Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 034, 14 pages      arXiv:1912.07952      https://doi.org/10.3842/SIGMA.2020.034

Breathing Modes, Quartic Nonlinearities and Effective Resonant Systems

Oleg Evnin ab
a) Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
b) Theoretische Natuurkunde, Vrije Universiteit Brussel and the International Solvay Institutes, Brussels, Belgium

Received February 20, 2020, in final form April 14, 2020; Published online April 23, 2020

Abstract
A breathing mode in a Hamiltonian system is a function on the phase space whose evolution is exactly periodic for all solutions of the equations of motion. Such breathing modes are familiar from nonlinear dynamics in harmonic traps or anti-de Sitter spacetimes, with applications to the physics of cold atomic gases, general relativity and high-energy physics. We discuss the implications of breathing modes in weakly nonlinear regimes, assuming that both the Hamiltonian and the breathing mode are linear functions of a coupling parameter, taken to be small. For a linear system, breathing modes dictate resonant relations between the normal frequencies. These resonant relations imply that arbitrarily small nonlinearities may produce large effects over long times. The leading effects of the nonlinearities in this regime are captured by the corresponding effective resonant system. The breathing mode of the original system translates into an exactly conserved quantity of this effective resonant system under simple assumptions that we explicitly specify. If the nonlinearity in the Hamiltonian is quartic in the canonical variables, as is common in many physically motivated cases, further consequences result from the presence of the breathing modes, and some nontrivial explicit solutions of the effective resonant system can be constructed. This structure explains in a uniform fashion a series of results in the recent literature where this type of dynamics is realized in specific Hamiltonian systems, and predicts other situations of interest where it should emerge.

Key words: weak nonlinearity; multiscale dynamics; time-periodic energy transfer.

pdf (346 kb)   tex (25 kb)  

