Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 046, 50 pages      arXiv:1909.10088      https://doi.org/10.3842/SIGMA.2020.046

Routh Reduction of Palatini Gravity in Vacuum

Santiago Capriotti
Departamento de Matemática, Instituto de Matemática de Bahía Blanca (INMABB), CONICET, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Argentina

Received September 24, 2019, in final form May 11, 2020; Published online May 30, 2020

Abstract
An interpretation of Einstein-Hilbert gravity equations as Lagrangian reduction of Palatini gravity is made. The main technique involved in this task consists in representing the equations of motion as a set of differential forms on a suitable bundle. In this setting Einstein-Hilbert gravity can be considered as a kind of Routh reduction of the underlying field theory for Palatini gravity. As a byproduct of this approach, a novel set of conditions for the existence of a vielbein for a given metric is found.

Key words: symmetry reduction; Palatini gravity; frame bundle.

pdf (613 kb)   tex (53 kb)  

References

  1. Arnowitt R., Deser S., Misner C.W., The dynamics of general relativity, Gen. Relativity Gravitation 40 (2004), 1997-2027, arXiv:gr-qc/0405109.
  2. Barbero-Liñán M., Echeverría-Enríquez A., Martín de Diego D., Muñoz Lecanda M.C., Román-Roy N., Skinner-Rusk unified formalism for optimal control systems and applications, J. Phys. A: Math. Gen. 40 (2007), 12071-12093, arXiv:0705.2178.
  3. Capriotti S., Differential geometry, Palatini gravity and reduction, J. Math. Phys. 55 (2014), 012902, 29 pages, arXiv:1209.3596.
  4. Capriotti S., Routh reduction and Cartan mechanics, J. Geom. Phys. 114 (2017), 23-64, arXiv:1606.02630.
  5. Capriotti S., Unified formalism for Palatini gravity, Int. J. Geom. Methods Mod. Phys. 15 (2018), 1850044, 33 pages, arXiv:1707.06057.
  6. Capriotti S., García-Toraño Andrés E., Routh reduction for first-order Lagrangian field theories, Lett. Math. Phys. 109 (2019), 1343-1376, arXiv:1909.10088.
  7. Capriotti S., Gaset J., Román-Roy N., Salomone L., Griffiths variational multisymplectic formulation for Lovelock gravity, arXiv:1911.07278.
  8. Castrillón López M., García P.L., Rodrigo C., Euler-Poincaré reduction in principal bundles by a subgroup of the structure group, J. Geom. Phys. 74 (2013), 352-369.
  9. Castrillón López M., Muñoz Masqué J., The geometry of the bundle of connections, Math. Z. 236 (2001), 797-811.
  10. Castrillón López M., Muñoz Masqué J., Rosado María E., First-order equivalent to Einstein-Hilbert Lagrangian, J. Math. Phys. 55 (2014), 082501, 9 pages, arXiv:1306.1123.
  11. Castrillón López M., Ratiu T.S., Reduction in principal bundles: covariant Lagrange-Poincaré equations, Comm. Math. Phys. 236 (2003), 223-250.
  12. Castrillón López M., Ratiu T.S., Shkoller S., Reduction in principal fiber bundles: covariant Euler-Poincaré equations, Proc. Amer. Math. Soc. 128 (2000), 2155-2164, arXiv:math.DG/9908102.
  13. Cattaneo A.S., Schiavina M., The reduced phase space of Palatini-Cartan-Holst theory, Ann. Henri Poincaré 20 (2019), 445-480, arXiv:1707.05351.
  14. Crampin M., Mestdag T., Routh's procedure for non-abelian symmetry groups, J. Math. Phys. 49 (2008), 032901, 28 pages, arXiv:0802.0528.
  15. Dadhich N., Pons J.M., On the equivalence of the Einstein-Hilbert and the Einstein-Palatini formulations of general relativity for an arbitrary connection, Gen. Relativity Gravitation 44 (2012), 2337-2352, arXiv:1010.0869.
  16. Echeverría-Enríquez A., López C., Marín-Solano J., Muñoz Lecanda M.C., Román-Roy N., Lagrangian-Hamiltonian unified formalism for field theory, J. Math. Phys. 45 (2004), 360-380, arXiv:math-ph/0212002.
