Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 065, 14 pages      arXiv:1907.02925      https://doi.org/10.3842/SIGMA.2020.065

Solvable Lie Algebras of Vector Fields and a Lie's Conjecture

Katarzyna Grabowska a and Janusz Grabowski b
a) Faculty of Physics, University of Warsaw, Poland
b) Institute of Mathematics, Polish Academy of Sciences, Poland

Received February 04, 2020, in final form July 02, 2020; Published online July 10, 2020

Abstract
We present a local and constructive differential geometric description of finite-dimensional solvable and transitive Lie algebras of vector fields. We show that it implies a Lie's conjecture for such Lie algebras. Also infinite-dimensional analytical solvable and transitive Lie algebras of vector fields whose derivative ideal is nilpotent can be adapted to this scheme.

Key words: vector field; nilpotent Lie algebra; solvable Lie algebra; dilation; foliation.

pdf (366 kb)   tex (21 kb)  

References

  1. Blattner R.J., Induced and produced representations of Lie algebras, Trans. Amer. Math. Soc. 144 (1969), 457-474.
  2. Bruce A.J., Grabowska K., Grabowski J., Linear duals of graded bundles and higher analogues of (Lie) algebroids, J. Geom. Phys. 101 (2016), 71-99, arXiv:1409.0439.
  3. Cariñena J.F., Falceto F., Grabowski J., Solvability of a Lie algebra of vector fields implies their integrability by quadratures, J. Phys. A: Math. Theor. 49 (2016), 425202, 13 pages, arXiv:1606.02472.
  4. Cariñena J.F., Falceto F., Grabowski J., Rañada M.F., Geometry of Lie integrability by quadratures, J. Phys. A: Math. Theor. 48 (2015), 215206, 18 pages, arXiv:1409.7549.
  5. Cartan E., Sur la structure des groupes de transformations finis et continus, Thesis (Paris, Nony 1894), 2nd ed., Vuibert, Paris, 1933.
  6. Draisma J., Lie algebras of vector fields, Ph.D. Thesis, Technische Universiteit Eindhoven, 2002, available at https://doi.org/10.6100/IR555019.
  7. Draisma J., On a conjecture of Sophus Lie, in Differential Equations and the Stokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 65-87.
  8. Draisma J., Transitive Lie algebras of vector fields: an overview, Qual. Theory Dyn. Syst. 11 (2012), 39-60, arXiv:1107.2836.
  9. Gantmacher F., On the classification of real simple Lie groups, Rec. Math. 5 (1939), 217-250.
  10. González-López A., Kamran N., Olver P.J., Lie algebras of vector fields in the real plane, Proc. London Math. Soc. 64 (1992), 339-368.
  11. Grabowski J., Remarks on nilpotent Lie algebras of vector fields, J. Reine Angew. Math. 406 (1990), 1-4.
  12. Grabowski J., Rotkiewicz M., Higher vector bundles and multi-graded symplectic manifolds, J. Geom. Phys. 59 (2009), 1285-1305, arXiv:math.DG/0702772.
  13. Grabowski J., Rotkiewicz M., Graded bundles and homogeneity structures, J. Geom. Phys. 62 (2012), 21-36, arXiv:1102.0180.
  14. Guillemin V.W., Sternberg S., An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16-47.
  15. Kawski M., Nilpotent Lie algebras of vectorfields, J. Reine Angew. Math. 388 (1988), 1-17.
  16. Lie S., Theorie der Transformationsgruppen I, Math. Ann. 16 (1880), 441-528.
  17. Lie S., Gruppenregister, Gesammelte Abhandlungen, Vol. 5, B.G. Teubner, Leipzig, 1924.
  18. Lie S., Engel F., Transformationsgruppen, B.G. Teubner, Leipzig, 1893.
  19. Magazev A.A., Mikheyev V.V., Shirokov I.V., Computation of composition functions and invariant vector fields in terms of structure constants of associated Lie algebras, SIGMA 11 (2015), 066, 17 pages, arXiv:1312.0362.
  20. Mubarakzjanov G.M., Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element, Izv. Vyssh. Uchebn. Zaved. Mat. (1963), no. 4(35), 104-116.
  21. Nagano T., Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398-404.
  22. Palais R.S., A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957), iii+123 pages.
  23. Popovych R.O., Boyko V.M., Nesterenko M.O., Lutfullin M.W., Realizations of real low-dimensional Lie algebras, J. Phys. A: Math. Gen. 36 (2003), 7337-7360, arXiv:math-ph/0301029.
  24. Safiullina E.N., Classification of nilpotent Lie algebras of order $7$, Ph.D. Thesis, Kazan University, Kazan, 1964.
  25. Schneider E., Projectable Lie algebras of vector fields in 3D, J. Geom. Phys. 132 (2018), 222-229, arXiv:1803.08878.
  26. Tsagas G., Classification of nilpotent Lie algebras of dimension eight, J. Inst. Math. Comput. Sci. Math. Ser. 12 (1999), 179-183.
  27. Turkowski P., Solvable Lie algebras of dimension six, J. Math. Phys. 31 (1990), 1344-1350.
  28. Voronov Th.Th., $Q$-manifolds and higher analogs of Lie algebroids, in XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., Vol. 1307, Amer. Inst. Phys., Melville, NY, 2010, 191-202, arXiv:1010.2503.
  29. Šnobl L., Winternitz P., Classification and identification of Lie algebras, CRM Monograph Series, Vol. 33, Amer. Math. Soc., Providence, RI, 2014.

Previous article  Next article  Contents of Volume 16 (2020)