgs bun-
dles with vanishing first and second parabolic Chern characters and tame harmonic bundles [44].

Therefore, we obtain an equivalence between the categories of these objects:

Corollary 2.10 (non-Abelian Hodge correspondence). Let (X,ω) be a compact Kähler manifold.
Then for each λ ∈ C, we have one to one correspondence between the equivalence classes of
polystable λ-flat bundles with vanishing Chern classes, the equivalence classes of polystable Higgs
bundles with vanishing Chern classes, and the equivalence classes of semisimple flat bundles,
through harmonic bundles.

Remark 2.11.

(1) The correspondence between harmonic λ-flat bundles and harmonic Higgs bundles is given
as follows:(

E,Dλ, h
)
7−→

(
E, ∂̄h, θh, h

)
,(

E, ∂̄E , θ, h
)
7−→

(
E, ∂̄E + λθ†h, λ∂E,h + θ, h

)
,
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and the correspondence between harmonic λ-bundles and harmonic flat bundles is given
as follows:(

E,Dλ, h
)
7−→

(
E, ∂h + ∂̄h + θh + θ†h, h

)
,

(E,∇, h) 7−→
(
E, ∂̄E,h + λθ†E,h, λ∂E,h + θE,h, h

)
.

(2) A natural direction of the study of non-Abelian Hodge correspondence is the generalization
to non-compact case. In regular case (tame case), Simpson established the correspondence
between tame harmonic bundles and parabolic Higgs bundles for open curves [57]. The
higher-dimensional generalization is obtained by Biquard [6] for smooth divisor case and by
Mochizuki [44, 45] for general case. In irregular case (wild case), Biquard and Boalch built
the correspondence for curves [7]. Later Mochizuki generalized it to higher-dimensional
case [46]. Recently, the authors in [32] built the correspondence to the context of projective
varieties with Kawamata log terminal (brief as klt) singularities.

(3) Another natural generalization is considering the corresponding case for real Lie groups.
In [10, 28], the authors considered the principal G-Higgs bundles for real Lie group G.
They studied the Kobayashi–Hitchin correspondence for principal G-Higgs bundles, and
therefore, they built the non-Abelian Hodge correspondence for such objects.

(4) The non-Abelian Hodge theory for varieties over a field of characteristic p was built by
Ogus and Vologodsky in [52]. The p-adic version was suggested by Faltings in [23] and
finished by Abbes, Gros and Tsuji in [1].

Denote by MdR(X, r) the coarse moduli space of completely reducible flat bundles of rank r,
and by MDol(X, r) the coarse moduli space of semistable Higgs bundles of rank r with vanishing
Chern classes. Then by the non-Abelian Hodge correspondence, we can obtain a map between
moduli spaces:

NAH: MDol(X, r) −→MdR(X, r),[
E, ∂̄E , θ

]
7−→

[
E, ∂̄E + θ†h , ∂E,h + θ

]
,

where h is the unique pluri-harmonic metric of
[
E, ∂̄E , θ

]
. We call such map the non-Abelian

Hodge map, it will be used in the next two sections.

2.2 Periodic monopoles and difference modules

The Kobayashi–Hitchin correspondence, which relates the stability of bundles (i.e., Higgs bun-
dles, flat bundles, λ-flat bundles) and the existence of certain special metrics (i.e., Hermitian–
Einstein metrics, pluri-harmonic metrics), plays an important role on non-Abelian Hodge theory.
Theorem 2.9 is obtained under various work of Kobayashi–Hitchin correspondence.

Recently, Mochizuki built the Kobayashi–Hitchin type correspondence between periodic mo-
nopoles and difference modules [47, 48, 49], as the non-Abelian Hodge theory for monopoles
with periodicity. Here we give a brief introduction following these papers.

Let Γ ⊂ R3 be a lattice, with the quotient space M := R3/Γ, which is equipped with
a metric gM induced from the Euclidean metric of R3. Let Z ⊂M be a finite subset, let (E, h)
be a Hermitian vector bundle over M\Z with a unitary connection ∇ and an anti-self-adjoint
endomorphism φ, which is called a Higgs filed.

Definition 2.12. The quadruple (E, h,∇, φ) is called a monopole on M\Z if it satisfies the
Bogomolny equation:

F (∇)− ∗∇φ = 0,
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where F (∇) = ∇ ◦ ∇ is the curvature of ∇ and ∗ is the Hodge star operator with respect to gM.
Moreover, it is called a periodic monopole (resp. doubly periodic monopole, resp. triply periodic
monopole) if Γ ∼= Z (resp. Γ ∼= Z2, resp. Γ ∼= Z3).

2.2.1 Periodic monopoles of GCK type and parabolic difference modules

In [47], Mochizuki studied and built the Kobayashi–Hitchin type correspondence between irre-
ducible periodic monopoles with GCK type singularity and stable parabolic difference modules
of degree 0. In this case, M\Z =

(
T 1 × R2

)
\Z =

(
T 1 × C

)
\Z.

Definition 2.13. A periodic monopole (E, h,∇, φ) on M\Z is called of GCK (generalized
Cherkis–Kapustin) type if it satisfies the following two conditions:

(1) each point of P ∈ Z is of Dirac type singularity of the monopole, this is equivalent to say,
|φ|Q|h = O

(
d(P,Q)−1

)
for any Q close to P [50];

(2) |φ|h = O(log |z|) and |F (∇)| → 0 as |z| → ∞, where z is the coordinate of C.

Let λ ∈ C, called a twistor parameter, let Φ∗ ∈ Aut(C[y]) determined by Φ∗(f(y)) = f(y+λ).

Definition 2.14. A difference module on C (or called λ-difference module) is a C[y]-module V
with a complex linear automorphism Φ∗ such that Φ∗(fs) = Φ∗(f) ·Φ∗(s) for any f ∈ C[y] and
s ∈ V. It is torsion-free if it is torsion-free as a C[y]-module. It is of finite type if it is finitely
generated over the algebra Aλ =

⊕
n∈ZC[y](Φ∗)n and dimC[y] V⊗C(y) <∞, where Aλ has the

product determined by Φ∗ · f(y) = f(y + λ) · Φ∗.

Now let V be a torsion-free λ-difference module of finite type.

Definition 2.15. A parabolic structure at finite place of V consists of the followings:

(1) A free sub C[y]-module V ⊂ V such that Aλ · V = V and V ⊗C[y] C(y) = V ⊗C[y] C(y);

(2) A function m : C→ Z≥0 with
∑
x∈C

m(x) <∞, we assume V ⊗C[y] C[y]D = (Φ∗)−1(V )⊗C[y]

C[y]D for D := {x ∈ C |m(x) > 0}, where C[y]D denotes the localization of C[y] with
respect to y − x (x ∈ D);

(3) For each x ∈ C, there is a sequence of real numbers αx := {0 ≤ αx,1 < · · · < αx,m(x) < 1},
when m(x) = 0, it is assumed to be empty;

(4) For each x ∈ C, there is a sequence of lattices Lx :=
{
Lx,0 = V ⊗C[y] C[[y − x]], Lx,i ⊂

V ⊗C[y] C((y − x))(1 ≤ i ≤ m(x)− 1), Lx,m(x) = (Φ∗)−1(V )⊗C[y] C[[y − x]]
}

.

We use the quadruple (V,m, {αx,Lx}x∈C) to denote it.

Let V be a torsion-free λ-difference module of finite type and let V̂ := V ⊗C[y] C
((
y−1
))

be
its formal completion at ∞.

Definition 2.16. A parabolic structure at ∞ of V is a filtered bundle F∗V̂ =
(
FaV̂ | a ∈ R

)
over V̂ such that:

(1) For each a ∈ R, FaV̂ is a sub C
[[
y−1
]]

-module of V̂ with FaV̂ ⊗C[y] C
((
y−1
))

= V̂;

(2) FaV̂ ⊂ FbV̂ if a ≤ b;
(3) Fa+nV̂ = ynFaV̂ for any a ∈ R and n ∈ Z;

(4) For any a ∈ R, there exists ε > 0 such that FaV̂ = Fa+εV̂.
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F∗V̂ is called good if we have a decomposition

F∗
(
V̂ ⊗ C

((
y−1/p

)))
=

⊕
c∈p−1Z

⊕
d∈C∗

⊕
e∈S(p)

F∗V̂c,d,e

such that
(
c−1y−cΦ∗ − (1 + e)Id

)
FaV̂c,d,e ⊂ y−1FaV̂c,d,e for any a ∈ R, here p ∈ Z>0 and

S(p) :=
{ p−1∑
i=1

eiy
−i/p | ei ∈ C

}
. A parabolic λ-difference module is a torsion-free λ-difference

module of finite type with a parabolic structure at finite place and a good parabolic structure
at ∞. We denote it as the following:(

V, (V,m, {αx,Lx}x∈C),F∗V̂
)
.

For simplicity, we will just use (V, •) to denote such an object.

Definition 2.17. The degree of a parabolic λ-difference module (V, •) is given by

deg(V, •) := deg(F0V)−
∑

−1<a≤0

adimC GrF
a

(
V̂
)
−
∑
c∈Q

c

2
r(c)

+
∑
x∈C

∑
i

(1− αx,i) deg(Lx,i, Lx,i−1),

where F0V is the OP1-modules associated to the free C[y]-module V , GrF
a

(
V̂
)

:= FaV̂/F<aV̂,

r(c) :=
∑
d∈C∗

∑
e∈S(p)

dimC((y−1/p)) V̂c,d,e and if m(x) > 0, then for 1 ≤ i ≤ m(x),

deg(Lx,i, Lx,i) := dimC(Lx,i/(Lx,i ∩ Lx,i−1))− dimC(Lx,i−1/(Lx,i ∩ Lx,i−1)).

The slope is given by

µ(V, •) := deg(V, •)/ rkC[y](V ).

For any C(y)-subspace Ṽ′ ⊂ Ṽ := V ⊗ C(y) that is Φ∗-invariant, i.e., φ∗
(
Ṽ′
)
⊂ Ṽ′, set

V ′ = Ṽ′ ∩ V and V′ = A · V ′, then there is an induced structure on V′:

L′x,i := Lx,i ∩ V ′, V̂′ := V′ ⊗C[y] C
((
y−1
))
, FaV̂

′ := FaV̂ ∩ V̂′.

This structure is a parabolic structure at finite place and a good parabolic structure at ∞, we
denote the sub parabolic λ-difference module as

(
V′,m, {αx,L′x}x∈C,F∗V̂′

)
, for simplicity, we

denote it as (V′, •).

