Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 041, 28 pages      arXiv:1911.11842      https://doi.org/10.3842/SIGMA.2020.041
Contribution to the Special Issue on Integrability, Geometry, Moduli in honor of Motohico Mulase for his 65th birthday

Generalized B-Opers

Indranil Biswas a, Laura P. Schaposnik b and Mengxue Yang b
a)  Tata Institute of Fundamental Research, India
b)  University of Illinois at Chicago, USA

Received November 28, 2019, in final form May 02, 2020; Published online May 14, 2020

Abstract
Opers were introduced by Beilinson-Drinfeld [arXiv:math.AG/0501398]. In [J. Math. Pures Appl. 82 (2003), 1-42] a higher rank analog was considered, where the successive quotients of the oper filtration are allowed to have higher rank. We dedicate this paper to introducing and studying generalized $B$-opers (where ''$B$'' stands for ''bilinear''), obtained by endowing the underlying vector bundle with a bilinear form which is compatible with both the filtration and the connection. In particular, we study the structure of these $B$-opers, by considering the relationship of these structures with jet bundles and with geometric structures on a Riemann surface.

Key words: opers; connection; projective structure; Higgs bundles; differential operator; Lagrangians.

pdf (512 kb)   tex (34 kb)  

References

  1. Atiyah M.F., Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207.
  2. Atiyah M.F., Bott R., A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. 88 (1968), 451-491.
  3. Beilinson A., Drinfeld V., Quantization of Hitchin's integrable system and Hecke eigensheaves, Preprint, 1991, available at http://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf.
  4. Beilinson A., Drinfeld V., Opers, arXiv:math.AG/0501398.
  5. Ben-Zvi D., Frenkel E., Spectral curves, opers and integrable systems, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 87-159, arXiv:math.AG/9902068.
  6. Biswas I., Differential operators on complex manifolds with a flat projective structure, J. Math. Pures Appl. 78 (1999), 1-26.
  7. Biswas I., Invariants for a class of equivariant immersions of the universal cover of a compact Riemann surface into a projective space, J. Math. Pures Appl. 79 (2000), 1-20.
  8. Biswas I., Coupled connections on a compact Riemann surface, J. Math. Pures Appl. 82 (2003), 1-42.
  9. Biswas I., Raina A.K., Projective structures on a Riemann surface. II, Int. Math. Res. Not. 1999 (1999), 685-716.
  10. Biswas I., Schaposnik L.P., Yang M., On the generalized ${\rm SO}(2n,\mathbb{C})$-opers, in preparation.
  11. Collier B., Sanders A., (G,P)-opers and Slodowy slices, arXiv:1911.12844.
  12. Collier B., Wentworth R., Conformal limits and the Białynicki-Birula stratification of the space of $\lambda$-connections, Adv. Math. 350 (2019), 1193-1225, arXiv:1808.01622.
  13. Deligne P., Équations différentielles à points singuliers réguliers, Lecture Notes in Math., Vol. 163, Springer-Verlag, Berlin - New York, 1970.
  14. Drinfel'd V.G., Sokolov V.V., Equations of Korteweg-de Vries type, and simple Lie algebras, Dokl. Akad. Nauk USSR 258 (1981), 11-16.
  15. Drinfel'd V.G., Sokolov V.V., Lie algebras and equations of Korteweg-de Vries type, J. Soviet Math. 30 (1985), 1975-2036.
  16. Dumitrescu O., A journey from the Hitchin section to the oper moduli, in String-Math 2016, Proc. Sympos. Pure Math., Vol. 98, Amer. Math. Soc., Providence, RI, 2018, 107-138, arXiv:1701.00155.
  17. Dumitrescu O., Fredrickson L., Kydonakis G., Mazzeo R., Mulase M., Neitzke A., Opers versus nonabelian Hodge, arXiv:1607.02172.
  18. Dumitrescu O., Mulase M., Quantum curves for Hitchin fibrations and the Eynard-Orantin theory, Lett. Math. Phys. 104 (2014), 635-671, arXiv:1310.6022.
  19. Dumitrescu O., Mulase M., Lectures on the topological recursion for Higgs bundles and quantum curves, in The Geometry, Topology and Physics of Moduli Spaces of Higgs bundles, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., Vol. 36, World Sci. Publ., Hackensack, NJ, 2018, 103-198, arXiv:1509.09007.
  20. Eisenbud D., Harris J., 3264 and all that - a second course in algebraic geometry, Cambridge University Press, Cambridge, 2016.
  21. Frenkel E., Wakimoto modules, opers and the center at the critical level, Adv. Math. 195 (2005), 297-404, arXiv:math.QA/0210029.
  22. Frenkel E., Gaitsgory D., Local geometric Langlands correspondence and affine Kac-Moody algebras, in Algebraic Geometry and Number Theory, Progr. Math., Vol. 253, Birkhäuser Boston, Boston, MA, 2006, 69-260, arXiv:math.AG/0508382.
  23. Gaiotto D., Opers and TBA, arXiv:1403.6137.
  24. Gunning R.C., Lectures on Riemann surfaces, Princeton Mathematical Notes, Princeton University Press, Princeton, N.J., 1966.
  25. Gunning R.C., Special coordinate coverings of Riemann surfaces, Math. Ann. 170 (1967), 67-86.
  26. Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59-126.
  27. Hitchin N.J., Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91-114.
  28. Ince E.L., Ordinary differential equations, Dover Publications, New York, 1944.
  29. Kobayashi S., Differential geometry of complex vector bundles, Princeton Legacy Library, Princeton University Press, Princeton, NJ, 2014.
  30. Sanders A., The pre-symplectic geometry of opers and the holonomy map, arXiv:1804.04716.
  31. Sanders A., Opers, flat connections, and variations of Hodge structure, A Talk at the Semester Program ''Geometry and Physics of Hitchin Systems'' (January 22 - June 21, 2019, Simons Center for Geometry and Physics), available at http://scgp.stonybrook.edu/video_portal/video.php?id=3948.
  32. Simpson C.T., Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95.
  33. Simpson C.T., Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47-129.
  34. Simpson C.T., Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes Études Sci. Publ. Math. 80 (1994), 5-79.
  35. Wentworth R.A., Higgs bundles and local systems on Riemann surfaces, in Geometry and Quantization of Moduli Spaces, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2016, 165-219, arXiv:1402.4203.
  36. Yang M., Opers and Higgs bundles, Ph.D. Thesis, University of Illinois at Chicago, in preparation.

Previous article  Next article  Contents of Volume 16 (2020)