  17. Ellis D.C.P., Gay-Balmaz F., Holm D.D., Ratiu T.S., Lagrange-Poincaré field equations, J. Geom. Phys. 61 (2011), 2120-2146, arXiv:0910.0874.
  18. García-Toraño Andrés E., Mestdag T., Yoshimura H., Implicit Lagrange-Routh equations and Dirac reduction, J. Geom. Phys. 104 (2016), 291-304, arXiv:1509.01946.
  19. Gaset J., Román-Roy N., Multisymplectic unified formalism for Einstein-Hilbert gravity, J. Math. Phys. 59 (2018), 032502, 39 pages, arXiv:1705.00569.
  20. Gotay M.J., An exterior differential systems approach to the Cartan form, in Symplectic Geometry and Mathematical Physics (Aix-en-Provence, 1990), Progr. Math., Vol. 99, Birkhäuser Boston, Boston, MA, 1991, 160-188.
  21. Gotay M.J., Isenberg J., Marsden J.E., Montgomery R., Momentum Maps And Classical Relativistic Fields. Part I: Covariant field theory, arXiv:physics/9801019.
  22. Griffiths P.A., Exterior differential systems and the calculus of variations, Progress in Mathematics, Vol. 25, Birkhäuser, Boston, Mass., 1983.
  23. Hehl F.W., McCrea J.D., Mielke E.W., Ne'eman Y., Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance, Phys. Rep. 258 (1995), 1-171, arXiv:gr-qc/9402012.
  24. Hehl F.W., von der Heyde P., Kerlick G.D., Nester J.M., General relativity with spin and torsion: foundations and prospect, Rev. Modern Phys. 48 (1976), 393-416.
  25. Higham N.J., $J$-orthogonal matrices: properties and generation, SIAM Rev. 45 (2003), 504-519.
  26. Hsu L., Calculus of variations via the Griffiths formalism, J. Differential Geom. 36 (1992), 551-589.
  27. Ibort A., Spivak A., On a covariant Hamiltonian description of Palatini's gravity on manifolds with boundary, arXiv:1605.03492.
  28. Kharlamov M.P., Characteristic class of a bundle and the existence of a global Routh function, Funct. Anal. Appl. 11 (1977), 80-81.
  29. Kobayashi S., Nomizu K., Foundations of differential geometry. Vol. I, Interscience Publishers, New York - London, 1963.
  30. Krupka D., Introduction to global variational geometry, Atlantis Studies in Variational Geometry, Vol. 1, Atlantis Press, Paris, 2015.
  31. Langerock B., López M.C., Routh reduction for singular Lagrangians, Int. J. Geom. Methods Mod. Phys. 7 (2010), 1451-1489, arXiv:1007.0325.
  32. Marsden J.E., Ratiu T.S., Scheurle J., Reduction theory and the Lagrange-Routh equations, J. Math. Phys. 41 (2000), 3379-3429.
  33. Nawarajan D., Visser M., Global properties of physically interesting Lorentzian spacetimes, Internat. J. Modern Phys. D 25 (2016), 1650106, 15 pages, arXiv:1601.03355.
  34. Pars L.A., A treatise on analytical dynamics, John Wiley & Sons, Inc., New York, 1965.
  35. Peldán P., Actions for gravity, with generalizations: a review, Classical Quantum Gravity 11 (1994), 1087-1132, arXiv:gr-qc/9305011.
  36. Prieto-Martínez P.D., Román-Roy N., A new multisymplectic unified formalism for second order classical field theories, J. Geom. Mech. 7 (2015), 203-253, arXiv:1402.4087.
  37. Romano J.D., Geometrodynamics vs. connection dynamics, Gen. Relativity Gravitation 25 (1993), 759-854, arXiv:gr-qc/9303032.
  38. Sardanashvily G., Classical gauge gravitation theory, Int. J. Geom. Methods Mod. Phys. 8 (2011), 1869-1895, arXiv:1110.1176.
  39. Saunders D.J., The geometry of jet bundles, London Mathematical Society Lecture Note Series, Vol. 142, Cambridge University Press, Cambridge, 1989.
  40. Tsamparlis M., On the Palatini method of variation, J. Math. Phys. 19 (1978), 555-557.
  41. Vey D., Multisymplectic formulation of vielbein gravity: I. De Donder-Weyl formulation, Hamiltonian $(n-1)$-forms, Classical Quantum Gravity 32 (2015), 095005, 50 pages, arXiv:1404.3546.

Previous article  Next article  Contents of Volume 16 (2020)