Definition 2.18. A parabolic λ-difference module
(
V, (V,m, {αx,Lx}x∈C),F∗V̂

)
is called stable

(resp. semistable) if for any non-zero proper C(y)-subspace Ṽ′ that is Φ∗-invariant, we have
µ(V′, •) < (resp. ≤) µ(V, •).

In [47], Mochizuki built the following Kobayashi–Hitchin type correspondence between pe-
riodic monopoles and λ-difference modules, as the analogue of the correspondence between
harmonic bundles and (poly-)stable λ-flat bundles:

Theorem 2.19 ([47]). For each λ ∈ C, there is an one to one correspondence between irreducible
periodic monopoles of GCK type and stable parabolic λ-difference modules of degree 0.
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2.2.2 Meromorphic doubly periodic monopoles and parabolic q-difference modules

As we have defined, when Γ ∼= Z2,M = R3/Γ = T 2×R and Z ⊂M a finite subset, a monopole
(E, h,∇, φ) onM\Z is called a doubly periodic monopole. In [48], Mochizuki studied and built
the Kobayashi–Hitchin type correspondence between irreducible meromorphic doubly periodic
monopoles and stable q-difference modules of degree 0.

Definition 2.20. A doubly periodic monopole (E, h,∇, φ) on M\Z is called meromorphic if
each point of Z is of Dirac type singularity and if the curvature F (∇) is bounded with respect
to h and gM when |t| → ∞, where t is the coordinate for R.

Let q ∈ C∗, called a twistor parameter, let Φ ∈ Aut
(
C
[
y, y−1

])
determined by Φ(f(y)) =

f(qy).

Definition 2.21. A difference module on C∗ (or called q-difference module) is a C
[
y, y−1

]
-

module V with a complex linear automorphism Φ∗ such that Φ∗(fs) = Φ∗(f) · Φ∗(s) for any
f ∈ C

[
y, y−1

]
and s ∈ V. It is torsion-free if it is torsion-free as a C

[
y, y−1

]
-module.

Let Aq :=
⊕

n∈ZC
[
y, y−1

]
(Φ∗)n be an algebra determined by Φ∗ · f(y) = f(qy) · Φ∗, and let

V be a torsion-free q-difference module.

Definition 2.22. A parabolic structure at finite place of V consists of the followings:

(1) A free sub C
[
y, y−1

]
-module V ⊂ V such that Aq · V = V and V ⊗C[y,y−1] C(y) =

V ⊗C[y,y−1] C(y);

(2) A finite subset D ⊂ C∗ such that V (∗D) = (Φ∗)−1(V )(∗D), where V (∗D) := V ⊗C[y,y−1]

C[y, y−1](∗D);

(3) For each x ∈ D, there is a sequence of real numbers αx := {0 ≤ αx,1 < · · · < αx,m(x) < 1},
when m(x) = 0, it is assumed to be empty;

(4) For each x ∈ D, there is a sequence of lattices Lx :=
{
Lx,0 = V ⊗C[y,y−1] C[[y − x]], Lx,i ⊂

V ⊗C[y,y−1] C((y − x))(1 ≤ i ≤ m(x)− 1), Lx,m(x) = (Φ∗)−1(V )⊗C[y,y−1] C[[y − x]]
}

.

We denote it as the quadruple (V,D, {αx,Lx}x∈D).

Definition 2.23. A good parabolic structure at ∞ of V is the pair
(
F∗V|0̂,F∗V|∞̂

)
, where

F∗V|0̂ is a good filtered bundle over V|0̂ := V ⊗ C((y)) and F∗V|∞̂ is a good filtered bundle

over V|∞̂ := V ⊗ C
((
y−1
))

. A parabolic q-difference module is a q-difference module V with
a parabolic structure at finite place and a good parabolic structure at ∞, we denote it as(
V, (V,D{αx,Lx}x∈D),F∗V|0̂,F∗V|∞̂

)
, for simplicity, we denote it as (V, •).

The degree and slope of a parabolic q-difference module (V, •) are given by

deg(V, •) := deg(F0V) +
∑
x∈D

m(x)∑
i=1

(1− αx,i) deg(Lx,i, Lx,i−1)

−
∑
c∈Q

c

2

((
dimC((y))(V|0̂)c

)
+ dimC((y−1))((V|∞̂)c)

)
,

and µ(V, •) := deg(V,•)
rkC[y,y−1](V ) , respectively, where each

(
V|0̂
)
c

is a term associated to the slope

decomposition V|0̂ =
⊕
c∈Q

(
V|0̂
)
c

that is Φ∗-invariant and for each c = l/k ∈ Q, there exists

C[[y]]-lattice Lc ⊂ (V|0̂)c with yl(Φ∗)kLc = Lc. It is called stable (resp. semistable) if for any

non-zero proper q-difference C(y)-subspace Ṽ′ of Ṽ := V ⊗ C(y) with the naturally induced
parabolic structure, we have µ(V′, •) < (resp. ≤) µ(V, •).
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In [48], Mochizuki built the following Kobayashi–Hitchin type correspondence between doubly
periodic monopoles and q-difference modules:

Theorem 2.24 ([48]). For each q ∈ C∗, there is an one to one correspondence between ir-
reducible meromorphic doubly periodic monopoles and stable parabolic q-difference modules of
degree 0.

2.2.3 Meromorphic triply periodic monopoles and parbolic difference modules
on elliptic curves

When Γ ∼= Z3,M = R3/Γ = T 3 and Z ⊂M a finite subset, a monopole (E, h,∇, φ) onM\Z is
called a triply periodic monopole. In [49], Mochizuki studied and built the Kobayashi–Hitchin
type correspondence between meromorphic triply periodic monopoles and stable difference mod-
ules on elliptic curves of degree 0.

Definition 2.25. A triply periodic monopole (E, h,∇, φ) onM\Z is called meromorphic if each
point of Z is of Dirac singularity.

Let Γ0 ⊂ C be a lattice and let T := C/Γ0 be the elliptic curve, let a ∈ T , called a twistor
parameter, let Φ ∈ Aut(T ) given by Φ(z) = z + a, let D ⊂ T be a finite subset.

Definition 2.26. A parabolic difference module on the elliptic curve T (or parabolic a-difference
module) consists of the followings:

(1) A locally free OT -module V and an isomorphism of OT -modules V (∗D) ∼= (Φ∗)−1(V )(∗D);

(2) For each x ∈ D, there is a sequence of real numbers αx := {0 ≤ αx,1 < · · · < αx,m(x) < 1},
when m(x) = 0, it is assumed to be empty;

(3) For each x ∈ D, there is a sequence of lattices Lx :=
{
Lx,0 = Vx, Lx,i ⊂ V (∗D)x(1 ≤ i ≤

m(x)− 1), Lx,m(x) = (Φ∗)−1(V )x
}

.

We denote it as the quadruple
(
V,D, {αx,Lx}x∈D

)
, and for simplicity, we denote it as (V, •).

The degree and slope of (V, •) are given by

deg(V, •) := deg(V ) +
∑
x∈D

m(x)∑
i=1

(1− αx,i) deg(Lx,i, Lx,i−1)

and µ(V, •) := deg(V,•)
rk(V ) , respectively. It is called stable (resp. semistable) if for any non-zero

proper submodule V ′ ⊂ V such that V ′(∗D) ∼= (Φ∗)−1(V ′)(∗D) with the naturally induced
parabolic structure, we have µ(V ′, •) < (resp. ≤) µ(V, •).

In [49], Mochizuki built the following Kobayashi–Hitchin type correspondence between triply
periodic monopoles and a-difference modules:

Theorem 2.27 ([49]). For each a ∈ C/Γ0, there is an one to one correspondence between
irreducible meromorphic triply periodic monopoles and stable parabolic a-difference modules of
degree 0.

3 Conformal limits and Gaiotto’s conjecture

There are many interesting applications of the non-Abelian Hodge theory. Here we give a brief
introduction as the beginning of this section. Throughout this section, X will be denoted as
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a compact Riemann surface of genus g ≥ 2. Let X be the underlying smooth oriented surface,
and denoted by KX the canonical line bundle.

One important application of the non-Abelian Hodge theory is to study the theory for real
Lie groups. Then non-Abelian Hodge theory is an important tool to find special connected
components of the Betti moduli space2 MB(X , G) := Hom(π1(X ), G)//G that parametrizes rep-
resentations of π1(X ) into the real Lie group G. We will give more details in Remark 3.1.

Another important application of the non-Abelian Hodge theory is to study the relation
between certain irreducible components3 of MDol(X, r) and of MdR(X, r). As holomorphic
symplectic manifolds [34], both MDol(X, r) and MdR(X, r) have special holomorphic Lagrangian
submanifolds that can be parametrized by holomorphic differentials on X. These are the Hitchin
section in MDol (it is the image of the Hitchin base under a section of the Hitchin map) and the
space of opers in MdR.

In this section, we will introduce a famous conjecture by Gaiotto that predicts the Hitchin
section in the Dolbeault side and the space of opers in the de Rham side can be identified by
a map called conformal limit. Recently, this conjecture is confirmed by the authors of [22].
In [15], by studying conformal limit, the authors generalize this result to any strata of the
stratification of moduli spaces given by C∗-action.

3.1 C∗-action on flat λ-connections

The Dolbeault moduli space MDol(X, r) admits a natural C∗-action [34, 58]:

t ·
[(
E, ∂̄E , θ

)]
:=
[(
E, ∂̄E , tθ

)]
.

This action is well-defined because it does not change the stability and vanishing of Chern classes.
In [61], Simpson showed the existence of the coarse moduli space MHod(X, r) of semistable λ-
flat bundles over X of rank r and with vanishing Chern classes. This moduli space admits a
fibration π : MHod(X, r)→ C such that π−1(1) = MdR(X, r) and π−1(0) = MDol(X, r). Denoted
by Mλ

Hod(X, r) := π−1(λ) the fiber over λ ∈ C.

Moreover, the C∗-action on MDol(X, r) extends to an action of C∗ on MHod(X, r):

t ·
[
E, ∂̄E , D

λ, λ
]

:=
[
E, ∂̄E , tD

λ, tλ
]
.

This action is well-defined and sends a flat λ-connection to a flat tλ-connection, so the fixed
points must lie inside the fiber at λ = 0, i.e., in MDol(X, r). By [58, Lemma 4.1], the fixed points
in MDol(X, r) are those Higgs bundles having the structure of systems of Hodge bundles,4 that
is, of the formE =

k⊕
p=1

Ep, ∂̄E =

∂̄E1

. . .

