Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 069, 13 pages      arXiv:2003.05890      https://doi.org/10.3842/SIGMA.2020.069
Contribution to the Special Issue on Noncommutative Manifolds and their Symmetries in honour of Giovanni Landi

On the Irreducibility of Some Quiver Varieties

Claudio Bartocci ab, Ugo Bruzzo cdefg, Valeriano Lanza h and Claudio L.S. Rava a
a) Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
b) Laboratoire SPHERE, CNRS, Université Paris Diderot (Paris 7), 75013 Paris, France
c) SISSA (Scuola Internazionale Superiore di Studi Avanzati), Via Bonomea 265, 34136 Trieste, Italy
d) Departamento de Matemática, Universidade Federal da Paraíba, Campus I, João Pessoa, PB, Brasil
e) IGAP (Institute for Geometry and Physics), Trieste, Italy
f) INFN (Istituto Nazionale di Fisica Nucleare), Sezione di Trieste, Italy
g) Arnold-Regge Center for Algebra, Geometry and Theoretical Physics, Torino, Italy
h) Departamento de Análise, IME, Universidade Federal Fluminense, Rua Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, Brazil

Received March 13, 2020, in final form July 10, 2020; Published online July 26, 2020

Abstract
We prove that certain quiver varieties are irreducible and therefore are isomorphic to Hilbert schemes of points of the total spaces of the bundles $\mathcal O_{\mathbb P^1}(-n)$ for $n \ge 1$.

Key words: quiver representations; Hilbert schemes of points.

pdf (409 kb)   tex (19 kb)  

References

  1. Bartocci C., Bruzzo U., Lanza V., Rava C.L.S., Hilbert schemes of points of ${\mathcal O}_{{\mathbb P}^1}(-n)$ as quiver varieties, J. Pure Appl. Algebra 221 (2017), 2132-2155, arXiv:1504:02987.
  2. Bartocci C., Bruzzo U., Rava C.L.S., Monads for framed sheaves on Hirzebruch surfaces, Adv. Geom. 15 (2015), 55-76, arXiv:1205.3613.
  3. Bartocci C., Lanza V., Rava C.L.S., Moduli spaces of framed sheaves and quiver varieties, J. Geom. Phys. 118 (2017), 20-39, arXiv:1610:02731.
  4. Bruzzo U., Fucito F., Morales J.F., Tanzini A., Multi-instanton calculus and equivariant cohomology, J. High Energy Phys. 2003 (2003), no. 5, 054, 24 pages, arXiv:hep-th/0211108.
  5. Crawley-Boevey W., Geometry of the moment map for representations of quivers, Compositio Math. 126 (2001), 257-293.
  6. Dorey N., Hollowood T.J., Khoze V.V., Mattis M.P., The calculus of many instantons, Phys. Rep. 371 (2002), 231-459, arXiv:hep-th/0206063.
  7. Fogarty J., Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), 511-521.
  8. Ginzburg V., Lectures on Nakajima's quiver varieties, in Geometric Methods in Representation Theory. I, Sémin. Congr., Vol. 24, Soc. Math. France, Paris, 2012, 145-219, arXiv:0905:0686.
  9. King A.D., Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford 45 (1994), 515-530.
  10. Kuznetsov A., Quiver varieties and Hilbert schemes, Mosc. Math. J. 7 (2007), 673-697, arXiv:math.AG/0111092.
  11. Nakajima H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416.
  12. Nakajima H., Lectures on Hilbert schemes of points on surfaces, University Lecture Series, Vol. 18, Amer. Math. Soc., Providence, RI, 1999.
  13. Nakajima H., Introduction to quiver varieties - for ring and representation theorists, in Proceedings of the 49th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Shimane, 2017, 96-114, arXiv:1611:10000.
  14. Nekrasov N.A., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003), 831-864, arXiv:hep-th/0206161.
  15. Ngo N.V., Šivic K., On varieties of commuting nilpotent matrices, Linear Algebra Appl. 452 (2014), 237-262, arXiv:1308:4438.
  16. Okonek C., Schneider M., Spindler H., Vector bundles on complex projective spaces, Progress in Mathematics, Vol. 3, Birkhäuser, Boston, Mass., 1980.
  17. Rudakov A., Stability for an abelian category, J. Algebra 197 (1997), 231-245.

Previous article  Next article  Contents of Volume 16 (2020)