References

  1. Balasubramanian V., Buchel A., Green S.R., Lehner L., Liebling S.L., Holographic thermalization, stability of anti-de Sitter space, and the Fermi-Pasta-Ulam paradox, Phys. Rev. Lett. 113 (2014), 071601, 5 pages, arXiv:1403.6471.
  2. Białynicki-Birula I., Białynicka-Birula Z., Center-of-mass motion in the many-body theory of Bose-Einstein condensates, Phys. Rev. A 65 (2002), 063606, 6 pages.
  3. Biasi A., Bizoń P., Craps B., Evnin O., Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates, Phys. Rev. A 96 (2017), 053615, 6 pages, arXiv:1705.00867.
  4. Biasi A., Bizoń P., Craps B., Evnin O., Two infinite families of resonant solutions for the Gross-Pitaevskii equation, Phys. Rev. E 98 (2018), 032222, 12 pages, arXiv:1805.01775.
  5. Biasi A., Bizoń P., Evnin O., Solvable cubic resonant systems, Comm. Math. Phys. 369 (2019), 433-456, arXiv:1805.03634.
  6. Biasi A., Bizoń P., Evnin O., Complex plane representations and stationary states in cubic and quintic resonant systems, J. Phys. A: Math. Theor. 52 (2019), 435201, 22 pages, arXiv:1904.09575.
  7. Biasi A.F., Mas J., Paredes A., Delayed collapses of Bose-Einstein condensates in relation to anti-de Sitter gravity, Phys. Rev. E 95 (2017), 032216, 8 pages, arXiv:1610.04866.
  8. Bizoń P., Craps B., Evnin O., Hunik D., Luyten V., Maliborski M., Conformal flow on ${\rm S}^3$ and weak field integrability in ${\rm AdS}_4$, Comm. Math. Phys. 353 (2017), 1179-1199, arXiv:1608.07227.
  9. Bizoń P., Evnin O., Ficek F., A nonrelativistic limit for AdS perturbations, J. High Energy Phys. 2018 (2018), no. 12, 113, 19 pages, arXiv:1810.10574.
  10. Bizoń P., Hunik-Kostyra D., Pelinovsky D., Ground state of the conformal flow on ${\mathbb S}^3$, Comm. Pure Appl. Math. 72 (2019), 1123-1151, arXiv:1706.07726.
  11. Bizoń P., Hunik-Kostyra D., Pelinovsky D., Stationary states of the cubic conformal flow on ${\mathbb S}^3$, Discrete Contin. Dyn. Syst. 40 (2020), 1-32, arXiv:1807.00426.
  12. Bizoń P., Maliborski M., Rostworowski A., Resonant dynamics and the instability of anti-de Sitter spacetime, Phys. Rev. Lett. 115 (2015), 081103, 5 pages, arXiv:1506.03519.
  13. Bizoń P., Rostworowski A., On weakly turbulent instability of anti-de Sitter space, Phys. Rev. Lett. 107 (2011), 031102, 4 pages, arXiv:1104.3702.
  14. Bizoń P., Rostworowski A., Gravitational turbulent instability of ${\rm AdS}_5$, Acta Phys. Polon. B 48 (2017), 1375-1381, arXiv:1710.03438.
  15. Choptuik M.W., Dias O.J.C., Santos J.E., Way B., Collapse and nonlinear instability of AdS space with angular momentum, Phys. Rev. Lett. 119 (2017), 191104, 6 pages, arXiv:1706.06101.
  16. Craps B., Evnin O., AdS (in)stability: an analytic approach, Fortschr. Phys. 64 (2016), 336-344, arXiv:1510.07836.
  17. Craps B., Evnin O., Luyten V., Maximally rotating waves in AdS and on spheres, J. High Energy Phys. 2017 (2017), no. 9, 059, 18 pages, arXiv:1707.08501.
  18. Craps B., Evnin O., Vanhoof J., Renormalization group, secular term resummation and AdS (in)stability, J. High Energy Phys. 2014 (2014), no. 10, 048, 31 pages, arXiv:1407.6273.
  19. Craps B., Evnin O., Vanhoof J., Renormalization, averaging, conservation laws and AdS (in)stability, J. High Energy Phys. 2015 (2015), no. 1, 108, 28 pages, arXiv:1412.3249.
  20. Dias O.J.C., Santos J.E., AdS nonlinear instability: breaking spherical and axial symmetries, Classical Quantum Gravity 35 (2018), 185006, 40 pages, arXiv:1705.03065.
  21. Evnin O., Nivesvivat R., AdS perturbations, isometries, selection rules and the Higgs oscillator, J. High Energy Phys. 2016 (2016), no. 1, 151, 25 pages, arXiv:1512.00349.
  22. Fodor G., Forgács P., Anti-de Sitter geon families, Phys. Rev. D 96 (2017), 084027, 31 pages, arXiv:1708.09228.
  23. García-Ripoll J.J., Pérez-García V.M., Vekslerchik V., Construction of exact solutions by spatial translations in inhomogeneous nonlinear Schrödinger equations, Phys. Rev. E 64 (2001), 056602, 6 pages.
  24. Gérard P., Germain P., Thomann L., On the cubic lowest Landau level equation, Arch. Ration. Mech. Anal. 231 (2019), 1073-1128, arXiv:1709.04276.
  25. Germain P., Hani Z., Thomann L., On the continuous resonant equation for NLS. I. Deterministic analysis, J. Math. Pures Appl. 105 (2016), 131-163, arXiv:1501.03760.
  26. Kuksin S., Maiocchi A., The effective equation method, in New Approaches to Nonlinear Waves, Lecture Notes in Phys., Vol. 908, Springer, Cham, 2016, 21-41, arXiv:1501.04175.
  27. Martinon G., Fodor G., Grandclément P., Forgács P., Gravitational geons in asymptotically anti-de Sitter spacetimes, Classical Quantum Gravity 34 (2017), 125012, 30 pages, arXiv:1701.09100.
  28. Murdock J.A., Perturbations. Theory and methods, Classics in Applied Mathematics, Vol. 27, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
  29. Niederer U., The maximal kinematical invariance group of the free Schrödinger equation, Helv. Phys. Acta 45 (1972), 802-810.
  30. Ohashi K., Fujimori T., Nitta M., Conformal symmetry of trapped Bose-Einstein condensates and massive Nambu-Goldstone modes, Phys. Rev. A 96 (2017), 051601, 5 pages, arXiv:1705.09118.
  31. Pitaevskii L.P., Dynamics of collapse of a confined Bose gas, Phys. Lett. A 221 (1996), 14-18, arXiv:cond-mat/9605119.
  32. Pitaevskii L.P., Rosch A., Breathing modes and hidden symmetry of trapped atoms in two dimensions, Phys. Rev. A 55 (1997), R853-R856, arXiv:cond-mat/9608135.
  33. Rostworowski A., Higher order perturbations of anti-de Sitter space and time-periodic solutions of vacuum Einstein equations, Phys. Rev. D 95 (2017), 124043, 16 pages, arXiv:1701.07804.
  34. Saint-Jalm R., Castilho P.C.M., Le Cerf E., Bakkali-Hassani B., Ville J.-L., Nascimbene S., Beugnon J., Dalibard J., Dynamical symmetry and breathers in a two-dimensional Bose gas, Phys. Rev. X 9 (2019), 021035, 15 pages, arXiv:1903.04528.
  35. Shastry B.S., A class of parameter-dependent commuting matrices, J. Phys. A: Math. Gen. 38 (2005), L431-L437, arXiv:cond-mat/0501502.
  36. Shastry B.S., Parameter-dependent commuting matrices, Plücker relations and related quantum glass models, J. Phys. A: Math. Theor. 44 (2011), 052001, 11 pages, arXiv:1010.3445.
  37. Yuzbashyan E.A., Shastry B.S., Quantum integrability in systems with finite number of levels, J. Stat. Phys. 150 (2013), 704-721, arXiv:1111.3375.

Previous article  Next article  Contents of Volume 16 (2020)