∂̄Ek

 , θ : Ep → Ep−1 ⊗ Ω1
X

 .
Following the notations in [63], let P be the subset consisting all the fixed points, and let
P =

∐
α
Pα be the union of its connected components. This fixed point set will play an important

role on the stratifications of moduli spaces, which will be described in the next section.

2This moduli space is usually called character variety or representation variety by people work on surface group
representation theory and higher Teichmüller theory, e.g., [14, 39, 41, 65].

3In fact, we will see in the next section that they are closed stata of the stratifications given by C∗-action on
the corresponding moduli spaces.

4In many contexts, these fixed points are called complex variations of Hodge structure.
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3.2 Hitchin sections and opers

Denote by MDol(SL(r,C)) the moduli space of semistable SL(r,C)-Higgs bundles over X. There
is a proper map, called the Hitchin map

h : MDol(SL(r,C)) −→ B :=

r⊕
i=2

H0
(
X,Ki

X

)
,[

E, ∂̄E , θ
]
7→ char(θ) := (q2(θ), . . . , qr(θ)),

with each qi(θ) = Tr
(
∧i θ

)
. This map defines a completely integrable system [34]. Fix a line

bundle L such that Lr ∼= K
r(r−1)

2
X , there are r2g choices of such L, and each choice makes the

Hitchin base B parametrizes a section called the Hitchin section

sh : B −→MDol(SL(r,C)).

More explicitly, to a point (q2, . . . , qr) ∈ B one associates a SL(r,C)-Higgs bundle
(
E, ∂̄E

)
= L⊕

(
L⊗K−1

X

)
⊕
(
L⊗K−2

X

)
⊕ · · · ⊕

(
L⊗K−(r−1)

X

)
,

θ =


0 q2 q3 · · · qr
a1 0 q2 · · · qr−1

a2 0
. . .

...
. . .

. . . q2

ar−1 0



 ,

where each ai = i(r−i)
2 . For each choice of L, the image sh(B) of the Hitchin base B consists

a connected component ofMDol(SL(r,C)), called a Hitchin component, and denoted as Hitr. This
is related to special connected components of Betti moduli space (see the following remark).

Remark 3.1. The Betti moduli space MB(X ,PSL(2,R)) :=Hom(π1(X ),PSL(2,R))//PSL(2,R)
is the coarse moduli space of representations of π1(X ) into PSL(2,R). In this Betti side, a Hitchin
component usually means a connected component of MB(X ,PSL(2,R)) that consists entirely
the discrete and faithful representations ρ : π1(X )→ PSL(2,R). In [30], by using Euler number
as invariant, Goldman showed that MB(X ,PSL(2,R)) possesses 4g − 3 connected components
with the corresponding Euler numbers from 2−2g to 2g−2. Among these components it has two
Hitchin components, as copies of the Teichmüller spaces Teich(X ) and Teich

(
X̄
)
, respectively.

Moreover, each Hitchin component is homeomorphic to R6g−6.
In [35], Hitchin introduced the r-Fuchsian representations (r > 2): representations ρ : π1(X )

→ PSL(r,R) that are the composition of a discrete and faithful representation ρ0 : π1(X )
→ PSL(2,R) and the unique irreducible representation i : PSL(2,R)→ PSL(r,R). A connected
component of MB(X ,PSL(r,R)) that contains r-Fuchsian representations would be still called
a Hitchin component. By applying the Higgs bundle theory, Hitchin showed that
MB(X ,PSL(r,R)) possesses 3 connected components when r is odd, and 6 connected com-
ponents when r is even. Among these components it has 1 Hitchin component when r is odd,
and 2 Hitchin components when r is even. Moreover, each Hitchin component is homeomorphic
to R(2g−2)(r2−1).
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A further step in [35] is the study of special connected components (i.e., Hitchin components)
of MB

(
X , Gr

)
for any split real form Gr of a complex simple Lie group G. Hitchin showed this

moduli space has Hitchin components homeomorphic to R(2g−2) dim(Gr).
A natural generalization of Hitchin’s theory is to consider more general real non-compact

semisimple Lie groups, then the study of some spacial components of the Betti moduli space leads
to a new filed: higher Teichmüller theory. These special connected components are usually called
higher Teichmüller spaces. For example, when the Lie groups are non-compact of Hermitian
type, then higher Teichmüller spaces correspond to those connected components with maximal
Toledo invariant. The corresponding representations are called maximal representations, they
are showed to be Anosov by Labourie [39]. In particular, they are discrete and faithful. Recently,
higher Teichmüller spaces are found for some special real Lie groups, e.g., [12, 4]. Moreover,
there are many good references on the introduction and the development of this theory from
different points of view (e.g., [2, 13, 14, 27, 65]).

Example 3.2. When r = 2, we fix a line bundle L such that L2 ∼= KX , we will write it as K
1
2
X .

Then the corresponding Higgs bundles in Hit2 have the form((
E, ∂̄E

)
= K

1
2
X ⊕K

− 1
2

X , θ =

(
0 q2

1 0

))
,

so the Hitchin section is parametrized by the quadratic differentials q2 ∈ H0
(
X,K2

X

)
. Moreover,

for any q2, this Higgs bundle is stable, since the only θ-invariant proper subbundle is K
− 1

2
X . Hit2

describes the Teichmüller space Teich(X ) in terms of Higgs bundles, and the quadratic differen-
tial q2 measures the non-conformality of the harmonic diffeomorphism (X , g0)→ (X , g) [41].

For any r, each Higgs bundle
[
E, ∂̄E , θ

]
in Hitr is stable. Now let gt be a gauge transformation

given by

gt =

t
r−1
2

. . .

t−
r−1
2

 ,

then

lim
t→0

gt · (t · θ) · g−1
t =


0
a2 0

. . .
. . .

ar−1 0

 .

As the limit of the C∗-action on
[
E, ∂̄E , θ

]
, the Higgs bundle(E, ∂̄E) = L⊕

(
L⊗K−1

X

)
⊕
(
L⊗K−2

X

)
⊕ · · · ⊕

(
L⊗K−(r−1)

X

)
,

θ′ =


0
a2 0

. . .
. . .

ar−1 0




is stable. Therefore,
[
E, ∂̄E , θ

]
is also stable, since stability is an open condition.
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For each L, the Higgs bundle sh(0, . . . , 0) corresponds to the image of the zero point (0, . . . , 0)
∈ B under the Hitchin section sh is called a uniformizing Higgs bundle. We also call it a Fuch-
sian point, since the associated flat bundle corresponds to the Fuchsian representation that
uniformizes the Riemann surface itself [35]. In fact, in [35], Hitchin showed that for each choice

of L such that Lr ∼= K
r(r−1)

2
X , Higgs bundles in the Hitchin section Hitr have real monodromy

representations

ρ : π1(X)→ SL(r,R),

that is, elements in Hitr are SL(r,R)-Higgs bundles.
Another object we will introduce is oper, as a special object in the de Rham moduli spa-

ce MdR.
For any complex connected reductive Lie group G, the notion of G-oper was introduced and

studied by Beilinson and Drinfeld in [5]. Here for our study of the correspondence between
Hitchin sections and opers, we just consider the case when G = SL(r,C).

Definition 3.3. A SL(r,C)-oper over X is a triple (E,∇, F •), where E is a holomorphic vector
bundle of rank r equipped with an isomorphism ΛrE ∼= OX , ∇ : E → E⊗OXKX is a holomorphic
flat connection, and F • is a filtration given by holomorphic subbundles of E:

0 = F r ⊆ F r−1 ⊆ · · · ⊆ F 1 ⊆ F 0 = E

satisfies the following three conditions:

(1) the filtration is of full flag, i.e., each graded term Ei := F i/F i+1 is a line bundle;

(2) Griffiths transversality: ∇ : F i → F i−1 ⊗OX KX for i = 1, . . . , r;

(3) the induced map θ : Ei → Ei−1 ⊗OX KX is an isomorphism for i = 1, . . . , r.

3.3 Conformal limits and Gaiotto’s conjecture

As holomorphic Lagrangian submanifolds of moduli spaces, both Hitchin section and the space

of opers are parametrized by the Hitchin base
r⊕
i=2

H0
(
X,Ki

X

)
(details can be found in [15,

Section 2.7]). Moreover, they appear as closed subsets of the moduli spaces [5, 15, 34]. The
non-Abelian Hodge correspondence relates the moduli spaces MDol and MdR, however, it doesn’t
relate the Hitchin section and the space of opers. One would hope to find a map to relate these
two Lagrangian submanifolds, and if possible, gives an identification between them. Gaiotto’s
conjecture arises from this consideration.

Let
[
E, ∂̄E , θ

]
∈ MDol(X, r) be a (poly)stable Higgs bundle with the pluri-harmonic metric

denoted as h. Then for any R > 0, the C∗-action gives us a family of (poly)stable Higgs bundles[
E, ∂̄E , Rθ

]
with the corresponding pluri-harmonic metrics denoted as hR. Each

[
E, ∂̄E , Rθ

]
determines a family of flat connections

DR,λ := ∂̄E + ∂E,hR + λ−1Rθ + λRθ†hR

parametrized by λ ∈ C∗. If we fix the product } = λR−1, then we can obtain a family of flat
connections

DR,} := ∂̄E + ∂E,hR + }−1θ + }R2θ†hR

parametrized by R ∈ R+. The study of the limit lim
R→0

DR,} (if exits) of the flat connection DR,}

is an interesting question, this is the following definition:
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Definition 3.4. For a (poly)stable Higgs bundle
[
E, ∂̄E , θ

]
∈MDol(X, r), the limit

lim
R→0

(
E, ∂̄E + }R2θ†hR , ∂E,hR + }−1θ

)
if exists, is called its conformal limit.

We can interpret this flat connection in terms of λ-connections and its C∗-action introduced
in Section 3.1. For each R > 0, every stable Higgs bundle

[
E, ∂̄E , θ

]
determines a stable

Higgs bundle
[
E, ∂̄E , Rθ

]
, thus a λ-flat bundle

[
E, ∂̄E + λRθ†hR , λ∂E,hR + Rθ

]
by non-Abelian

Hodge correspondence. In fact, this λ-flat bundle is obtained from λ acts on the Higgs bundle[
E, ∂̄E + λRθ†hR , ∂E,hR + λ−1Rθ

]
:[

E, ∂̄E + λRθ†hR , λ∂E,hR +Rθ
]

= λ ·
[
E, ∂̄E + λRθ†hR , ∂E,hR + λ−1Rθ

]
.

