Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 058, 13 pages      arXiv:2002.02990      https://doi.org/10.3842/SIGMA.2020.058
Contribution to the Special Issue on Cluster Algebras

On the Number of $\tau$-Tilting Modules over Nakayama Algebras

Hanpeng Gao a and Ralf Schiffler b
a)  Department of Mathematics, Nanjing University, Nanjing 210093, P.R. China
b)  Department of Mathematics, University of Connecticut, Storrs, CT 06269-1009, USA

Received March 06, 2020, in final form June 11, 2020; Published online June 18, 2020

Abstract
Let $\Lambda^r_n$ be the path algebra of the linearly oriented quiver of type $\mathbb{A}$ with $n$ vertices modulo the $r$-th power of the radical, and let $\widetilde{\Lambda}^r_n$ be the path algebra of the cyclically oriented quiver of type $\widetilde{\mathbb{A}}$ with $n$ vertices modulo the $r$-th power of the radical. Adachi gave a recurrence relation for the number of $\tau$-tilting modules over $\Lambda^r_n$. In this paper, we show that the same recurrence relation also holds for the number of $\tau$-tilting modules over $\widetilde{\Lambda}^r_n$. As an application, we give a new proof for a result by Asai on recurrence formulae for the number of support $\tau$-tilting modules over $\Lambda^r_n$ and $\widetilde{\Lambda}^r_n$.

Key words: $\tau$-tilting modules; support $\tau$-tilting modules; Nakayama algebras.

pdf (342 kb)   tex (15 kb)  

References

  1. Adachi T., The classification of $\tau$-tilting modules over Nakayama algebras, J. Algebra 452 (2016), 227-262, arXiv:1309.2216.
  2. Adachi T., Iyama O., Reiten I., $\tau$-tilting theory, Compos. Math. 150 (2014), 415-452, arXiv:1210.1036.
  3. Asai S., Semibricks, Int. Math. Res. Not., to appear, arXiv:1610.05860.
  4. Assem I., Brüstle T., Schiffler R., Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), 151-162, arXiv:math.RT/0601537.
  5. Assem I., Simson D., Skowroński A., Elements of the representation theory of associative algebras, Vol. 1, Techniques of representation theory, London Mathematical Society Student Texts, Vol. 65, Cambridge University Press, Cambridge, 2006.
  6. Auslander M., Smalø S.O., Almost split sequences in subcategories, J. Algebra 69 (1981), 426-454.
  7. Buan A.B., Marsh R., Reineke M., Reiten I., Todorov G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618, arXiv:math.RT/0402054.
  8. Caldero P., Chapoton F., Schiffler R., Quivers with relations arising from clusters ($A_n$ case), Trans. Amer. Math. Soc. 358 (2006), 1347-1364, arXiv:math.RT/0401316.
  9. Fomin S., Zelevinsky A., $Y$-systems and generalized associahedra, Ann. of Math. 158 (2003), 977-1018, arXiv:hep-th/0111053.
  10. Happel D., Ringel C.M., Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
  11. Keller B., Vossieck D., Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), 239-253.
  12. Obaid M.A.A., Nauman S.K., Fakieh W.M., Ringel C.M., The number of support-tilting modules for a Dynkin algebra, J. Integer Seq. 18 (2015), Article 15.10.6, 24 pages, arXiv:1403.5827.
  13. Schiffler R., Quiver representations, CMS Books in Mathematics, Springer, Cham, 2014.

Previous article  Next article  Contents of Volume 16 (2020)