Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 057, 14 pages      arXiv:2004.05099      https://doi.org/10.3842/SIGMA.2020.057

On Frobenius' Theta Formula

Alessio Fiorentino and Riccardo Salvati Manni
Sapienza Università di Roma, Italy

Received April 14, 2020, in final form June 11, 2020; Published online June 17, 2020

Abstract
Mumford's well-known characterization of the hyperelliptic locus of the moduli space of ppavs in terms of vanishing and non-vanishing theta constants is based on Neumann's dynamical system. Poor's approach to the characterization uses the cross ratio. A key tool in both methods is Frobenius' theta formula, which follows from Riemann's theta formula. In a 2004 paper Grushevsky gives a different characterization in terms of cubic equations in second order theta functions. In this note we first show the connection between the methods by proving that Grushevsky's cubic equations are strictly related to Frobenius' theta formula and we then give a new proof of Mumford's characterization via Gunning's multisecant formula.

Key words: hyperelliptic curves; theta functions; Jacobians of hyperelliptic curves; Kummer variety.

pdf (350 kb)   tex (20 kb)  

References

  1. Auffarth R., Pirola G.P., Manni R.S., Torsion points on theta divisors, Proc. Amer. Math. Soc. 145 (2017), 89-99, arXiv:1512.09296.
  2. Beauville A., The Coble hypersurfaces, C. R. Math. Acad. Sci. Paris 337 (2003), 189-194, arXiv:math.AG/0306097.
  3. Beauville A., Abelian varieties associated to Gaussian lattices, in A Celebration of Algebraic Geometry, Clay Math. Proc., Vol. 18, Amer. Math. Soc., Providence, RI, 2013, 37-44, arXiv:1112.2843.
  4. Buchstaber V., Krichever I., Multidimensional vector addition theorems and the Riemann theta functions, Int. Math. Res. Not. 1996 (1996), 505-513.
  5. Donten-Bury M., van Geemen B., Kapustka G., Kapustka M., Wiśniewski J.A., A very special EPW sextic and two IHS fourfolds, Geom. Topol. 21 (2017), 1179-1230, arXiv:1509.06214.
  6. Farkas H., Grushevsky S., Salvati Mann R., An explicit solution to the weak Schottky problem, arXiv:1710.02938.
  7. Fay J., On the Riemann-Jacobi formula, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1979), no. 5, 61-73.
  8. Frobenius G., Ueber die constanten Factoren der Thetareihen, J. Reine Angew. Math. 98 (1885), 244-263.
  9. Grushevsky S., Cubic equations for the hyperelliptic locus, Asian J. Math. 8 (2004), 161-172, arXiv:math.AG/0503026.
  10. Grushevsky S., Salvati Manni R., Gradients of odd theta functions, J. Reine Angew. Math. 573 (2004), 45-59, arXiv:math.AG/0310085.
  11. Gunning R.C., Some identities for abelian integrals, Amer. J. Math. 108 (1986), 39-74.
  12. Igusa J., Theta functions, Die Grundlehren der mathematischen Wissenschaften, Vol. 194, Springer-Verlag, New York - Heidelberg, 1972.
  13. Igusa J., On Jacobi's derivative formula and its generalizations, Amer. J. Math. 102 (1980), 409-446.
  14. Igusa J., On the irreducibility of Schottky's divisor, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 531-545.
  15. Mumford D., Tata lectures on theta. II. Jacobian theta functions and differential equations, Progress in Mathematics, Vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984.
  16. Nöther M., Zur Theorie der Thetafunctionen von vier Argumenten, Math. Ann. 14 (1878), 248-293.
  17. Poor C., The hyperelliptic locus, Duke Math. J. 76 (1994), 809-884.
  18. Rauch H.E., Farkas H.M., Theta functions with applications to Riemann surfaces, The Williams & Wilkins Co., Baltimore, Md., 1974.
  19. Salvati Manni R., Modular varieties with level $2$ theta structure, Amer. J. Math. 116 (1994), 1489-1511.
  20. Thomae J., Beitrag zur Bestimmung von $\vartheta(0,0,\dots, 0)$ durch die Klassenmoduln algebraischer Functionen, J. Reine Angew. Math. 71 (1870), 201-222.
  21. van Geemen B., Schottky-Jung relations and vectorbundles on hyperelliptic curves, Math. Ann. 281 (1988), 431-449.

Previous article  Next article  Contents of Volume 16 (2020)