Again by non-Abelian Hodge correspondence, this Higgs bundle corresponds to a flat bundle,
its flat connection is exactly DR,}.

For special choice of the conformal constant } and the initial Higgs bundle
[
E, ∂̄E , θ

]
, its

confromal limit recovers the non-Abelian Hodge map NAH defined in Section 2.1. In fact, when
} = 1 and

[
E, ∂̄E , θ

]
is a fixed point of the C∗-action, then

lim
R→0

DR,1 = NAH
(
∂̄E , θ

)
.

In [26], Gaiotto proposed the following conjecture that relates the Hitchin component and
the locus of opers by the conformal limits:

Conjecture 3.5. For any Higgs bundle in the Hitchin component, its conformal limit exists and
is an oper. Moreover, it gives a biholomorphism between the Hitchin component and the space
of opers.

In the paper of [22], the authors confirmed this conjecture as the following theorem:

Theorem 3.6 ([22]). For any simple and simply connected Lie group G. If
(
E, ∂̄E , θ

)
is a G-

Higgs bundle in the Hitchin component, then its conformal limit exists and lies in the space of
opers. Moreover, it gives a biholomorphism between the Hitchin component and the space of
opers.

In fact, the locus NAH(sh(B)) of the Hitchin section under the non-Abelian Hodge corre-
spondence in MdR(G) intersects with the space Op(r) of opers transversely at the uniformizing
point sh(0, . . . , 0) [40]. Theorem 3.6 tells us the conformal limits give an identification between
them.

In [15], the authors studied the conformal limit for general Higgs bundle
[
E, ∂̄E , θ

]
∈ MDol

such that the limiting point
[
E, ∂̄0, θ0

]
:= lim

t→0
t · [E, ∂̄E , θ] is stable. They obtained the following

general conformal limit correspondence:

Theorem 3.7 ([15]). For any Higgs bundle
[
E, ∂̄E , θ

]
∈ MDol(SL(r,C)) such that the limiting

point u := lim
t→0

t ·
[
E, ∂̄E , θ

]
∈ Pα is stable, its conformal limit always exists. Moreover, it gives

a biholomorphism between G0
α(u) and G1

α(u).

Here G0
α and G1

α stand for the strata in MDol and MdR that correspond to the connected
component Pα of the fixed point set. Details on this related to the stratifications of moduli
spaces given by C∗-action will be described in the next section.

This result generalizes Theorem 3.6 since the limiting point of any element in the Hitchin
section is stable.
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4 Stratification of moduli spaces

Throughout this section, X denotes a compact Riemann surface.
Following the description in Section 3.1, the natural C∗-action on MDol(X, r) extends to an

action of C∗ on MHod(X, r). By a work of Simpson [63], for each
[
E, ∂̄E , D

λ
]
∈ MHod(X, r),

the limit lim
t→0

t ·
[
E, ∂̄E , D

λ
]

exists and as a fixed point lies in P . Therefore, this action gives

a Bia lynicki-Birula stratification of MHod into locally closed subsets (see Section 4.2). Restricting
the stratification to the fiber over 0, it recovers the classical Bia lynicki-Birula stratification
of MDol. Restricting the stratification to the fiber over 1, we will have a stratification of MdR

into locally closed subsets, and moreover, the space of opers, appears as a special stratum. This
stratification is new to us, provides a new direction on the study of MdR.

On the other hand, in the same paper, Simpson showed each flat bundle over X admits
a filtration satisfies the Griffiths transversality and such that the induced graded Higgs bundle
is semistable (see Section 4.1). And moreover, the limit of the C∗-action on that flat bundle,
as a fixed point in MDol, is S-equivalent to the graded Higgs bundle. This property provides
a possibility on the description of certain flat bundles (e.g., Theorem 4.11), and moreover, plays
an important role on the study of MdR (e.g., on the proof of Conjecture 4.8 for rank 2).

This section can be treated as an application of non-Abelian Hodge theory to the study of
the de Rham moduli space MdR. In this section, we will describe the stratifications of moduli
spaces given by C∗-action. Meanwhile, some conjectures related to the study of MdR will be
introduced.

4.1 Simpson filtrations on flat bundles

For the C∗-action on the Dolbeault moduli spaceMDol(X, r). Since the Hitchin map h :MDol(X, r)

→
r⊕
i=1

H0
(
X,Ki

X

)
is proper and C∗-equivariant, for any

[
E, ∂̄E , θ

]
∈ MDol(X, r), the limit

lim
t→0

t ·
[
E, ∂̄E , θ

]
exists and as a fixed point of this action.

There is no analogue of the Hitchin map for MHod(X, r). However, for each
[
E, ∂̄E , D

λ, λ
]
∈

MHod(X, r), the limit lim
t→0

t ·
[
E, ∂̄E , D

λ, λ
]

of the C∗-action still exists as a fixed point and lies

in some Pα [63]. In particular, the limit lim
t→0

t · (E,∇) of a flat bundle (E,∇) exists as a fixed

point. Moreover, this limit can be described by the existence of a special filtration of this flat
bundle. This filtration, is found by Simpson, we will call it a Simpson filtration throughout the
whole paper.

Definition 4.1 ([37, 63]). Let E be a vector bundle over X with flat connection ∇ : E →
E ⊗OX Ω1

X . A decreasing filtration F • of E by strict subbundles

E = F 0 ⊃ F 1 ⊃ · · · ⊃ F k = 0

is called a Simpson filtration if it satisfies the following two conditions:

(1) Griffiths transversality: ∇ : F p → F p−1 ⊗OX Ω1
X for p = 1, . . . , k;

(2) graded-semistability: the associated graded Higgs bundle (GrF (E),GrF (∇)), where

GrF (E) =
k−1⊕
p=0

Ep with Ep = F p/F p+1 and GrF (∇) : Ep → Ep−1⊗OX Ω1
X induced from ∇,

is a semistable Higgs bundle.

Such a triple
(
E,∇, F •

)
is called a partial oper.

Simpson proved the following nice theorem [63].
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Theorem 4.2. Let (E,∇) be a flat bundle over a smooth projective curve X.

(1) There exist Simpson filtrations F • on (E,∇), this means any flat bundle has partial oper
structure.

(2) Let F •1 and F •2 be two Simpson filtrations on (E,∇), then the associated graded Higgs
bundles (GrF1(E),GrF1(∇)) and (GrF2(E),GrF2(∇)) are S-equivalent.

(3) (E,∇, F •) is graded-stable if and only if the Simpson filtration is unique (up to indices
translation).

(4) lim
t→0

t · (E,∇) = [GrF (E),GrF (∇)] ∈MDol(X, r).

In [63], Simpson gave a wonderful iterated process to show the existence of Simpson filtration
for (E,∇). We now sketch how it works.

Suppose (E,∇) admits a filtration

F • : 0 ⊂ F k−1 ⊂ · · · ⊂ F 0 = E

that satisfies the Griffiths transversality ∇(F p) ⊂ F p−1 ⊗ Ω1
X , and such that the associated

Higgs bundle (V, θ) := (GrF (E),GrF (∇)) is not semistable. To see the existence of such fil-
tration, we can begin with the trivial filtration 0 ⊂ F 0 = E, the graded Higgs bundle will be
(GrF (E),GrF (∇)) = (E, 0). Then applying the following iteration process, we can always have
a such filtration. Take H ⊂ (V, θ) to be the maximal destabilizing subsheaf, which is known
being unique and a subbundle of V , and the quotient V/H is also a subbundle of E. Since H
is unique, it must be a fixed point of the C∗-action. Therefore, H has a structure of system of
Hodge bundles, and as a sub-system of Hodge bundles of (V, θ), that is, H =

⊕
Hp with each

Hp = H ∩GrpF (E) ⊂ F p(E)/F p+1(E) being a strict subbundle.

The new filtration G• is defined as

Gp := Ker

(
E → E/F p(E)

Hp−1

)
.

It satisfies the Griffiths traversality since θ(Hp) ⊂ Hp−1⊗Ω1
X , and it fits into the exact sequence

0→ GrpF (E)/Hp → GrpG(E)→ Hp−1 → 0.

If the new resulting graded Higgs bundle (GrG(E),GrG(∇)) is still not semistable, then we
continue this process to obtain a new graded Higgs bundle. By introducing three bounded
invariants, Simpson showed that the iteration process will strictly decrease these invariants in
lexicographic order. Therefore, after a finite step, we will find a filtration such that the associated
graded Higgs bundle is semistable.

Corollary 4.3 ([63]). Let X be a smooth projective curve and let
[
E, ∂̄E , D

λ
]
∈MHod(X, r) be

any λ-flat bundle (λ 6= 0) in the moduli space, then

lim
t→0

t ·
[
E, ∂̄E , D

λ
]

= lim
t→0

t ·
[
E, ∂̄E , λ

−1Dλ
]
∈MDol(X, r),

where
(
E, ∂̄E , λ

−λDλ
)

is the flat bundle (1-bundle) associated to
(
E, ∂̄E , D

λ
)
.

By definition, the filtration for a GL(r,C)-oper is a special Simpson filtration.

Corollary 4.4. Every oper (E,∇, F •) over a smooth projective curve X of g ≥ 2 is graded
stable, in particular, (E,∇) has F • as the only Simpson filtration (up to indices translation).
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Proof. Let
( r−1⊕
i=0

Ei, θ
)

be the associated graded Higgs bundle, where each Ei is a line bundle

and each θ|Ei : Ei → Ei−1 ⊗ Ω1
X is an isomorphism. This means

deg
(
Ei
)

= deg
(
Ei−1

)
+ 2g − 2 = · · · = deg

(
E0
)

+ i(2g − 2),

note that each θ-invariant non-zero proper subbundle of
( r−1⊕
i=0

Ei, θ
)

has the form
k⊕
i=0

Ei (0 ≤

k < r − 1), with

deg

(
k⊕
i=0

Ek

)
= (k + 1) deg

(
E0
)

+ k(k + 1)(g − 1),

so

µ

(
k⊕
i=1

Ei

)
= deg

(
E0
)

+ k(g − 1) < deg
(
E0
)

+ (r − 1)(g − 1) = µ(E),

this means (E,∇, F •) is graded stable. In particular, by (3) of Theorem 4.2, F • is the only
Simpson filtration for (E,∇). �

Remark 4.5. The non-uniqueness of the Simpson filtration is easy to see. In fact, any irreducible
rank 2 flat bundle of degree 0 with the underlying vector bundle strictly semistable which is an
extension of a degree 0 line bundle admits more than one Simpson filtration. One is the trivial
filtration, and the other one has two terms with the first term the extension of line bundle. The
two resulting graded Higgs bundles are automatically semistable and S-equivalent to each other,
as a unique representative point in the Dolbeault moduli space, which parametrizes the limit
point of the C∗-action.

4.2 Stratifications of moduli spaces

Following [63], we introduce the following set:

Gα :=
{[
E, ∂̄E , D

λ, λ
]
∈MHod(X, r)

∣∣ lim
t→0

t ·
[
E, ∂̄E , D

λ, λ
]
∈ Pα

}
,

then these Gα gives a Bia lynicki-Birula type stratification of the Hodge moduli space MHod(X, r)

MHod(X, r) =
⋃
α

Gα

into locally closed subsets. There is a natural projection pα : Gα → Pα by taking the limit of
the C∗-action. Restricting the stratification to the fiber over each λ ∈ C gives the stratification
of Mλ

Hod(X, r)(X, r)

Mλ
Hod(X, r)(X, r) =

⋃
α

Gλα :=
⋃
α

(
Gα
⋂
π−1(λ)

)
into locally closed subsets. In particular, taking λ = 0 and 1, we have the stratifications of
MDol(X, r) and MdR(X, r)

MDol(X, r) =
⋃
α

G0
α, MdR(X, r) =

⋃
α

G1
α

into locally closed subsets. The first one is in fact the Bia lynicki-Birula stratification of
MDol(X, r) given by the C∗-action. The second one is called the oper stratification of MdR(X, r),
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since the space of opers appears as a special stratum (Theorem 4.2 and Corollary 4.3). The pro-
jection pα restricts on fibers gives projections p0

α : G0
α → Pα and p1

α : G1
α → Pα. By Bia lynicki-

Birula theory, over each point u ∈ Pα, the fiber G0
α(u) :=

(
p0
α

)−1
(u) is an affine space. Moreover,

in [15], by applying the conformal limit techniques, the authors showed each G1
α(u) :=

(
p1
α

)−1
(u)

is also affine [15, Corollary 1.5].

In [63], Simpson showed that over any point u which is a stable system of Hodge bundles in the
fixed point set, the fiber G1

α(u) is a Lagrangian submanifold of MdR. In [15], the authors showed
the Lagrangian property also holds for MDol(X, r), that is, for each stable u, the fiber G0

α(u) is
a Lagrangian submanifold of MDol. Moreover, by studying the conformal limits, they showed
each fiber G0

α(u) is in fact biholomorphic to G1
α(u) (see Theorem 3.7), which generalizes the

conformal limit correspondence between Hitchin section and the space of opers. As we have seen
in the last section that the locus NAH(sh(B)) intersects with Op(r) transversely at sh(0, . . . , 0),
the authors of [15] showed that under the non-Abelian Hodge correspondence, each fiber of the
Bia lynicki-Birula stratification and intersects with the fiber of the oper stratification transversely
at the base point. More explicitly, for each stable point u ∈ Pα, the image NAH

(
G0
α(u)

)
of the fiber G0

α(u) under non-Abelian Hodge correspondence intersects with the fiber G1
α(u)

transversely at NAH(u).

The non-Abelian Hodge correspondence shares no light on the study of MdR from the study
of MDol, since MdR and MDol share very few similarities as algebraic spaces. However, the
strata G1

α play an important role on the understanding of MdR. Especially the Lagrangian
property for each fiber of G1

α induces a natural question on the relationship between these
Lagrangian fibers:

Conjecture 4.6 (foliation conjecture, [63]). When varying α, these Lagrangian fibers of p1
α : G1

α

→ Pα fit together to provide a smooth foliation of MdR(X, r) with each leaf closed.

This conjecture is still open, one progress was recently made by the authors of [42] for the
case of moduli space of rank 2 parabolic connections on P1 minus 4 points.

This closedness property for MDol(X, r) is clearly not right, since any fiber contained in the
compact nilpotent cone would be not closed. If fact, if it is closed, as a subset of a compact
space, it is compact also, as it is affine, this couldn’t happen.

We give a more explicit explanation here, define the following indexed sets by the limit of
C∗-action:

D0
α :=

{[
E, ∂̄E , θ

]
∈MDol(X, r) | lim

t→∞
t ·
[
E, ∂̄E , θ

]
∈ Pα

}
.

Then by Hausel’s thesis [33], these sets fit together into the nilpotent cone:

h−1(0) =
⋃
α

D0
α, (4.1)

which is a deformation retraction of the whole moduli space. Let u ∈ Pα be a fixed point such
that the whole fiber G0

α(u) =
{

[E, ∂̄E , θ] | lim
t→0

t ·
[
E, ∂̄E , θ

]
= u

}
is contained in the nilpotent

cone, that is, G0
α(u) ⊆ h−1(0). Take any v ∈ G0

α(u) that is not a fixed point, as t · v ∈ G0
α(u) for

all t ∈ C∗ and G0
α(u) is closed, both lim

t→0
t · v and lim

t→∞
t · v lie in G0

α(u). Note the first limit is

the fixed point u, and the second limit is also a fixed point by (4.1). By definition, G0
α(u) can

contain only one fixed point, u, this means the two limits of a non-fixed point should coincide,
this couldn’t happen since the fixed point sets are ordered by the energy functional.

Following this idea, with a discussion with Simpson, he told me the following pure algebraic-
geometric result:
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Lemma 4.7. Let Gm the multiplicative group, and Y be any algebraic variety. Suppose Gm acts
on Y with open dense orbit isomorphic to Gm, and such that the two endpoints are identified.
Then there does not exist an ample linearized line bundle on Y .

Proof. Let y be any point lies in the open dense orbit and let z be an extra point not in the
orbit, denote by Oy the orbit. Then by assumption, Oy and {z} are the only two orbits of this
action, and moreover, lim

t→0
t · y = lim

t→∞
t · y = z. Suppose Y has an ample Gm-linearized line

bundle L, then there exists an invariant section of L⊗n for some n ∈ Z+. Hence the linear action
of Gm on the fiber L lim

t→0
t·y has positive weight, while it acts on the fiber L lim

t→∞
t·y has negative

weight, which is a contradiction. �

With this lemma, we can see in another way why G0
α(u) could not have two endpoints of the

C∗-action on a non-fixed point identified. Since the Dolbeault moduli space MDol has an ample
Gm-linearized line bundle (see Simpson’s construction of the moduli space [59, 60]), it could not
have such G0

α(u) inside with the property. Therefore, G0
α(u) could not have a point with two

endpoints of the C∗-action identified, this means G0
α(u) could not be closed.

Let U(X, r) be the moduli space of semistable vector bundles over X of degree 0 and rank r,
this is known to be an irreducible variety. It naturally embeds into MDol(X, r) as Higgs bundles
with zero Higgs field. Moreover, it appears as a connected component of the fixed point set P ,
let P0 denotes this component. On the de Rham side, the corresponding stratum G1

0 in MdR is
the unique open stratum that consists of flat bundles of the form

(
E, ∂̄E , ∂ +ϕ

)
, where

(
E, ∂̄E

)
is a polystable vector bundle, ϕ ∈ H0

(
X,End(E) ⊗ Ω1

X

)
, and ∂ is the unique unitary flat

connection. For each such flat bundle, the Simpson filtration is trivial. On the Dolbeault side,
the corresponding stratum G0

0 is a dense open subset of MDol(X, r), and can be identified with
the cotangent bundle T ∗U(X, r). The strata G1

0 and G0
0 are usually called the lowest strata.

And if we take u =
[
E, ∂̄E , 0

]
∈ P0, then G0

0(u) = H0
(
X,End(E) ⊗ Ω1

X

)
⊆ MDol(X, r), the

space of Higgs fields on E. This fiber is closed if and only if E is very stable, i.e., there is no
non-zero nilpotent Higgs field on E (see also [53]).

The space Pu of uniformizing Higgs bundles (see last section) corresponds to the stratum of
opers G1

u in MdR and the stratum G0
u of Hitchin component in MDol, moreover, G1

u is closed
in MdR, since G0

u is closed in MDol [63]. We will call them the oper stratum and the Hitchin
stratum, respectively.

In [63], Simpson proposed another method to study the behaviour of the stratifications.
Let M be a (quasi-)projective variety with a stratification of locally closed subsets M =

∐
α∈Λ

Gα,

we call this stratification nested if there is a partial order (Λ,≤) such that

Gα =
∐
β≤α

Gβ,

this implies the partial order is defined as

β ≤ α⇐⇒ Gβ ⊆ Gα.

Conjecture 4.8 (nestedness conjecture). The stratifications for MDol(X, r) and MdR(X, r) are
both nested, and the arrangements for both stratifications are the same.

Simpson himself studied and showed it for rank 2 case by using the beautiful techniques of
deformation theory, but for the higher rank case, it is still an open problem.

At least from the proof of nestedness conjecture of rank 2 case, we can see that the oper
stratum (the highest stratum) G1

u is the stratum of minimal dimension among all the strata,
based on this, Simpson proposed another conjecture [63]:
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Conjecture 4.9 (oper stratum conjecture). The oper stratum G1
u is the unique closed stratum

and the unique stratum with minimal dimension.

In [37], by classifying irreducible components of the fixed point set P of the C∗-action
on MDol(X, r), we partially confirmed this conjecture:

Theorem 4.10 ([37]). The oper stratum is the unique closed stratum with minimal dimension.

We still do not know if there exists a closed stratum of strictly higher dimension. Moreover,
we showed the Hitchin stratum is also the unique closed stratum of minimal dimension, but it
is not the unique closed stratum.

In [31], the authors considered the relation between the Bia lynicki-Birula stratification and the
Shatz stratification of MDol(X, 3), where the Shatz stratification is given by Harder–Narasimhan
type of the underlying vector bundles of the Higgs bundles. With this inspiration, we can
consider the relation between the oper stratification given by Simpson filtrations and the Shatz
stratification of MdR(X, 3) given by Harder–Narasimhan type of the underlying vector bundles.

For a flat bundle (E,∇) of rank 3, suppose E is not a stable vector bundle. Then the
Harder–Narasimhan type of E can be given as follows:

1. Type (1, 2), that is, the Harder–Narasimhan filtration is given by 0 ( H1 ( E with
rk
(
H1
)

= 1 and deg
(
H1
)

= d1. In this case, H1 ⊆ E is the maximal destabilizing
subsheaf, so d1 > 0.

2. Type (2, 1), that is, the Harder–Narasimhan filtration is given by 0 ( H1 ( E with
rk
(
H1
)

= 2 and deg
(
H1
)

= d1. As in (1), H1 ⊆ E is the maximal destabilizing subsheaf,
so d1 > 0.

3. Type (1, 1, 1), that is, the Harder–Narasimhan filtration is given by 0 ( H1 ( H2 ( E with
rk
(
H1
)

= 1, deg
(
H1
)

= d1 and rk
(
H2
)

= 2, deg
(
H2/H1

)
= d2. In this case, H1 ⊆ E

is the maximal destabilizing subsheaf, and H2/H1 ⊆ E/H1 is the maximal destabilizing
subsheaf, hence d1 > 0 and d1 + d2 > 0.

Theorem 4.11. Let (E,∇) ∈MdR(X, 3) be an irreducible flat bundle of rank 3 that is graded-
stable, and such that E is not a stable vector bundle. Then its Simpson filtration is determined
by its Harder–Narasimhan filtration as follows:

(1) If the Harder–Narasimhan type of E is (1, 2) as above. Let I ⊂ E/H1 be the sub line
bundle by saturating the subsheaf θ

(
H1
)
⊗K−1

X ⊂ E/H1, where θ : H1 → E/H1 ⊗KX is
the non-zero map induced by ∇, then

(1.1) 0 < d1 < g − 1 & d1 − 2g + 2 ≤ deg(I) < −d1, the Simpson filtration coincides with
the Harder–Narasimhan filtration. Hence

lim
t→0

t · (E,∇) =
[
H1 ⊕ E/H1, θ

]
.

(1.2) 0 < d1 < g−1 & −d1 < deg(I) ≤ −d1
2 or g−1 < d1 ≤ 4g−4

3 & d1−2g+2 ≤ deg(I) ≤
−d1

2 , in either case, the Simpson filtration is given by

0 ( H1 ( F 1 ( E,

where F 1 = Ker
(
E → E/H1

I

)
⊂ E is a rank 2 subbundle. Hence

lim
t→0

t · (E,∇) =

H1 ⊕ I ⊕ E/H1

I
,

 0 0 0
ϕ1 0 0
0 ϕ2 0

 ,
where ϕ1 : H1 → I ⊗ KX is induced by θ and ϕ2 : I → E/H1

I ⊗ KX is induced by
∇ : F 1 → E ⊗KX .
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(2) If the Harder–Narasimhan type of E is (2, 1) as above. Let θ : H1 → E/H1 ⊗KX be the
non-zero induced map and let N := Ker

(
H1 → E/H1⊗KX

)
⊂ H1 be the sub line bundle,

then

(2.1) 0 < d1 < g − 1 & 2d1 − 2g + 2 ≤ deg(N) < 0, the Simpson filtration coincides with
the Harder–Narasimhan filtration. Hence

lim
t→0

t · (E,∇) =
[
H1 ⊕ E/H1, θ

]
.

(2.2) 0 < d1 < g−1 & 0 < deg(N) ≤ d1
2 or g−1 < d1 ≤ 4g−4

3 & 2d1−2g+2 ≤ deg(N) ≤ d1
2 ,

in either case, the Simpson filtration is given by

0 ( N ( G1 ( E,

where G1 := Ker
(
E → E/H1

)
⊂ E is a rank 2 subbundle. Hence

lim
t→0

t · (E,∇) =

N ⊕H1/N ⊕ E/H1,

 0 0 0
ψ1 0 0
0 ψ2 0

 ,
where ψ1 : N → H1/N ⊗K1 and ψ2 : H1/N → E/H1 ⊗KX are induced by ∇ : N →
H1 ⊗KX .

(3) If the Harder–Narasimhan type of E is (1, 1, 1) as above. Let I ⊂ E/H1 be the sub line
bundle as defined in (1) and N ⊂ H2 be the sub line bundle as defined in (2).

(3.1) max{−d1, 2d2 − d1} < deg(I) ≤ d2, the Simpson filtration is given by

0 ( H1 ( F 1 ( E,

where F 1 = Ker
(
E → E/H1

I

)
⊂ E is a rank 2 subbundle. Hence

lim
t→0

t · (E,∇) =

H1 ⊕ I ⊕ E/H1

I
,

 0 0 0
ϕ1 0 0
0 ϕ2 0

 ,
where ϕ1 : H1 → I⊗KX is induced by θ in (1) and ϕ2 : I → E/H1

I ⊗KX is induced by
∇ : F 1 → E⊗KX . In particular, if deg(I) = d2, then F 1 = H2, that is, the Simpson
filtration coincides with the Hardar–Narasimhan filtration.

(3.2) d1 − 2g + 2 ≤ deg(I) < min{−d1, 2d2 − d1},
(3.2.1) d2 < 0, then the Simpson filtration is given by

0 ( H1 ( E.

Hence

lim
t→0

t · (E,∇) =
[
H1 ⊕ E/H1, θ

]
,

where θ : H1 → E/H1 ⊗KX is induced from ∇ : H1 → E ⊗KX .
(3.2.2) d2 > 0,
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• 2(d1 + d2)− 2g + 2 ≤ deg(N) < 0, the Simpson filtration is given by

0 ( H2 ( E.

Hence

lim
t→0

t · (E,∇) =
[
H2 ⊕ E/H2, θ

]
,

where θ : H2 → E/H2 ⊗KX is induced from ∇ : H2 → E ⊗KX .
• 0 < deg(N) ≤ d1, the Simpson filtration is given by

0 ( N ( H2 ( E.

Hence

lim
t→0

t · (E,∇) =

N ⊕H2/N ⊕ E/H2,

 0 0 0
ϕ1 0 0
0 ϕ2 0

 ,
where ψ1 : N → H2/N ⊗KX and θ in (1) and ψ2 : H2/N → E/H2⊗KX are
induced by ∇ : N → H2 ⊗KX . In particular, if deg(N) = d1, then N = H1,
that is, the Simpson filtration coincides with the Hardar–Narasimhan filtra-
tion.

Proof. (1) and (2) are dual to each other, here we just prove (1). Since H1 ⊂ E is the maximal
destabilizing subbundle, we have µ

(
H1
)

= d1 > 0, and since I is the sub line bundle of the

semistable bundle E/H1, we have µ(I) ≤ µ
(
E/H1

)
= −d1

2 . On the other hand, the induced
map θ : H1 → I ⊗KX is non-zero, which gives deg(I) ≥ d1 − 2g + 2. These give the maximal
bound of d1 and deg(I) as follows:

0 < d1 ≤
4g − 4

3
, d1 − 2g + 2 ≤ deg(I) ≤ −d1

2
.

Consider the induced graded Higgs bundle
(
H1 ⊕ E/H1, θ

)
, it is graded stable if and only if

µ(H1 ⊕ I) < 0, that is, deg(I) < −d1. Therefore, if the conditions in (1.1) are satisfied, the
Simpson filtration is 0 ( H1 ( E, with the associated gr-stable Higgs bundle

(
H1 ⊕ E/H1, θ

)
.

When
(
H1 ⊕ E/H1, θ

)
is not semistable, then its maximal destabilizing subbundle is H1 ⊕ I,

which should satisfy µ(H1 ⊕ I) > 0. By Simpson’s iteration process, the next filtration is

0 ( H1 ( F 1 ( E,

where F 1 = Ker
(
E → E/H1

I

)
⊂ E is a rank 2 subbundle. The associated graded Higgs bundle isH1 ⊕ I ⊕ E/H1

I
,

 0 0 0
ϕ1 0 0
0 ϕ2 0

 ,

with ϕ1 : H1 → I⊗KX is induced by θ and ϕ2 : I → E/H1

I ⊗KX is induced by ∇ : F 1 → E⊗KX .

It is gr-stable if and only if µ
(E/H1

I

)
< 0, which can be divided into the two kinds of bounds

for d1 and deg(I) as in (1.2), in either case, the Simpson filtration is 0 ( H1 ( F 1 ( E. But if

the associated graded Higgs bundle is not gr-semistable, we should have µ
(E/H1

I

)
> 0, that is,

deg(I) > −d1, in this case, d1 and deg(I) have bounds 0 < d1 < g−1, d1−2g+2 ≤ deg(I) < −d1.
By Simpson’s iteration process, the next filtration is 0 ( H1 ( E, which comes back to the
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case (1.1), the associated graded Higgs bundle will be stable, and the iteration process stop here.
Therefore, we finish the proof of (1).

(3) Since H1 ⊂ E is the maximal destabilizing subsheaf and H2/H1 ⊂ E/H1 is the maximal
destabilizing subsheaf. And the induced morphisms H1 → I ⊗KX and H2/N → E/H2 ⊗KX

are both non-zero, we have the maximal bounds of deg(I) and deg(N) as follows:

d1 − 2g + 2 ≤ deg(I) ≤ d2, 2(d1 + d2)− 2g + 2 ≤ deg(N) ≤ d1.

By the uniqueness of maximal destabilizing subsheaf, deg(I) = d2 if and only if I = H2/H1,
and deg(N) = d1 if and only if N = H1.

Look at the graded Higgs bundle
(
H1⊕E/H1, θ

)
, where θ : H1 → E/H1⊗KX is the induced

map from ∇ : H1 → E ⊗KX . It is stable if and only if µ
(
H2/H1

)
< 0 and µ

(
H1⊕ I

)
< 0, that

is, d2 < 0 and deg(I) < −d1, this is the case (3.2.1). When it is not stable, then the maximal
destabilizing subsheaf should have positive slope, the possible maximal destabilizing subsheaf is
H1 ⊕ I or H2/H1:

(a) If µ
(
H1⊕ I

)
> µ

(
H2/H1

)
and µ

(
H1⊕ I

)
> 0, that is, max{2d2−d1,−d1} < deg(I) ≤ d2,

then
(
H1⊕E/H1, θ

)
has maximal destabilizing subsheaf H1⊕ I. By Simpson’s iteration,

the next filtration is 0 ( H1 ( F 1 ( E for F 1 = Ker
(
E → E/H1

I

)
⊂ E a rank 2 subbundle.

Easy to see that its associated graded Higgs bundle is stable.

(b) If µ
(
H2/H1

)
> µ

(
H1⊕ I

)
and µ

(
H2/H1

)
> 0, that is, d2 > 0 and d1− 2g+ 2 ≤ deg(I) <

2d2− d1, then
(
H1⊕E/H1, θ

)
has maximal destabilizing subsheaf H2/H1. By Simpson’s

iteration, the next filtration is 0 ( H2 ( E, but we should discuss the stability of the
graded Higgs bundle

(
H2 ⊕ E/H2, θ′

)
:

• it is stable if and only if µ(N) < 0, that is, when d2 > 0, d1−2g+2 ≤ deg(I) < 2d2−d1

and 2(d1 + d2)− 2g + 2 ≤ deg(N) < 0, the Simpson filtration is 0 ( H2 ( E;

• if it is not semistable, then its maximal destabilizing subsheaf is N and should satisfy
µ(N) > 0, and by Simpson’s iteration, the next filtration is 0 ( N ( H2 ( E. Its
associated Higgs bundle is stable, so the iteration stops.

Combining all the above, we obtain the statement (3). �

For each α, let
(
G1
α

)VHS ⊂ G1
α be the subset that consists of the polarized C-VHS (com-

plex variations of Hodge structure). It identifies to those Higgs bundles having the structure
of systems of Hodge bundles (i.e., the fixed point set Pα ⊂ G0

α) by the non-Abelian Hodge

correspondence. Therefore,
(
G1
α

)VHS
= NAH(Pα). Simpson guessed in [63] that points in

G1
α\
(
G1
α

)VHS
do not relate to the points in G0

α via the non-Abelian Hodge correspondence, this
is the following conjecture:

Conjecture 4.12.
(
G1
α

)VHS
= G1

α

⋂
NAH

(
G0
α

)
.

For each polarized C-VHS (E,∇) such that the corresponding monodromy representation
is irrreducible, then the Simpson filtration coincides with its Hodge filtration, this provides
a method to construct its Hodge filtration.

5 Twistor structures arising from non-Abelian Hodge
correspondence

Another important application of non-Abelian Hodge theory is the study of Hitchin’s construc-
tion of twistor spaces for hyper-Kähler manifolds applied to the moduli spaces with hyper-Kähler
structure (see Section 5.1). This construction of twistor structures is interpreted by Deligne as



Non-Abelian Hodge Theory and Related Topics 27

a gluing of two moduli spaces, the resulting twistor space is shown being analytic isomorphic to
the original one (see Section 5.2). When we focus on compact Riemann surfaces, then Deligne’s
gluing can be generalized to a gluing of two moduli spaces induced from any element of the
outer automorphism group of the fundamental group (see Section 5.3).

In this section, we will introduce the twistor construction from Hitchin and Deligne’s view-
points. Then we will provide a new interpretation based on a recent work [37].

5.1 Hitchin’s twistor construction

In [36], the authors provide a construction of twistor space for any hyper-Kähler manifold. Let M
be a heper-Kähler manifold with three complex structures (I, J,K = IJ). The stereographic
projection P1 → S2,

λ = u+ iv 7→
(
x =

1− |λ|2

1 + |λ|2
, y =

2u

1 + |λ|2
, z =

2v

1 + |λ|2

)
defines a family of complex structures Iλ := xI + yJ + zK on M .

The twistor space TW(M) of M is a C∞ trivialization TW(M) ∼= M ×P1. Iλ determines an
almost complex structure I on TW(M), let a = m× λ ∈ TW(M), then

I : TaTW(M) = TmM ⊕ TλP1 → TmM ⊕ TλP1

is given by (Iλ, I0), where I0 : TλP1 → TλP1 is the usual complex structure on P1 given by
I0(v) = iv. In fact, I is integrable [36, 55], thus the twistor space TW(M) is a complex
manifold of dimension dimC(TW(M)) = 1 + dimC(M).

The twistor space TW(M) has the following properties:

(1) the projection π : TW(M)→ P1 is holomorphic;

(2) there is an antilinear involution σ : TW(M)→ TW(M), (m,λ) 7→
(
m,−λ̄−1

)
, which covers

the antipodal involution σP1 : P1 → P1, λ 7→ −λ̄−1, so it gives a real structure on TW(M);

(3) for any m ∈ M , the section {m} × P1 ⊂ TW(M) is holomorphic and σ-invariant, we call
it a preferred section, in some papers like [36, 55], it is called a twistor line;

(4) weight 1 property: the normal bundle along any preferred section is isomorphic to
OP1(1)⊕ dimC(M).

Proposition 5.1. Preferred sections are σ-invariant. Moreover, locally, preferred sections are
the only σ-invariant holomorphic sections.

If we denoted by Pre the set of preferred sections in the Douaby moduli space Sec of holo-
morphic sections. Then “locally” means there exists an open neighborhood U of Pre in Sec such
that preferred sections are the only σ-invariant sections in U [38]. To my knowledge, whether
Proposition 5.1 holds globally is unknown:

Question 5.2. Are the preferred sections the only σ-invariant sections?

Moreover, let p : TW(M) → M be the natural projection, then the twistor space TW(M)
admits a natural hermitian metric g := p∗gM + π∗gFS, where gM is the hyper-Kähler metric
on M and gFS is the Fubini–Study metric on P1. This metric makes the twistor space TW(M)
into a balanced manifold [38] (i.e., the associated fundamental form ω(•, •) := g(I•, •) satisfies
the weak closedness condition d(ωdimCM ) = 0).

Let X be a complex projective variety, denote by M sm
dR(X, r) and M sm

Dol(X, r) the open sub-
sets of smooth points of the moduli spaces MdR(X, r) and MDol(X, r), respectively. From non-
Abelian Hodge theory, we have C∞ isomorphism M sm

dR(X, r) ∼= M sm
Dol(X, r) coming from the
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homeomorphism between the underlying topological spaces [59, 60, 61]. Let M sm(X, r) be the
underlying differentiable manifold. Then by the work of Hitchin ([34] for 1-dimensional base
manifold) and Fujiki ([25] for higher-dimensional Kähler manifolds as the base), M sm(X, r) car-
ries two complex structures I and J from the complex manifolds

(
M sm

Dol(X, r), I
)

and(
M sm

dR(X, r), J
)
. Moreover, IJ =: K gives the third complex structure, which makes(

M sm(X, r), I, J,K
)

has the structure of a hyper-Kähler manifold. Hence Hitchin’s idea for
constructing the twistor space of hyper-Kähler manifolds can be applied to M sm(X, r). There-
fore, we obtain a twistor space for M sm(X, r), denoted as TW

(
M sm(X, r)

)
, and called the

Hitchin twistor space.

5.2 Deligne’s interpretation

Deligne’s original aim was to understand the Hitchin twistor space TW
(
M sm(X, r)

)
via λ-

connections. The idea is gluing the Hodge moduli space MHod(X, r) over X and the Hodge
moduli space MHod

(
X̄, r

)
over its conjugate chart X̄ to obtain a twistor space TWDH(X, r)

that is analytic isomorphic to TW
(
M sm(X, r)

)
. This was described and further studied by

Simpson, he interpreted MHod(X, r) as the Hodge filtration on the non-Abelian de Rham co-
homology MdR(X, r). He showed the Griffiths transversality and the regularity of the Gauss–
Manin connection for this filtration [61]. Here we introduce their ideas based on Simpson’s
papers [61, 62].

Let X be a complex projective variety with a fixed base point x. The complex conjugation
gives a map ϕ : Xtop → X̄top between the underlying topological spaces, which induces an
isomorphism

ϕ∗ : π1(X,x)→ π1

(
X̄, x̄

)
. (5.1)

As the notations used in the last section, let MHod(X, r) be the moduli space of semistable
λ-flat bundles of rank r with vanishing Chern classes, let MB(X,GL(r,C)) be the moduli space
of representations. The Riemann–Hilbert correspondence gives the analytic isomorphism [59]:

MdR(X, r) ∼= MB(X, r). (5.2)

The C∗-action on MHod(X, r) gives the algebraic isomorphism:

MHod(X, r)×C C∗ ∼= MdR(X, r)× C∗,[
E, ∂̄E , D

λ, λ
]
↔
([
E, ∂̄E , λ

−1Dλ
]
, λ
)
. (5.3)

The gluing isomorphism dϕ : MHod(X, r)×C C∗ →MHod(X̄, r)×C C∗ is given as follows:
First by isomorphisms (5.1)–(5.3), any point

[
E, ∂̄E , D

λ, λ
]

in MHod(X, r)×C C∗ determines
a representation ρ

(
λ−1Dλ

)
◦ ϕ−1
∗ : π1

(
X̄, x̄

)
→ GL(r,C), where ρ

(
λ−1Dλ

)
: π1(X,x)→ GL(r,C)

is the monodromy corresponds to the flat connection λ−1Dλ. Then by the conjugate version of
isomorphisms (5.2), ρ

(
λ−1Dλ

)
◦ ϕ−1
∗ corresponds to a flat bundle over X̄. Finally, the conjugate

version of (5.3) at the fiber λ−1 gives a λ−1-flat bundle over X̄. The obtained λ−1-flat bundle
over X̄ is

[
E, λ−1Dλ, λ−1∂̄E , λ

−1
]
. Therefore, the gluing isomorphism is

dϕ : MHod(X, r)×C C∗ ∼= MHod

(
X̄, r

)
×C C∗,[

E, ∂̄E , D
λ, λ
]
↔
[
E, λ−1Dλ, λ−1∂̄E , λ

−1
]
,

which covers the map C∗ → C∗, λ 7→ λ−1. Therefore, we obtained a space TWDH(X, r), called
the Deligne–Hitchin twistor space, together with a fibration TWDH(X, r) → P1 which extends
the projection π : MHod(X, r) → C. The fibers of this fibration are MDol(X, r) at λ = 0,
MDol

(
X̄, r

)
at λ =∞, and analytic isomorphic to MdR(X, r) at λ 6= 0,∞.
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Let
[
E, ∂̄E , θ, h

]
∈MDol(X, r) be a harmonic Higgs bundle with the pluri-harmonic metric h,

then it determines a holomorphic section p : P1 → TWDH(X, r):

λ 7−→
[
E, ∂̄E + λθ†h, λ∂E,h + θ, λ

]
,

where θ†h and ∂E,h are the unique operators determined by (θ, h) and
(
∂̄E , h

)
, respectively. This

section is called a preferred section.
We can also define an antilinear involution σ : TWDH(X, r) → TWDH(X, r) that covers the

antipodal involution σP1 : P1 → P1. This map is defined by gluing the antiholomorphic ismor-
phisms σHod,X : MHod(X, r)→MHod

(
X̄, r

)
and σHod,X̄ : MHod

(
X̄, r

)
→MHod(X, r), where

σHod,X : MHod(X, r)→MHod

(
X̄, r

)
,[

E, ∂̄E , D
λ, λ
]
7→
[
Ē∗, ∂̄E

∗
, Dλ

∗
,−λ̄

]
.

By the existence of pluri-harmonic metric for (poly-)stable λ-flat bundles with vanishing Chern
classes (see Theorem 2.10), take h being the pluri-harmonic metric associated to

[
E, ∂̄E , D

λ, λ
]
.

Then we have the isomorphism[
Ē∗, ∂̄E

∗
, Dλ

∗
,−λ̄

] ∼= [E, δ′h,−δ′′h,−λ̄],
where the operators δ′h and δ′′h can be found in the second section.

Therefore, by means of pluri-harmonic metric, we can write the involution σ as follows:

σ : TWDH(X, r)→ TWDH(X, r),[
E, ∂̄E , D

λ, λ
]
7→
[
E, λ̄−1δ′′h,−λ̄−1δ′h,−λ̄−1

]
.

In fact, σ is the product of the following 3 involutions [62]:

(1) an antiholomorphic involution

C : TWDH(X, r)→ TWDH(X, r),[
E, ∂̄E , D

λ, λ
]
7→
[
E, λ̄−1Dλ, λ̄−1∂̄E , λ̄

−1
]

obtained by gluing complex conjugations of λ-flat bundles;

(2) a holomorphic involution

D : TWDH(X, r)→ TWDH(X, r),[
E, ∂̄E , D

λ, λ
]
7→
[
E∗,

(
∂̄E
)∗
,
(
Dλ
)∗
, λ
]

obtained by gluing duals of λ-flat bundles;

(3) a holomorphic involution

N : TWDH(X, r)→ TWDH(X, r),[
E, ∂̄E , D

λ, λ
]
7→
[
E, ∂̄E ,−Dλ,−λ

]
obtained by −1 ∈ C∗ acts on TWDH(X, r).

By definition, any point in the twistor space determines a unique preferred section. Therefore,
the set of preferred sections gives a homeomorphism

TWDH(X, r) ∼= MDol(X, r)× P1,

which is a C∞ isomorphism over smooth points [61]:

TWsm
DH(X, r) ∼= M sm

Dol(X, r)× P1.
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Proposition 5.3. Preferred sections are σ-invariant. Moreover, locally, preferred sections are
the only σ-invariant holomorphic sections.

Preferred sections are invariant under the antilinear involution σ is easy to see. Here “lo-
cally” means that for any given preferred section p : P1 → TWDH(X, r), there exists an open
neighbourhood U ⊆ TWDH(X, r) of p such that preferred sections are the only σ-invariant sec-
tions in U . This is true because the normal bundle along any preferred section is isomorphic to(
OP1(1)

)⊕ dimCMdR(X,r)
.

In [61], Simpson asked the following question:

Question 5.4. Does Proposition 5.3 hold globally? That is, are the preferred sections the only
σ-invariant sections?

In [61, 62], Simpson showed this question is true for twistor space of rank 1 bundles. Recently,
in [9], the authors constructed holomorphic σ-invariant but not preferred sections for twistor
space of rank 2 bundles over compact Riemann surface of g ≥ 2.

Now we give a brief conclusion on above two different kinds of constructing the twistor spaces.
In Hitchin’s constructing, we first have a hyper-Kähler manifold (the moduli spaces are hyper-
Kähler) M sm(X, r), then the twistor space has a naturally structure of M sm(X, r) × P1. The
complex structure is induced from a family of complex structures (given by the quaternionic
structure) on M sm(X, r) and the natural complex structure on P1. While from Deligne’s in-
terpretation, the twistor space is obtained by gluing the moduli spaces MHod(X, r) over X and
MHod

(
X̄, r

)
over the conjugate X̄. This gluing is obtained via the algebraic isomorphism be-

tween Mλ
Hod (λ 6= 0) and MdR, the isomorphism of fundamental groups induced from the complex

conjugate map X → X̄, and the analytic isomorphism MdR
∼= MB given by the Riemann–Hilbert

correspondence. Preferred sections give the twistor space the product structure, and the weight 1
property implies the quaternionic structure. This viewpoint shows that a quaternionic structure
on M sm(X, r) is equivalent to the weight 1 property of a preferred section [62].

Moreover, the twistor spaces arising from these two different methods are analytic isomorphic:

Theorem 5.5 ([61]). The twistor space TWsm
DH(X, r) is analytic isomorphic to TW(M sm(X, r)).

5.3 A new interpretation

In [37], we concentrated on the twistor space of Riemann surface case, we generalized Deligne’s
construction for any element γ of the outer automorphism group of the fundamental group of
the Riemann surface to obtain the γ-twistor space, we give a brief introduction here (for more
details and proofs, see [37]).

Let X be a compact Riemann surface of genus g ≥ 2 and let X be the underlying smooth
surface, so X can be wrote as X = (X , I) for a complex structure I that defines the Riemann
surface structure of X. The fundamental group of X is given by

π1(X ) =

〈
α1, β1, . . . , αg, βg :

g∏
i=1

αiβiα
−1
i β−1

i = 1

〉
.

Take G = GL(r,C) and let MB(X , G) be the coarse moduli space of rank r representations
of π1(X ) into G.

When λ 6= 0, we have the analytic isomorphism

µλ : Mλ
Hod(X)

∼=−−→MB(X , G)

given by the composition of the algebraic isomorphism Mλ
Hod(X) ∼= MdR(X, r) and the Riemann–

Hilbert correspondence MdR(X, r) ∼= MB(X , G), where the first algebraic isomorphism is given



Non-Abelian Hodge Theory and Related Topics 31

by rescaling the twistor parameter λ (does not change the holomorphic structures of the under-
lying bundles).

The outer automorphism group

ΓX := Out(π1(X )) = Aut(π1(X ))/Inn(π1(X ))

acts on MB(X , G). It is known that ΓX is isomorphic to the extended mapping class group

Mod♦(X ) := π0(Diff(X )) = Diff(X )/Diff0(X )

that acts on the Teichmüller space Teich(X ) of X . To define the Deligne gluing, we first define
an action of ΓX on Teich(X )×MB(X , G) as follows: for f ∈ Diff(X ) such that the equivalence
class [f ] ∈ Mod♦(X ) is nontrivial, there is a induced isomorphism

f∗ : π1(X , x)→ π1(X , f(x))

for x ∈ X such that [f∗] ∈ ΓX is nontrivial, the action of f on Teich(X ) maps X = (X , I) to
X ′ = (X , I ′) where I is a complex structure on X and I ′ is another complex structure induced
by f , and the action of f∗ on MB(X , G) maps a representation ρ : π1(X , x) → G to another
representation ρ′ = ρ ◦ f−1

∗ : π1(X , f(x)) → G, thus the action of ΓX on Teich(X ) ×MB(X , G)
sends (X, ρ) to (X ′, ρ′).

Choose γ ∈ ΓX . For
[
E, ∂̄E , D

λ, λ
]
∈ MHod(X, r) ×C C∗, we have an (X, ρ) ∈ Teich(X ) ×

MB(X , G) via the isomorphism µλ, then the γ-action maps (X, ρ) to (X ′, ρ′) which corresponds
to some

[
E′, ∂̄E′ , D

′λ−1
, λ−1

]
∈MHod(X ′, r)×C C∗ via µ−1

λ at the point λ−1 ∈ C∗.
Therefore, we define an analytic isomorphism called the Deligne isomorphsim

dγ : MHod(X, r)×C C∗ →MHod

(
X ′, r

)
×C C∗

that covers the map C∗ → C∗, λ 7→ λ−1. Now we can use this isomorphism dγ to glue together
two analytic spaces MHod(X, r) and MHod(X ′, r) along their open sets. The resulting space is
denoted by TWγ(X, r), called the γ-twistor space, it has a fibration TWγ(X, r)→ P1. Obviously,
this construction is independent of the choice of representative of γ up to isomorphism. In
conclusion, our construction is along the following diagram:

MHod(X, r)|λ (λ ∈ C∗)
∼=alg

��

∼=an dγ //MHod(X ′, r)|λ−1 (λ ∈ C∗)

MdR(X, r)

∼=an

��

MdR(X ′, r)

∼=alg

OO

MB(X , r) •◦f−1
∗ MB(X , r).

∼=an

OO

Taking X = (X , I) and X ′ = (X ,−I), let ϕ : X → X ′, x 7→ x̄ be the complex conjugate map,
and ϕ′ : X → X be the associated map on underlying smooth surface. Then ϕ′ is not an identity
map and lies in a non-trivial class of Mod♦(X ). This induces an isomorphism ϕ∗ : π1(X , x) →
π1(X , ϕ′(x)), which lies in a non-trivial class of the outer automorphism group Out(π1(X )).
Therefore, the Deligne–Hitchin twistor space TWDH(X, r) can be thought as a special γ-twistor
space.

Fix a point
[
E, ∂̄E , D

λ0 , λ0

]
∈ MHod(X, r)×C C∗ for some fixed λ0 ∈ C∗, then u determines

a holomorphic section sλ0 : C∗ →MHod(X, r)×C C∗ as follows:

λ 7−→
[
E, ∂̄E , λλ

−1
0 Dλ0 , λ

]
.



32 P. Huang

This section can be extended to a holomorphic section P1 → TWγ(X, r) of the γ-twistor space
by Simpson’s Theorem 4.2 (see also [37]), the extended section is still denoted as sλ0 , called the
de Rham section of TWγ(X, r).

The following property is obtained in [37], where the Torelli-type theorem for the γ-twistor
space is obtained by applying the techniques in [8], where the authors obtained the property for
the Deligne–Hitchin twistor space.

Theorem 5.6.

(1) The de Rham section sλ0 also has the weight 1 property, that is, we have the following
isomorphism:

Nsλ0
' OP1(1)⊕ dimC(MdR(X,r)),

where Nsλ0
denotes the normal bundle. In particular, the γ-twistor space TWγ(X, r)

contains ample rational curves.

(2) (Torelli-type theorem) Let X, Y be two compact Riemann surfaces with genus g ≥ 3. If
we have the analytical isomorphism of γ-twistor spaces TWγ(X, r) ∼= TWγ(Y, r), then as
Riemann surfaces, either X ∼= Y , or X ∼= Y ′, where Y ′ is the Riemann surface determined
by Y and γ.
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[4] Aparicio-Arroyo M., Bradlow S., Collier B., Garćıa-Prada O., Gothen P.B., Oliveira A., SO(p, q)-Higgs
bundles and higher Teichmüller components, Invent. Math. 218 (2019), 197–299, arXiv:1802.08093.

[5] Beilinson A., Drinfeld V., Quantization of Hitchin’s integrable system and Hecke eigensheaves, unpublished,
1991, available at http://math.uchicago.edu/~drinfeld/langlands/hitchin/BD-hitchin.pdf.
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